Gevrey singularities for nonlinear wave equations

大阪村理 加藤 圭一 (OSAKA UNIVERSITY: KEIICHI KATO)

1. Introduction

We consider the following semilinear wave equations,

$$\Box u = f(u) \quad \text{in } \Omega \subset R_t \times R_x^2,$$

where u is a real valued function, $\Box = \partial^2/\partial t^2 - \Delta$ with $\Delta = \sum_{j=1}^2 \partial^2/\partial x_j^2$, Ω is a bounded domain which contains the origin and f(u) is a polynomial of u with f(0) = 0.

We study the interaction of Gevrey singularities for this equation. We assume that solutions that we study here are all in $H^s(\Omega)$ with s > 3/2 where $H^s(\Omega)$ is a Sobolev space of order s in Ω . In 1982, J. Rauch and M. Reed [4] have made an example in which three singularities produce new singularities. In 1984, J. M. Bony [2] and R. Melrose and N. Ritter [3] have had a general result for C^{∞} singularity independently. We put $\Sigma_j = \{(t,x) \in R^3; t = \omega_j \cdot x\}$ (j = 1,2,3) with $\omega_j \in S^1$. Their result for the equation (1) is as follows.

Theorem 1.1 (J. M. Bony [2], R. Melrose and N. Ritter [3]). If u is conormal with respect to $\Sigma_1 \cup \Sigma_2 \cup \Sigma_3$ in $\Omega_- = \Omega \cup \{t < 0\}$, then the solution u is C^{∞} in $K \setminus (\Sigma_1 \cup \Sigma_2 \cup \Sigma_3 \cup \{t^2 = |x|^2\})$ where K is a domain of determine with respect to Ω_- .

In this talk, we shall make the Gevrey version of the above result.

Definition 1.1 (Gevrey conormal distribution). For $s > 3/2, \sigma \le 1$, we call that $u \in H^s(\Sigma, G^{(\sigma)}; \Omega)$, if and only if for any compact set $K \subset \Omega$ and for any vector fields V_1, \ldots, V_l with analytic coefficients and any integer l which are tangent to Σ , there exist constants C, A > 0 such that

(2)
$$||V_1^{\alpha_1} \cdots V_l^{\alpha_l} u||_{\dot{H}^s(K)} \le C A^{|\alpha|} (|\alpha|!)^{\sigma}$$

for any integers $\alpha_1, \ldots, \alpha_l$.

Theorem 1.2. Suppose that u is in $H^s(\Omega)$ for some s > 5/2, u satisfies the equation (1) and $u \in H^s(\Sigma_1, G^{(\sigma)}; \Omega_-)$. Then we have

(3)
$$u \in H^s(\Sigma_1, G^{(\sigma)}; K),$$

where $\Omega_{-} = \Omega \cap \{(t,x); t < 0\}$, K is the domain of dertermine with respect to Ω_{-} .

Theorem 1.3. Suppose that u is in $H^s(\Omega)$ for some s > 5/2, u satisfies the equation (1) and $u \in H^s(\Sigma_1 \cup \Sigma_2, G^{(\sigma)}; \Omega_-)$. Then we have

$$(4) u \in H^s(\Sigma_1 \cup \Sigma_2, G^{(\sigma)}; K),$$

where $\Omega_{-} = \Omega \cap \{(t,x); t < 0\}$, K is the domain of dertermine with respect to Ω_{-} .

Theorem 1.4 (Main result). Suppose that $u \in H^s(\Omega)$ (s > 5/2), u satisfies the equation (1) and

(5)
$$u \in H^s(\Sigma_1 \cup \Sigma_2 \cup \Sigma_3, G^{(\sigma)}; \Omega_-).$$

Then u is a Gevrey class function of order σ in $K \setminus \Sigma_1 \cup S_2 \cup \Sigma_3 \cup \Gamma_+$, where $\Gamma_+ = \{t^2 = |x|^2, t > 0\}$, $\Omega_- = \Omega \cap \{t < 0\}$ and K is a domain of determine with respect to Ω .

