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Gevrey singularities for nonlinear wave equations

KRS TE R E—

(OsAKA UNIVERSITY: KEINCHI KATO)

1. INTRODUCTION

We consider the following semilinear wave equations,
(1) ' Ou= f(u) in QC R, x R,

where u is a real valued function, O = 92/0t* — A with A = ¥2_, 0%/0«%, Q is
a bounded domain which contains the origin and f(u) is a polynomial of u with
f(0)=0.

We study the interaction of Gevrey singularities for this equation. We assume that
solutions that we study here are all in H*(Q2) with s > 3/2 where H*({2) is a Sobolev
space of order s in Q. In 1982, J. Rauch and M. Reed [4] have made an example
in which three singularities produce new singularities. In 1984, J. M. Bony [2] and
R. Melrose and N. Ritter [3] have had a general result for C*singularity indepen-
dently. We put X; = {(t,z) € R®%t =w; -z} (j = 1,2,3) with w; € S'. Their result
for the equation (1) is as follows.

Theorem 1.1 (J. M. Bony [2], R. Melrose and N. Ritter (3]). If u is conor-
mal with respect to ¥, U X3 U X3 in Q_ = QU {t < 0}, then the solution u is
C* in K\(31UX,US3U {t? = |z|?}) where K is a domain of determine with respect
to Q1_.

In this talk, we shall make the Gevrey version of the above result.

Definition 1.1 (Gevrey conormal distribution). For s > 3/2,0 < 1, we call
that u € H*(X,G©);Q), if and only if for any compact set K C € and for any vector
fields Vi,...,V; with analytic coefficients and any integer ! which are tangent to X,
there exist constants C, A > 0 such that

(2) IV - Vitull ey < CARY(Jall)?
for any integers ay,... ,a;.

Theorem 1.2. Suppose that u is in H*(Q) for some s > 5/2, u satisfies the equation
(1) and u € H*(Z,,G;Q_). Then we have

(3) u € H (%, GY); K),
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where Q_ = QN {(t,z);t <0}, K is the domain of dertermine with respect to Q1_.

Theorem 1.3. Suppose that u is in H*(Q) for some s > 5/2, u satisfies the equation
(1) and u € H*(£; U X2,G);Q_). Then we have

(4) u € H* (3, UT,y, GO K),
where Q_ = QN {(t,z);t < 0}, K is the domain of dertermine with respect to )_.

Theorem 1.4 (Main result). Suppose that u € H*(Q) (s > 5/2), u satisfies the
equation (1) and

(5) u € H*(S; Uy U3, GO 00).

Then u is a Gevrey class function of order o in K\, U S; UX3UT,, where 'y =
{2 = |z|*,t > 0}, Q- = AN {t < 0} and K is a domain of determine with respect to
Q_.

Corollary 1.1. Suppose that u € H*(Q) (s > 5/2), u satisfies the equation (1) and
(6) u€ H(Z; U U %3, G 0).

Then u is real analytic in K\X; U S, U B3 U Ty, where Ty = {* = |z]*,t > 0},
Q_=Qn{t <0} and K is a domain of determine with respect to 1_.

2. PRELIMINARIES

Let K be a relatively compact set in R® = R; x R2 such that each subset K N
{(t,z);s <t < T} is a domain of determine with respect to K N {(t,z);t < s} for
S <s<T.Form>5/2and f € H*(K), we put

(7) En(O)[f] = | f @O grm=-1r2x )y + N0 S ()| zrm—sr2 (5 (2y)
with K(s) = K N {(¢,z);t = s}.

Proposition 2.1 (Energy estimate). For f € H™(K), we have
(® Bn()[f] < En()]+ CT) [ 10 lim-smciayds
for § <t <t <T.

