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AN EQUILIBRIUM THEOREM FOR SET-VALUED MAPS
WITHOUT COMPACTNESS AND ITS APPLICATIONS

FRAERERBARBEHER AN E  ( YUTAKA KIMURA )

ABSTRACT. The purpose of this paper, we prove two existence theorems which are
equilibrium theorem and fixed-point theorem without compactness for set-valued
maps.

1. INTRODUCTION AND PRELIMINARIES

Fixed-point theorems of set-valued maps have become an important tool to derive
various results in mathematical economics, game theory, and so on. In particular,
we note that fixed-point theorem is provided the proof comparatively easy by equi-
librium theorem. Also, it is found out that these theorems are equivalent by many
mathematicians. However, compactness is necessary to prove them. So, we can
extended these theorems without compactness for a reflexive Banach space.

A set-valued map F from a set X into a set Y is a map which associates a subset
of Y with each point of X. Equivalently, F' can be viewed as a function from the
set X into the power set 2Y. We use the notation for the operation on set-valued
maps, which is defined by F: X ~» Y. The domain of F is the subset of elements
z € X such that F(z) is not empty; Dom(F) := {z € X | F(z) # ¢ }. The image
of F is the union of the images F(z), when z ranges over X; Im(F) := Uzex F(z).

If X and Y are topological spaces, then the image of a set-valued map F' are
closed, compact, and so on, we say that F is closed-valued, compact-valued, and so
on. Also, for a subset K, intK will indicate its interior, clK will indicate its closure.

If K is a convex subset and if z € clK, Tk(z) is called the tangent cone to K at
z and is denoted by Tk(z) := cl(Up>o(K — z)/h).

2. DEFINITIONS AND AN EQUILIBRIUM THEOREM
OF SET-VALUED MAPS WITHOUT COMPACTNESS

Definition 1. Let K C Dom(F) be a nonempty subset of a Banach space X. Then
a subset K is said to be a viability domain of F' (or satisfying tangential condition
) if and only if
Vze K,  F(z)NTk(z)#¢ (1)
This means that for any point ¢ € K, there exists at least a direction v € F(z)
which is tangent to I{ at z.
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Definition 2. We shall say that a set-valued map F is upper hemicontinuous at
zo € Dom(F) if and only if for all y* € X*, the function

z+— o (F(2),y") := sup (y,y%) (2)
yEF(z)
is upper semi-continuous at zg.
It is said to be upper hemicontinuous if and only if it is upper hemicontinuous
at any point of Dom(F). ‘
Also, F is said to weak upper hemicontinuous if and only if F is upper hemicon-
tinuous in (X, X*).

Lemma 3. If K; and K, are convex closed subsets of a Banach space X such that
Ox € int(K; — K3) then

TKlf'“le(x) = TK1("E) n TK:(I)' (3)

Theorem 4. Let K be a weak compact convex subset of a Banach space X and
¢: X x X — R be a function satisfying

(i) Yy € K, z — ¢(z,y) is weak lower semicontinuous.
(ii) Vz € K, y — ¢(z,y) is concave.
(iii) Vy € K, ¢(y,y) £ 0.
Then, there exists & € K such that Vy € K, ¢(z,y) £ 0.

Theorem 5. Assume that X is a Banach space and that F: X ~» X is a weak
upper hemicontinuous set-valued map with closed convex values.
If K C X is a convex weak compact viability domain of F then it contains an
equilibrium of F.
i.e., Jze K s.t. fx € F(z) (4)

Proof. We proceed by contradiction, assuming that the conclusion is false. Hence,
for any ¢ € K, 6x ¢ F(z). Since the images of F are closed and convex, the
Hahn-Banach Separation Theorem implies

Jy; € X*\{6x-} st. o(F(z),y;) <O.

We set
Ly = {:c eEK | a(F(a:),y*) < 0}.

Then K is covered by the subsets I';» when y* ranges over the dual of X. These
subsets are weak open by the very definition of weak upper hemicontinuity of F.
So, K can be covered by n such weak open subsets I, u: -

Let us consider a continuous partition of unity (a;)i=1,... » associated with Ly
and introduce the function ¢: K x K — R defined by

n

o(z,y) =Y ai(z)(yf, —y).