Corollary 1.1. Suppose that $u \in H^s(\Omega)$ (s > 5/2), u satisfies the equation (1) and

(6)
$$u \in H^s(\Sigma_1 \cup \Sigma_2 \cup \Sigma_3, G^{(1)}; \Omega_-).$$

Then u is real analytic in $K \setminus \Sigma_1 \cup S_2 \cup \Sigma_3 \cup \Gamma_+$, where $\Gamma_+ = \{t^2 = |x|^2, t > 0\}$, $\Omega_- = \Omega \cap \{t < 0\}$ and K is a domain of determine with respect to Ω_- .

2. Preliminaries

Let K be a relatively compact set in $R^3 = R_t \times R_x^2$ such that each subset $K \cap \{(t,x); s \leq t \leq T\}$ is a domain of determine with respect to $K \cap \{(t,x); t \leq s\}$ for $S \leq s \leq T$. For m > 5/2 and $f \in H^m(K)$, we put

(7)
$$E_m(t)[f] = ||f(t)||_{H^{m-1/2}(K(t))} + ||\partial_t f(t)||_{H^{m-3/2}(K(t))}$$
 with $K(s) = K \cap \{(t, x); t = s\}.$

Proposition 2.1 (Energy estimate). For $f \in H^m(K)$, we have

(8)
$$E_m(t_2)[f] \le E_m(t_1)[f] + C(T) \int_{t_1}^{t_2} \|\Box f\|_{H^{m-3/2}(K(s))} ds$$

for $S \le t_1 < t_2 \le T$.

Proposition 2.2. For $u, v \in H^m(K)$, we have

(9)
$$E_m(t)[uv] \le C(n)E_m[u]E_m[v].$$

Let Q be a analytic vector field on K. We define a quantity $||f(t)||_{G_A^s(Q;E_m)}$ by

(10)
$$||f(t)||_{G_A^s(Q;E_m)} = \sum_{l=0}^{\infty} \frac{A^l}{l!^s} E_m(t) [P^l]$$

and we put $||f(t)||_{X(Q)} = ||f||_{G_A^s(Q;E_m)}$ and $||f||_{Y_A([t_1,t_2];Q)} ||f||_{Y([t_1,t_2];Q)} = \sup_{t_1 \le t \le t_2} ||f(t)||_{X(Q)}$ for abbreviation.

Proposition 2.3. For $c \in R$,

(11)
$$||f||_{G_A^s(Q+c;E_m)} \le e^{|c|A} ||f||_{X(Q)}.$$

Proposition 2.4.

$$||uv||_{X(Q)} \le C(n)||u||_{X(Q)}||v||_{X(Q)}.$$

For Σ_1 and Σ_2 , we put $\tilde{\omega}_j=(1,-\omega_j),\, \tilde{\omega}_j^*=(1,\,\omega),\, \nabla=(\partial_t,\partial_{x_1},\partial_{x_2})$ and put

$$(12) X_1 = (\tilde{\omega}_1 \times \tilde{\omega}_2) \cdot \nabla$$

(13)
$$X_2 = (t - \omega_2 \cdot x)\tilde{\omega}_1^* \cdot \nabla$$

$$(14) X_3 = \tilde{\omega}_2^* \cdot \nabla$$

$$(15) X_4 = (t - \omega_1 \cdot x)\tilde{\omega}_2^* \cdot \nabla$$

Proposition 2.5. We have

(16)
$$[X_i, X_k] = 0 \quad \text{for} \quad 1 \le j, k \le 4,$$

(17)
$$[\Box, X_1] = [\Box, X_3] = 0,$$

(18)
$$[\Box, X_2] = [\Box, X_3] = C_1 \Box + C_2 X_1^2,$$

for some C_1 and C_2 .

Proposition 2.6. (1) X_1, X_2 and X_3 are all tangent to Σ_1 .

(2) X_1, X_2 and X_4 are all tangent to $\Sigma_1 \cup \Sigma_2$.

Proposition 2.7. (1) X_1, X_2 and X_3 are linearly independent in Σ_1^c .

(2) X_1, X_2 and X_4 are linearly independent in $(\Sigma_1 \cup \Sigma_2)^c$.