Proposition 2.2. For u,v € H™(K), we have
(9)  Ea()uv] < C(n)Enful Enlv].
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Let @ be a analytic vector field on K. We define a quantity || f(t)l|c:,(@:Em) bY

00 i
(10) Il = 3 T3 Bn(OIP]

and we put || f()l|x(@) = lIfllcs(@iEm) 20d U hvaqes 2@ WS My (i1 1230) = SUPL <o, 1f (D)l x (@)
for abbreviation.
Proposition 2.3. For c € R,
(11) Iflles@+egn) < €I fllxc@-
Proposition 2.4.
luvllx@) < C()llullx@livlix@)-
For ¥, and ¥,, we put @; = (1, —w;), & = (1, w), V = (8;,0;,,0,) and put

(12) : Xy = (@ x&)-V

(13) Xo=(t—wy-2)07-V

(14) X3=a;-V

(15) Xy=(t—w-2)d -V
Proposition 2.5. We have

(16) [X;, Xe] =0 for 1<3,k<A4,
(17) O, X:] = [0, X5] =0,

(18) [0, X5] = [0, X5] = C10 + C, X7,

for some Cy and Cs.

Proposition 2.6. (1) X;, X; and X35 are all tangent to ;.
(2) X3, X2 and X4 are all tangent to ¥, U X,.

Proposition 2.7. (1) Xy, X, and X; are linearly independent in X5.
(2) X1,X2 and X4 are linearly independent in (X, U X3)°.
3. LEMMAS

In this section, we prepare several lemmas which are used to prove the theorems.
We put P = t0;+ = - 0,. Let K’ be a relatively compact open set in K satisfying the
same condition K of the section 2. We consider the following linearized equation,

Ov = F(w),
v=u(—€z) OGv=20u for t=—¢

where we take ¢ is so small that K’(—e¢) determines K'N{—e <t < T'}. Let S denote
the mapping that corresponds w to v. We put uy = S[0] and u,, = Su,_;. Since uo
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is a solution to the homogenous linear wave equation, there exists a constant A such
that [[uolly, (- 11;p) < 00. We put Bo = max(fuolly (—c11:p), 2llu(t1) || x(p)-

Lemma 3.1. If u satisfies the assumption of Theorem 1.2 or 1.3 or 1.4, we have
(19) | Neelly (te2 215y < o)l x(pys
Proof. Using Propositions 2.1, 2.3 and 2.4, we have the lemma. O

Lemma 3.2 (the Energy estimate). If u satisfies the assumption of Thoeorem
1.2 or 1.3 or 1.4, we have

(20) sup [lu(t)llxp) < lolles (o-viEm)-
0<t<T
Proof. Using the lemma 3.1 several times, we have the lemma. [J

4., PROOF OF THEOREM 1.1 AND 1.2

First we prove Theorem 1.1. From Propositions 2.6 and 2.7 it suffices to show that
for every compact set K’ C K there exist constants C; and A; such that

(21) X7 X52 X5 ullamgry < CLAT a7, |

for all non negative integers o, a; and as with |a| = a; + azas. We can prove the

above by the same argument as in the proof of Lemma 3.2. ‘
5. REGULARITY IN THE INTERIOR OF THE CONE

Let o be a real number greater than or equal to 1. We put P = t0; + = - 0,. The
following lemma is a key kemma to prove Theorem 1.4.

Lemma 5.1 (Key lemma). Suppose that
(22) Pl < GLALRY for Wi N U {0}

and u satisfies the equation (1). Then u is a Gevrey class function of order o in Ty,
where Ty = {(t,z) € R 1* > |z|*,t > 0}.

Proof. For simplicity, we prove only the case f(u) = u™. Let B C I'y be a relatively
compact ball. It suffices to show that u is a Gevrey class function of order ¢ in each
BCT,. Weput M =02+ P*

Let x(z) be a C* function in B such that 0 < yx in B and x(z) = dist(z,dB)
near dB. We put ¥(z) = x(x)" and we take N sufficiently large that ||0°(¢u)|[p <
c|Myu||g for |5] < 4. :

We show that

@) el Pl < CAE™M (o) + 1YY



for some C, > 0 and A; > 0 for all @ > 0 and all [ > 0. We show (23) by induction
with respect to a. .

When |a| = 0, (23) is nothing but the assumption (22). We assume that (23) is
valid until |o| = m.

