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FIXED POINT THEOREMS IN COMPLETE METRIC SPACES

BTk - AEBHETE0AER $5K% R (TOMONARI SUZUKI)

1. INTRODUCTION

In 1990, Takahashi proved the following nonconvex minimization theorem, which
was used to obtain Caristi’s fixed point theorem [1], Ekeland’s e-variational princi-
ple [3] and Nadler’s fixed point theorem [6].

Theorem 1 (Takahashi [8]). Let X be a complete metric space with metric d and
let f: X — (—00,00] be a proper lower semicontinuous function, bounded from below.
Suppose that, for eachw € X with f(u) > neni f(x), there existsv € X such thatv # u

and f(v) + d(u,v) < f(u). Then there exists xo € X such that f(zo) = 12{ f(z).

This theorem was improved by several authors; see [5], [9] and [10]. On the other
hand, Cirié [2] proved an interesting fixed point theorem for a quasi-contraction which
generalizes some fixed point theorems in a complete metric space. Recently Kada,
Suzuki and Takahashi introduced the following concept.

Definition ([4]). Let X' be a metric space with metric d. Then a function p : X X
X — [0,00) is called a w-distance on X if the following are satisfied:
(1) pla,z) < plx,y) +ply, z) for any 2,9,z € X;
(2) for any v € X, p(x,-) : X — [0,00) is lower semicontinuous;
(3) for any ¢ > 0, there exists 6 > 0 such that p(z,2) < 0 and p(z,y) < 6 imply
d(z,y) <e.

The metric d is a w-distance on X. Other examples of w-distance are stated
in [4] and [7]. Using it, Kada, Suzuki and Takahashi [4] generalized Caristi’s fixed
point theorem, Ekeland’s e-variational principle, Takahashi’s nonconvex minimization
theorem and Ciri¢’s fixed point theorem. One of them is the following fixed point
theorem.

Theorem 2 ([4]). Let X' be a complete metric space, let p be a w-distance on X and
let T be a mapping from X into itself. Suppose that there exists r € [0,1) such that

p(Tx, T?2) < rp(x, Tz)
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for every x € X and

inf{p(x,y) +p(e,Tz): 2 € X} >0
for every y € X with y # Ty. Then there exists xg € X such that vg = Tay.
Moreover, if = =Tz, then p(z,z) = 0.

In this paper, we first give some Examples and Lemmas connected with w-distance.
Next we give another proof of a generalization of Theorem 1. Further we prove two
fixed point theorems which generalize Ciri¢’s fixed point theorem. Finally, using
them, we give another proof of a characterization of metric completeness.

2. PRELIMINARIES

In this Section, we state, without the proofs, Examples and Lemmas connected
with w-distance.

Example 1. Let X = R be a metric space with the usual metric and let f,¢g: X —
[0, 00) be continuous functions such that

wt [ fdu > 0 and i [ glu)du > 0

in w)du an g(u)du

nf | flu)du > 1 32\ ; g(u)du >

for any » > 0. Then a function p: X x X — [0,00) defined by
Y
/ flu)du, if <y,
/“ gluw)ydu, if y<z
Yy

for every x,y € X is a w-distance on X.

p(z,y) =

Example 2 ([4]). Let X' be a metric space and let 7' be a continuous mapping
from X into itself. Then a function p: X x X — [0,00) defined by

p(a,y) = max{d(Tx,y),d(Ta,Ty)} forevery a,y€ X
is a w-distance on X.

Example 3. Let X be a metric space with metric d, let T be a mapping from X
into itself such that, for every x € X, the orbit {&,Ta,T?x,---} is bounded. Then
a function p: X x X — [0,00) given by
p(x,y) =sup{d(T*z,y) : k e NU{0}} forevery z,y€X

1s a w-distance on X.
Example 4. Let X be a metric space with metric d and let {z,} be a sequence in X
such that

(i) {x,} is Cauchy;

(ii) {x,} does not converge;



(iil) @; #x; if @ # J.

Then a function p: X x X — [0,00) defined by

274277, it v = andy =y,
pla,y) = 27141, if x=a;andy € {2,},
1+277, if ¢ {x,}andy=ux

is a w-distance on X.

Lemma 1. Let X be a metric space, let p be a w-distance on X and let f be a bounded
lower semicontinuous function from X into R. Assume that c is a positive real number
with ¢ > sup f(X) —inf f(X). Then a function ¢ : X x X — [0,00) defined by

) fla) = inf f(Mua), if ye€ Mua,
aey) = { ¢, if yd Mx

is a w-distance on X, where My = {y € X : f(y) +p(z,y) < f(z)}.