3. Lemmas

In this section, we prepare several lemmas which are used to prove the theorems. We put $P = t\partial_t + x \cdot \partial_x$. Let K' be a relatively compact open set in K satisfying the same condition K of the section 2. We consider the following linearized equation,

$$\begin{cases} \Box v = F(w), \\ v = u(-\epsilon, x) & \partial_t v = \partial_t u \text{ for } t = -\epsilon, \end{cases}$$

where we take ϵ is so small that $K'(-\epsilon)$ determines $K' \cap \{-\epsilon < t < T\}$. Let S denote the mapping that corresponds w to v. We put $u_0 = S[0]$ and $u_n = Su_{n-1}$. Since u_0

is a solution to the homogenous linear wave equation, there exists a constant A such that $||u_0||_{Y_A([-\epsilon,T];P)} < \infty$. We put $B_0 = \max(||u_0||_{Y([-\epsilon,T];P)}, 2||u(t_1)||_{X(P)})$.

Lemma 3.1. If u satisfies the assumption of Theorem 1.2 or 1.3 or 1.4, we have

(19)
$$|||u|||_{Y([t_1,t_2];P)} \le ||u(t_1)||_{X(P)},$$

for
$$-\epsilon \le t_1 < t_2 \le T$$
 with $t_2 - t_1 < 1/(2C(T)F(C(n))G(B_0))$.

Proof. Using Propositions 2.1, 2.3 and 2.4, we have the lemma. \Box

Lemma 3.2 (the Energy estimate). If u satisfies the assumption of Thoeorem 1.2 or 1.3 or 1.4, we have

(20)
$$\sup_{0 \le t \le T} ||u(t)||_{X(P)} \le ||\phi||_{G_A^s(x \cdot \nabla; E_m)}.$$

Proof. Using the lemma 3.1 several times, we have the lemma. \square

4. Proof of Theorem 1.1 and 1.2

First we prove Theorem 1.1. From Propositions 2.6 and 2.7 it suffices to show that for every compact set $K' \subset K$ there exist constants C_1 and A_1 such that

(21)
$$||X_1^{\alpha_1} X_2^{\alpha_2} X_3^{\alpha_3} u||_{H^m(K')} \le C_1 A_1^{|\alpha|} |\alpha|^{\sigma},$$

for all non negative integers α_1, α_2 and α_3 with $|\alpha| = \alpha_1 + \alpha_2 \alpha_3$. We can prove the above by the same argument as in the proof of Lemma 3.2.

5. REGULARITY IN THE INTERIOR OF THE CONE

Let σ be a real number greater than or equal to 1. We put $P = t\partial_t + x \cdot \partial_x$. The following lemma is a key kemma to prove Theorem 1.4.

Lemma 5.1 (Key lemma). Suppose that

(22)
$$||P^l u||_{H^s(K)} \le C_1 A_1^l(l!)^{\sigma} \quad \text{for } \forall l \in N \cup \{0\}$$

and u satisfies the equation (1). Then u is a Gevrey class function of order σ in Γ_+ , where $\Gamma_+ = \{(t, x) \in \mathbb{R}^3; t^2 > |x|^2, t > 0\}.$

Proof. For simplicity, we prove only the case $f(u) = u^m$. Let $B \subset \Gamma_+$ be a relatively compact ball. It suffices to show that u is a Gevrey class function of order σ in each $B \subset \Gamma_+$. We put $M = \square^2 + P^4$.

Let $\chi(x)$ be a C^{∞} function in B such that $0 < \chi$ in B and $\chi(x) = \operatorname{dist}(x, \partial B)$ near ∂B . We put $\psi(x) = \chi(x)^N$ and we take N sufficiently large that $\|\partial^{\beta}(\psi u)\|_{B} \le c\|M\psi u\|_{B}$ for $|\beta| \le 4$.

We show that

$$\|\psi^{|\alpha|}\partial^{\alpha}P^{l}u\| \leq C_{2}A_{2}^{|\alpha|+l}((|\alpha|+l)!)^{\sigma}$$

for some $C_2 > 0$ and $A_2 > 0$ for all $\alpha \ge 0$ and all $l \ge 0$. We show (23) by induction with respect to α .

When $|\alpha| = 0$, (23) is nothing but the assumption (22). We assume that (23) is valid until $|\alpha| = m$.