=1
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Being continuous with respect to z and affine with respect to y, the assumptions of
Theorem 4 are satisfied. Hence there exists Z € K such that for y* := ) 7, ai(Z)y}
we have for any y € K, ¢(Z,y) = (y*,Z —y) £ 0. Hence —y* belongs to the polar
cone Tk (Z)~ of the convex subset K at .

Since K is a viability domain of F, there exists v € F(Z) N Tk(Z), and thus

o(F(@),5*) 2 (5%,v) 2 0.

By setting I(Z) := {: I @i(Z) >0,i=1,...,n}. It is not empty.
Hence,

O’(F(f)}, y*) < Z ai(z)o(F(z),y]) < 0.

iel(z)
Hence, the latter inequality is then a contradiction of the previous one. O

Definition 6. Let X is a Banach space. We associate with any z € X
J(z) = {z* € X* | (z,2") = ||||” = ||l="||” }. (5)

Set-valued map J : X ~» X™* is called duality mapping.

Lemma 7. Assume that X is a reflexive Banach space, J : X ~ X* is the duality
mapping, and = belongs to B satisfying ||z|| = 1. Then

Tp(z)= () {veX|(ya") 0}, (6)
z*€J(z) )

where B is the unit ball of X.

Proof. For any v € Tg(z), there exists a sequence of elements v,, € (Uh>o(B——a:)/h)
converging to v. Hence, for any n, there exists h, > 0 and b, € B such that
vp = (bp — x)/hn. Since (v,,z*) £ 0 for any z* € J(z), (v,z*) £ 0 for any
z* € J(z). Hence,
ve [] {veX|(@z*) <0}
z* €J(z)

Assume that there exists yo ¢ Tg(z) such that (yp,z*) < 0 for any z* € J(z).
Since the sets Tg(z) are closed and convex, the Hahn-Banach Separation Theorem
implies

Jy* € X*\{0x-}, JaeR st (y*,v) >a>(y*y) Vy € Tg(z)

So, we have y* belongs to the normal cone Ng(z) and a > 0. We set y* := y*/||y*||,
then we have y* € J(z). Hence,

a
y*, %) > — > 0.
Wv) >

So, the latter inequality is then a contradiction of the previous one. O
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Theorem 8. Let K C Dom(F') be a closed convex subset of a reflexive Banach
space X and a set-valued map F: X ~ X a weak upper hemicontinuous map with
nonempty closed convex values satisfying the following assumption :

limsup sup o(F(z),z*) <0. (7N
Il o0 = €J(2)

Moreover we posit that K is a viability domain of F. Then there exists an equilib-
riumZ € K of F.
Proof. Assumption (7) implies that there exists € > 0 and a > 0 such that

sup sup G(F(w),x*) S -¢ and KnNint(aB)# ¢ (8)
Izl 2a 2* €J()
Also, we know that for any = € aB with ||z|| = a then, by Lemma 7
T.p(z)= (] {veX|(yz") S0} (9)
z*€J(x)
Hence, from (8) and (9), it follows that
Vz € K NaB, F(z) C T,p(z).
Next, since §x belong to int(K + aB) from (8), by Lemma 3 we know that
Vee KNaB, TkraB(z) = Tk(z) N T, B(x).
So, the tangential condition implies that
Ve e KNaB, F(z) N Tknap(z) # 6.

Hence, K N aB becomes the viability domain of F' and obviously to prove that
convex and weak compact set.
Hence, by Theorem 5 there exists an equilibrium Z € K of F. O

Theorem 9. Let K be a closed convex set of a reflexive Banach space X, and
the set-valued map F: X ~ K satisfy weak upper hemicontinuous and nonempty
closed convex values. We set the set-valued map G := F — I where I denote the
identity map from X to X. So, we assume that G is satisfying (7) then F has a
fixed point in K.

Proof. Since G is satisfying (7),
da>0 st Vze KNaB, G(z) C ToB(z).

Also, since K is convex and F(K) C K, then K — z C Tg(z). So, we deduce that
K N aB is a viability domain of G because,

Vz € K, G(z) C Tk(z) N Tap(z) = TknaB(z).

It is also easy to show that K NaB is a closed convex set of X.
Hence, by Theorem 5 there exists an equilibrium Z € K of G, which is a fixed
point of F. [
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