Lemma 2. Let X be a metric space with metric d, let p be a w-distance on X and
let a be a function from X into [0,00). Then a function ¢ : X X X — [0,00) given
by

q(2,y) = max{a(2),p(z,y)} forevery z,y€ X

18 also a w-distance.

Lemma 3. Let X be a metric space, let p be a w-distance on X, let {2}, {y.} and
{zn} be sequences in X and let v,y,z € X. Then the following hold:

(1) If p(2n,y) — 0 and p(xy, 2) — 0, then y = z. In particular, if p(z,y) = 0 and
p(x,z) =0, then y=z, see [4];
(ii) If p(Zn, yn) — O and p(x,, 2) — 0, then {y,} converges to z, see [4];
(i) If p(2n, Yn) — 0 and p(@,, z,) — 0, then {d(yn, 2,)} converges to 0.

Lemma 4. Let X be a metric space with metric d, let p be a w-distance on X and
let {x,} be a sequence in X . Suppose that

lim sup min{p(a,, ¥m), P(Tm, )} = 0.

=00 m>n

Then {x,} is Cauchy. In particular, the following hold:
(i) If lim sup p(an, xm) = 0, then {x,} is Cauchy, see [4];

=0 m>n
(i) If lim sup p(@m,xn) = 0, then {x,} is Cauchy.

=0 m>n
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3. MINIMIZATION THEOREM

In this Section, using Theorem 2, we prove a nonconvex minimization theorem
which improves Theorem 1.

Theorem 3. Let X be a complete metric space, and let f : X — (—o00, 00| be a proper

lower semicontinuous function, bounded from below. Assume that there exists o w-
distance p on X such that for any v € X with f(u) > in{ f(a), there exists v € Xwith
xeX
v#u and
J() + plu,v) < flu)

Then there exists vy € X such that f(xy) = nelf\ f(x).
Proof. Assume f(z) > inf f(X) for every v € X. Put

Y ={veX: flz) <inf f(X)+1}
and

My ={yeY: f(y) +pla,y) < f(x)}
for every x € ¥ and define ¢ : ¥ x Y — [0,00) by

| fe) —inf f(Mz), if yeMa,
a(x,y) = { 1, if y¢ Ma

for every 2,y € Y. Then, since f is lower semicontinuous, Y is closed and hence Y is
complete. From Lemma 1, we have that ¢ is a w-distance on Y. And it is clear that
y € Mz and z € My imply = € Ma. Let x € Y be fixed. By assumption, there
exists v € X with v # v and f(v) + p(a,v) < f(x). Then since

fv) < f(v)+plz,v) < flo) < inf f(X)+1,
we have v € Y and hence Ma \ {a} # 0. So, we can choose Tz such that
f(Tx) < {f ) +inf f(Ma)} and Ta € Ma\ {a}.
Then, since MTa C Ma, we have

q(Ta, T?x) f(T2) —inf f(MTa)
f(T'r) —inf f(Mz)

—{f ) +inf f(Mz)} — inf f(Ma)

IA

IA

S (@) = inf f(M))

1
5(1(;17,Tx).

Il
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Let {x,} C VY, y € Y with ¢(2,,y) — 0. By the definition of ¢, we may assume
y € Mx, for every n € N. Since T'y € My C Mx,, we have

20, Ty) = q(n,y) — 0
and hence y = Ty by Lemma 3. Therefore we have
inf{q(z,y) + ¢z, Tz):2 €Y} >0

for every y € Y with y # Ty. So, by Theorem 2, there exists 2y € Y such that
29 = Tagy. This is a contradiction and this completes the proof. [
Remark. Theorem 1 is not applied to the function f(z) = 2. But, putting p(z,y) =
} / ! 2|t|dz‘,}, Theorem 3 is applied to such f.

.LUsing Theorem 3 and Example 2, we have the following corollary which generalizes

the results of [5] and [10].

Corollary 1 (Takahashi [9]). Let X be a complete metric space with metric d, let
T be a continuous mapping from X into itself and let f : X — (—00,00] be a proper
lower semicontinuous function, bounded from below. Assume that for anyu € X with
flu) > 111€1£ f(x). thereisv € X with v # u and

f(v) + max{d(Tu,v),d(Tu,Tv)} < f(u).

Then there ezists xg € X such that f(ag) = 12{ flx).

4. FIXED POINT THEOREMS

In this Section, we first prove the following theorem, which is more useful than
Theorem 2.