First we prove the case $0 \le m \le 3$. For $|\alpha| = m + 1$, we have

(24)
$$\|\psi^{|\alpha|}\partial^{\alpha}P^{l}u\|_{B} \leq \|\partial^{\alpha}\psi^{|\alpha|}P^{l}u\|_{B} + \|[\psi^{|\alpha|},\partial^{\alpha}]P^{l}u\|_{B}.$$

The second term of the right hand side is estimated by

(25)
$$\sum_{\alpha' < \alpha} C_3 \|\psi^{|\alpha'|} \partial^{\alpha'} P^l u\| \le C_4 C_2 A_2^{m+l} ((m+l)!)^{\sigma}$$

$$\leq \frac{1}{2} C_2 A_2^{m+l+1} ((m+l)!)^{\sigma}$$

if we take $A_2 \geq 2C_4$. Since $|\alpha| = m + 1 \leq 4$, the first term is estimated by

The second term of the right hand side of the above inequality can be estimated by

(28)
$$C_5 \sum_{|\alpha'| < 3} \|\psi^{|\alpha'|} \partial^{\alpha'} P^l u\|_B \le \frac{1}{4} C_2 A_2^{m+l+1} ((m+l+1)!)^{\sigma}$$

if we take A_2 sufficiently large. The first term is estimated by

(29)
$$\|\psi^{|\alpha|}\Box^2 P^l u\|_B + \|\psi^{|\alpha|} P^{l+4} u\|_B.$$

The second term of the right hand side of the above can estimated by

$$C_6 ||P^{l+4}u||_B \le C_6 C_2 A_2^{l+4} ((l+4)!)^{\sigma}$$

 $\le \frac{1}{8} C_2 A_2^{l+m+1} ((l+m+1)!)^{\sigma},$

if we take C_2 and A_2 sufficiently large. The first term of the right hand side of the above is estimated by

$$\|\psi^{|\alpha|}(P+4)^l\Box^2 u\|_B = \|\psi^{|\alpha|}(P+4)^l\Box(u^m)\|_B$$

$$\leq m\|\psi^{|\alpha|}(P+4)^lu^{2m-1}\| + \binom{m}{2}\sum_{j=0}^2 \|\psi^{|\alpha|}(P+4)^lu^{m-2}(\partial_j u)^2\|_B.$$

The second term of the right hand side of the above is esitmated by

$$(30) \quad \frac{m(m-1)}{2} \sum_{j=0}^{2} \sum_{\alpha_{1}+\cdots+\alpha_{m}=\alpha} \frac{\alpha!}{\alpha_{1}!\cdots\alpha_{m}!} \sum_{l_{1}+\cdots+l_{m}=l} \frac{l!}{l_{1}!\cdots l_{m}!} \|\psi^{|\alpha_{1}|}(P+4)^{l_{1}}u\|_{B} \times \|\psi^{|\alpha_{2}|}P^{l_{2}}u\|_{B} \cdots \|\psi^{|\alpha_{m-2}|}P^{l_{m-2}}u\|_{B} \|\psi^{|\alpha_{m-1}|}P^{l_{m-1}}\partial_{j}u\|_{B} \|\psi^{|\alpha_{m}|}P^{l_{m}}\partial_{j}u\|_{B}.$$

This can be estimated by $\frac{1}{16}C_2A_2^{l+m+1}((l+m+1)!)^{\sigma}$ if we take C_2 and A_2 sufficiently large. The first term can be also estimated by $\frac{1}{16}C_2A_2^{l+m+1}((L+m+1)!)^{\sigma}$.

Next we prove the case $m \ge 4$. For $|\alpha| = m - 3$ and $|\beta| = 4$, we have

The second term of the right hand side of the above can be estimated by

(32)
$$C_7 \sum_{\beta' < \beta} \|\psi^{m-3+|\beta'|} \partial^{\beta'} P^l u\|_B \le C_7 C_2 A_2^{m+l} ((m+l)!)^{\sigma}$$

$$\leq \frac{1}{2} C_2 A_2^{m+l+1} ((m+l+1)!)^{\sigma}$$

if we take $A_2 \geq 2C_7$. Since $|\beta| = 4$, the first term is extimated by

$$(34) ||M\psi^{m+1}\partial^{\alpha}P^{l}u||_{B} \leq ||\psi^{m+1}M\partial^{\alpha}P^{l}u||_{B} + ||[M,\psi^{m+1}]\partial^{\alpha}P^{l}u||_{B}.$$

Using the same argument as in the case $m \leq 3$, we can estimate the right hand side of the above by $\frac{1}{2}C_2A_2^{m+l+1}((m+l+1)!)^{\sigma}$. But we note that we do not change C_2 at each step of induction in the case $m \geq 4$ not as in the case $m \leq 3$.