First we prove the case 0 <m < 3. For |a| = m + 1, we have

(24) [9¥10° Plul|p < [|10*! Plullp + ||[p!*, 0°1P"ul|.
The second term of the right hand side is estimated by
(25) 3 G107 Plul| < ChCrAT*(m + 1)Y)7
o <ax
(26) S GAT (m A D))

if we take Ay > 2C,. Since |a| = m + 1 < 4, the first term is estimated by
(27) ' My Plul|p < [|¢1! M P'ullg + [[[M, "] P'u] 5.
The second term of the right hand side of the above inequality can be estimated by
(28) Co X 910 Plullp < 3457 (m+ 1+ 1)!)°
lo’|<3 ,

if we take A, sufficiently large. The first term is estimated by
(29) 19110 Plul + |91 P o] 5.
The second term of the right hand side of the above can estimated by

Col| P ullp < CoCady™((1+4)1)°

. ) , _

< SCAF (L4 m + 1)),

if we take C, and A, sufficiently large. The first term of the right hand side of the
above is estimated by -

[P + 4)0%u|s = |1*/(P + 4)'O(u™)|15

A , | _
< ml|plI(P + )W + (TZ) > NIP + ) um(95u) -
=0 o .
The second term of the right hand side of the above is esitmated by

m(m —1) & al I ol
(30) —(—é—)Z Y o5 X m||¢'_l'(1’j+4)h_ulls_><

j=0ar+tom=a X7 Ome g

]|z[.v|"2|Pl2u||B e “¢|am—2lplm—2u”B||¢J“m-1|Pl"‘—lBj'u||3||1/1"”“|Pl"‘8ju||3».
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This can be estimated by £C,A5™ ! ((I4+m+1)!)7 if we take C; and A, sufficiently
large. The first term can be also estimated by £C,ASF™*1((L + m + 1)!)°.
Next we prove the case m > 4. For |a| = m — 3 and || = 4, we have

(31) lp™ 10" Plu||p < [|0°¢™+10° Plullp + |[¥™*", 8°10° P'ul|5.
The second term of the right hand side of the above can be estimated by
(32) Cr 3 [l *19% Plul|p < C:Co AT H ((m + D)Y)°

B'<pB
(33) < %C2A;n+l+1((m +I14+ 1)y

if we take A, > 2C7. Since |B| = 4, the first term is extimated by
(34) |My™+ 9 Plul|p < ||[¢™+ M*P'ulls + |[[M,$™*+']0° P'ul|s.

Using the same argument as in the case m < 3, we can estimate the right hand side
of the above by %CgAZ"”“H((m + 1+ 1)!)?. But we note that we do not change C; at
each step of induction in the case m > 4 not as in the case m < 3.

|

6. PROOF OF MAIN RESULT
We devide K\X; U S, U X3 UT, into 4 parts, Ui, O; with

(35)
Or={t,r)eR}t—w-2>0,t—wp <0, —w3-x<0}U---

(36) |
: O, ={t,x) ER*t—w-2>0,t—wy-2>0,t —w3 -z <0}U---
(37)
Os={(t,z) e Rt —wy -2 >0,t —wy-2>0,t —wz-z > 0,8 — |z* < 0}
(38)

Os={(t,z) e R®t—wi-2>0,t—wy-2>0,t—wz-z> 0,8 — |z|* > 0}.

For x in O; UO,U O3, the backward light cone I'; from x does not contain the origin.
So we can prove that u is in G') in this area by the same argument as in the proof
of Theorems 1.2 and 1.3.

To prove that u is in G(®) in Oy, we use the operator P = t9; + z - 9,. Using
this operator, M. Beals[1] has given another proof of the theorem 1.1 of Bony and
Melrose-Ritter. Note that for all relatively compact open set L C §2_, there exist
constants C, A; > 0 such that

(39) | P*ull sy < CAY(KY)  forVk,



from the assumptions of Theorem 1.2. Since [OJ, P] = 200,

(40) D(Pu)»z POu + [0, Plu = (P + 2)f(u).
So we have
(a1) O(P*u) = (P +2)f(w).

Using the energy inequality 3.2, we have for all relatively compact open set L C K,
there exist constants C, A > 0 such that

(42) ]|Pku||Hs(L) < CAX(K!) for Vk.
From Lemma 5.1, we have that u is in G in O,.
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