Theorem 4. Let X be a complete metric space, let p be a w-distance on X. Let T be
a mapping from X into itself and r € [0,1) with

(T2, T?x) < rp(x, Ta)

for every x € X. Suppose either of the following holds:

(1) inf{p(x, Tx)+p(z,y):x € X} >0 for everyy € X with y # Ty;
(ii) 4t implies y = Ty that there exists a sequence {x,} C X such that {z,} and
{Tz,} converge to y;
(iii) T is continuous; see [4].

Then there exists vg € X such that xo = Txg. Moreover, if v =Twv, then p(v,v) = 0.
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Proof. In the case of (i), it is already proved. Let us prove that (ii) implies (i). Let
y € X with inf{p(x,T2) + p(z,y) : v € X} = 0. Then there exists {z,} such that
p(2n.Tz,) — 0and p(z,,y) — 0. By Lemma 3, we have T'z,, — y. Since

(0, TQ.:',, ) P, T2) + (T2, T'z:,, )

<

< (A+0)plen, Tz) — 0,

we have T2z, — y by Lemma 3. Put @, = T'z,. Then both {2, } and {Tz,} converge
to y. This implies y = T'y by (ii). Hence (i) is satisfied. To complete the proof, we

show that (iii) implies (ii). Let T be a continuous mapping of .X'. Assume that {z,}
and {Tx,} converge to y. Then we have

Ty = T(nh_l_lolo xv,) = lm Tz, = .

Therefore (ii) holds. O
In general, a w-distance p on .\’ does not satisfy that p(z,y) = p(y,x) for every
2,y € X. So, the condition p(T?x,Tx) < rp(Tz, ) for every v € X, differs from the

condition p(Tz,T?x) < rp(x,T2). Theorem 4 is a fixed point theorem for the latter
condition. We can also prove a fixed point theorem for the former condition.

Theorem 5. Let X be a complete metric space, let p be a w-distance on X. LetT be
a mapping from X into itself and r € [0,1) such that
p(T?2, Tx) < rp(Ta, )

for every x € X. Suppose either of the following holds:
(1) It implies p(Ty,y) = 0 (or equivalently Ty = y) that there exists a sequence
{zn} C X such that {x,} — y and p(Ta,,x,) — 0;
(i1) it implies y = Ty that there exists a sequence {z,} C X such that {x,} and
{Tx,} converge to y;
(ii1) T is continuous.
Then there exists vy € X such that xg = Txy. Moreover, if v = Twv, then p(v,v) = 0.
Proof. First, we shall show p(T'y,y) = 0 is equivalent to Ty = y for every y € X. If
p(Ty,y) = 0, we have
p(T%.Ty) < rp(Ty,y) = 0
and .
p(T%y,y) < p(T?y,Ty)+p(Ty,y) = 0.

So, we obtain Ty = y by Lemma 3. If Ty = y, we have

pyy) = p(T?y, Ty) < Ty, y) = rp(y,y)
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and hence p(y,y) = 0. Next, we shall show (ii) implies (i). Let {z,} be a sequence
in X', which converges to some point y in X and satisfies 'nli—nolo p(Txy,2,) = 0. Then
we have '

p(T%2,, T3,) < rp(Tay,2,) — 0 (n— 00)
and

])(Tz.r,,z ) ])(Tzlrﬂ JTa,) + p(Ta,, x,)
(T, xy) + (T2, 2)

= (1+nrp(Tx,,2,) — 0 (n— o0).

<
<

By Lemma 3 and {x,} converges to y, we have {Ta,} also converges to y. So,
from (ii), y is a fixed point of T and hence (i) holds. It is from the proof of Theorem 4
that (iii) implies (ii). So, to complete the proof, we prove T' has a fixed point in the
case of (i). Let v € X and define

u, = T"u forany n € N.

Then we have, for any n € N,

PlUps1stn) < rp(ty, tp_1) <o < 1"plug, u).
So, if m > n,
PUpis ) < P(Uy Upn—1) + - -+ D(Ung1, Uy)
< (g, u) 4 " p(ug, u)
< Tn plug, w).

1—7

By Lemma 4, {u,} is a Cauchy sequence. Since X is complete, {u,} converges to
some point 29 € X. And we have

Ty, u,) < r"plug, w) — 0.

So, by assumption, we have p(Txg,2¢) = 0. Therefore 2 is a fixed point of T. This
completes the proof. O

Now, we prove Ciri¢’s fixed point theorem by two methods.