6. Proof of Main result

We devide $K \setminus \Sigma_1 \cup S_2 \cup \Sigma_3 \cup \Gamma_+$ into 4 parts, $\bigcup_{i=1}^4 \mathcal{O}_i$ with

(35)

$$\mathcal{O}_{1} = \{(t,x) \in R^{3}; t - \omega_{1} \cdot x > 0, t - \omega_{2} \cdot x < 0, t - \omega_{3} \cdot x < 0\} \cup \cdots$$
(36)

$$\mathcal{O}_{2} = \{(t,x) \in R^{3}; t - \omega_{1} \cdot x > 0, t - \omega_{2} \cdot x > 0, t - \omega_{3} \cdot x < 0\} \cup \cdots$$
(37)

$$\mathcal{O}_{3} = \{(t,x) \in R^{3}; t - \omega_{1} \cdot x > 0, t - \omega_{2} \cdot x > 0, t - \omega_{3} \cdot x > 0, t^{2} - |x|^{2} < 0\}$$
(38)

$$\mathcal{O}_{4} = \{(t,x) \in R^{3}; t - \omega_{1} \cdot x > 0, t - \omega_{2} \cdot x > 0, t - \omega_{3} \cdot x > 0, t^{2} - |x|^{2} > 0\}.$$

For x in $\mathcal{O}_1 \cup \mathcal{O}_2 \cup \mathcal{O}_3$, the backward light cone Γ_x^- from x does not contain the origin. So we can prove that u is in $G^{(\sigma)}$ in this area by the same argument as in the proof of Theorems 1.2 and 1.3.

To prove that u is in $G^{(\sigma)}$ in \mathcal{O}_4 , we use the operator $P=t\partial_t+x\cdot\partial_x$. Using this operator, M. Beals[1] has given another proof of the theorem 1.1 of Bony and Melrose–Ritter. Note that for all relatively compact open set $L\subset\Omega_-$, there exist constants $C,A_1>0$ such that

$$||P^k u||_{H^s(L)} \le C A_1^k (k!)^{\sigma} \quad \text{for } \forall k,$$

from the assumptions of Theorem 1.2. Since $[\Box, P] = 2\Box$,

$$\Box(Pu) = P\Box u + [\Box, P]u = (P+2)f(u).$$

So we have

$$(41) \qquad \qquad \Box(P^k u) = (P+2)^k f(u).$$

Using the energy inequality 3.2, we have for all relatively compact open set $L \subset K$, there exist constants C, A > 0 such that

(42)
$$||P^k u||_{H^s(L)} \le CA^k (k!)^{\sigma} \quad \text{for } \forall k.$$

From Lemma 5.1, we have that u is in $G^{(\sigma)}$ in \mathcal{O}_4 .

REFERENCES

- M. Beals, Interaction of radially smooth nonlinear waves, Lecture Note in Math. 1256 (1987), 1-27.
- 2. J. M. Bony, Second microlocalization and propagation of singularities for semi-linear hyperbolic equations, Taniguchi Symp. HERT Katata 1984, Kinokuni-ya, Tokyo, 1984, pp. 11-49.
- 3. R. Melrose and N. Ritter, Interaction of nonlinear progressing waves for semilinear wave equations, Annals of Math. 121 (1984), 187-213.
- 4. J. Rauch and M. Reed, Singularities produced by the nonlinear interaction of three progressing waves; examples, Comm. in P.D.E. 7 (1982), 1117-1133.

DEPARTMENT OF MATH., OSAKA UNIVERSITY, TOYONAKA, OSAKA 560 JAPAN e-mail address:kei@math.sci.osaka-u.ac.jp