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Second-order directional derivatives of sup-type functions
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Hidefumni Kawasaki(Graduate School of Mathematics, Kyushu Univ.)
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Abstract

In this paper, we deal with the following sup-type function:

S(z) :=supG(z(t),t) z€ X, (1)

teT
where T is a compact metric space, X is a subspace of the set of all
n-dimensional vector-valued continuous functions C(T')" equipped with
the uniform norm. We denote by G, and G, the gradient (row) vector
and the Hesse matrix of f w.r.t. z, respectively, and assume them to be
continuous on R™ x T. This sup-type function is induced from a phase

constraint
Gz(t),t) < “teT

which appears in variational problems and optimal control problems [15].
On the other hand, another sup-type function has been deeply studied:

So(z) :=supG(z,t) =€ R", (2)
teT

Clarke[1], Correa and Seeger[2], Danskin [3], Dem’yanov and Malozemov[4]
Demyanov and Zabrodin[5], Hettich and Jongen|[6], Ioffe[7], Kawasaki[8][9]
[10][11][13], Shiraishi[17], Seeger[16], Wetterling[18]. We encounter this
sup-type function in Tchebycheff approximation. When T' depends on z,
the minimization problem of Sy(z) becomes a parametric optimization
problem. To tell the truth, So(z) is a special case of S(z). Indeed, if we
take as X {z € C(T)" | z(t) = constant vector € R"}, then S(z) reduces
to So(z). So S(z) inherits a lot of properties from So(z).
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In the following, we denote by T'(z) the set of all extreme points
G(z(-),-), that is,
T(z):={teT; G(z(t),t) = S(z)}, zeCD"
THEOREM 1 The function S(x) is continuous.

THEOREM 2 The function S(z) is directionally differentiable in any di-
rection y € X, and its directional derivative is given by

S'(z;y) = max{Ga(z(t),t)y(t); ¢ € T(z)}. (5)
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Applying Theorem 2 to the sup-type function induced from the one-
sided phase constraint:
s(t) <z(t) ", (6)

where s(t) is a given continuous function, we get the following result:

COROLLARY 1 Lets € C(T). Take G(z,t) := s(t) —z for any z € R
andt € T. Then

1. _ :
§(z;y) = — min y(t).

Taking constant functions as z(t) and y(¢) in Theorem 2 , we get Dan-
skin’s formula.

COROLLARY 2 (Danskin[3]) The function So(z) is directionally differ-
entiable in any direction y € R™ and its directional derivative is given

by
So(z;y) = max{Gx(z,1)y; t € T(2)}. (7)

Next, we consider a second-order directional derivative of S(z).

DEFINITION 1 The upper second-order directional derivative of S(z) at
z in the direction y is defined by

S(z + ey) — S(z) — eS'(z;y)

5" (z;y) = limsup 5 (8)
e—+40 £
DEFINITION 2 ([9]) For any functions u, v € C(T) satisfying
u(t) >0 VteT, (9)
v(t) 20 if u(t) =0,
we define a function E : T — [—o0,+00| by
sup{limsung(’:f;; {t.} satisfies (11)} , ifteTy,
E®) :={ 0 | ifut)=v(t)=0andt g Ty,  (10)

—00 otherwise,

Tp := {t eT; 3, — t s.t. u(t,) >0, —Zg"; — —I—oo} . (11)
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THEOREM 3 Letz andy be arbitrary functions in C(T)". Then it holds
that

—t { y(t)Tme (.’I? (t) ’ t)y(t)

S (z;y) = max 5 + E(t) ; t € T(z; y)}, (12)

where T'(z;y) = {t € T(z) ; S'(z;y) = G(z(t),)y(t)} and E(t) is
defined via Definition 2 by taking

u(t) = §(z) — G(z(1),1), v(t) = S'(z;y) — Go(=(8), )y(t).  (13)

Taking constant functions as z(f) and y(¢) in Theorem 3, we get the
following formula due to [9)].

COROLLARY 3 Letz andy be arbitrary points in R™. Then it holds that

YT Gue(z, )

?%m»:mm{ ! y+Em;teﬂmw} (14)

where E(t) is defined via Definition 2 by taking
u(t) = S@) - Gle,8), v(t)=S'(5y) - Galort)y.  (15)
We proved in [9] and [10] that an envelope is formed from G(z,t)

when E(t) > 0 at some point ¢. Similarly, an envelope is formed from
G(z(t),t) when E(t) > 0 at some t.

Example We can find an envelope even in the simplest one-sided phase
constraint:
z(t) >0 Vi,

that is, G(z,t) = —z. Let z(t) := t3, T := [~1,1] and y(t) := —2¢. Then

¢e) = S(z+ey)
= max{—z(t) —ey()}

[t<1
= _
Ilﬂgalc{%a }
g2 le] <1
2e] =1 |e| >1

For each t € [~1,1], the function 2te — #? is affine w.r.t. . However,

these affine functions form the envelope ¢(g) = €% near € = 0.
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It is clear from the definition of the upper second-order directional deriva-

tive that , ,
Foi1) = iy 8= =HO)
e+

On the other hand, the functions u(t) and v(t) defined by (13) become

u(t) = 8(z) — G(a(t),0) = 0 — (~z(t)) = £,
o(t) = 8'(z5y) — Galz(0), )y (1) = —y(0) — (—y(®)) = —2¢,
respectively. Hence
Bt) = { 1, t=0,

—00, t#0.

Since G(z,t) is affine w.r.t. z, its second partial derivative vanishes. So
the right hand side of (12) equals 1.
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