Corollary 2 (Cirié [2]). Let X be a complete metric space with metric d, and let
T be a mapping from X into itself. Suppose T is quasi-contraction, i.e., there exists
r€[0,1) such that

AT, Ty) < r-max{d(z,y), d(x,Tz),d(y, Ty),d(z,Ty),d(y. Tx)}

for every x.y € X. Then T has a unique fized point.
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Proof by Theorem 4. By lemma 2 in [2], {x,Ta, T?x, - - - } is bounded for every 2 € X.
Hence we can define a function p: X x X — [0, 00) by

p(x,y) = max{diam{x, Ta,T%x,--- },d(z,y)}

for every 2,y € X. By Lemma 2, p is a w-distance on X. Let x € X. Then we have,
using lemma 1 in [2],

(T, T?x) = diam{Tx, T?2, T3z, - - -}

. 9 : \
= supdiam{Tx, T?2, T3, T"x}
n€N

. 9 \
< supr-diam{z,Ta, Tz, - T"z}
neN

= r-diam{z, T2, T%, -}

= 7-plx,Tz).
Assume {z,} and {Ta,} converge to y. Since T is quasi-contraction,
d(Tw,,Ty) < rmax{d(x,,y), d(x,, Ta,), dy. Ty), d(x,, Ty), d(y, Tx,)}
for any n € N. So, .

dly,Ty) < rmax{d(y,y),d(y,y),d(y,Ty),d(y,Ty),d(y,y)}
= rd(y,Ty)

and hence y = T'y. By Theorem 4, there exists a fixed point z of T. Clearly, a fixed
point is unique. This completes the proof. O

Proof by Theorem 5. We can define a function p: X x X — [0,00) by
p(a,y) = sup{d(T*z,y) : k € NU {0}}

for every z,y € X. By Example 3, p is a w-distance on X. Let 2 € X. Then we
have, using lemma 1 in [2],

p(T?2,T2) = sup{d(T*2,Tz) : k =2,3,4,- - }
< resup{d(TFz,2)  k=1,2,3, - }
= 7-pla,Tz).

So, by Theorem 5, there exists a fixed point z of 7. This completes the proof. [J
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5. METRIC COMPLETENESS

In this Section, we discuss a characterization of metric completeness. First, we
give a definition. A mapping 7' : X — X is called weakly contractive if there exist
a w-distance p on X and r € [0, 1) such that p(Tz, Ty) < rp(z,y) for every x,y € X.
The following Theorem was proved in [7]. We give another proof of “if” part and two
proofs of “only if” part.

Theorem 6 ([7]). Let X be a metric space. Then X is complete if and only if every
weakly contractive mapping from X into itself has a fized point in X .
Proof of “if " part. Assume that X is not complete. Then there exists a sequence
{x,} in X satisfying the following conditions:
(i) {xn} is Cauchy;
(ii) {2,} does not converge;
(i) @; # ay if @ # .
A function p: X X X — [0, 00) defined by
27+ 27, if x=a;and y =y,
pla,y) = 27+ 1, if v=ua;andy¢ {2.},
14277, if a¢{v,}andy=uz;
is a w-distance on X, by Example 4. Define a mapping T from X into itself as follows:

Te = | Titly if z=ua,
21, otherwise.

Then we have p(Tx,Ty) < %p(a‘:, y) for every x,y € X. But, T has not a fixed point
in .\X'. This completes the proof. [
Proof of “only if " part by Theorem 4. Clearly,

p(T2, T?x) < rp(a, Tx)

for every v € X. Let y € X with y # Ty be fixed. Assume that there exists {z,}
such that
Aim {p(x, y) + p(x, Twa)} = 0.

Then we have

Pl Ty) < play,Ten) + p(Ta,, Ty)
< play, Tan) + rp(a,,y) — 0.
Then, by Lemma 3, we have Ty = y. This is a contradiction. Hence, we have

inf{p(z,y) + p(z,Tx): 2 € X} > 0.

By Theorem 4, T has a fixed point. [J
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Proof of “only if " part by Theorem 5. Clearly,
p(T%x, Tx) < rp(Tx, x)

for every @ € X. Let {z,} be a sequence in X" which converges to some point y in X
and satisfies lim p(Ta,,x,) = 0. Let & € N be fixed. Then we have
n—od

k-1
Ty, ) < p(Try, TF,) + 3 p(T s, Tia) + p(Ta, 2,)
: i=1
k=1
S Tkp(yv fl'n) + Z 7'/’2)(T-’l7n7 17-,1)
i=0
b 1-— 7’k
= ""ply,x,) + T, pTwn, %)

and hence p(T*y,y) < r*p(y.y). So, we obtain
p(Try,Ty) < rmp(T*'y,y) < *ply,y).
By Lemma 3, we have Ty = y. Therefore, by Theorem 5, T has a fixed point. [
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