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Introduction

In connection with the famous work [7] of Jordan and von Neumann
concerning inner products Clarkson [2] introduced the von Neumann—
Jordan (NJ-) constant for Banach spaces X. Despite its fundamental
nature very little is known on the NJ-constant by now. - This note is
a résumé of some recent results of the authors [12, 15] on the NJ-
constant especially concerning some geometrical properties of Banach
spaces such as unifofm convexity, uniform non—squareness,‘and also

super-reflexivity.

1. Definitions and prelimainary results

The von Neumann-Jordan constant for a Banach space X ([2]), we
denote it by CNJ(X),‘is defined to be the smallest constant C for which

Ix + vy % +0x =yl % _

= C
201 <l % + 1yl ?

IIA

1
(1.1) C
hold for all x, vy € X with (x, y) # (0, 0). (Note that the left and

right-hand side inequalities in (1. 1) are equivalent; indeed, put x+vy

=u, x—y=v). The following facts are easily seen:
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A Proposition (1) Gy (X) = 22/t71 1 < t =< 2, if and only
if
.42 2 1/t
A : IZ(X) - ZZ(X) fh= 2"7
1 1 2 2
where A = ( — ) and lZ(X) denotes the X—valued lz—space; and hence

.. Py — . .
(ii) CNJ(X ) CNJ(X), where X' is the dual space of X. (This

was observed for Lp in Clarkson [2].)

Let us recall some classical and recent results in [7], [2], and
{101, [9] (see also [11]), where the NJ-constant is calculated for

some concrete Banach spaces:

B. Theorem. (i) 1 < CNJ(X) < 2 for any Banach space X; and

CNJ(X) = 1 if and only if X is a Hilbert space (Jordan and von Neu-
mann [7]).
.. 2/t-1
(ii) Let 1 £ p = o0 Then, C__(L ) = 2 , where t =
NI p
min{p, P}, 1/p + 1/p° = 1 (Clarkson [2]; see also [10]).

(iii) Let 1 = p, @ < oo. Then, for Lp(Lq) (Lq—valued Lp—space

-1
on arbitrary measure spaces), C._(L (L)) = 22/t where t =

NJ p q ’
min{p, @ p'., 1}, 1/p + 1/p = 1/gq + 1/d = 1; and for the

Sobolev space Wl;(Q ), CNJ(WIS(Q )) = 22/t_1, where t = min{p, p'}

(Kato and Miyazaki [10]).
(iv) For E = CC(K) resp. Cb(K) (the spaces of continuous func-
tions on a locally compact Hausdorff space K which have compact support

resp. are bounded), J(E) = 2 (Kato and Miyazaki [91).

‘N
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The above results (iii) (in particular, (ii )) can be obtained in
a more simple way than [10] by using arguments in Hashimoto, Kato and

Takahashi [8; Corollary 3.6; see also Theorem 3. 2].

Let us recall some definitions. A Banach space X is called:

(i) strietly convex if || (x + y)/21 < 1 whénever Ixll =1yl
=1, X # Y,

(ii ) uniformly convex provided for each ¢ (0 < &¢ < 2) there
exists a 6 > 0 such that || (x + y)/2ll < 1 — 6 whenever || x — yll
ze, Ixll=1lyl=1,

(ifi) (2, € )—convex, € > 0, (cf. [13]) provided min{ || x + ¥y,
lx — yll} = 2(1 — ¢ ) whenever [[xll=I1yll = 1,

(iv ) uniformly non—-square ([5]; cf. [1]1, [3]) if there is a § >
0 such that there do not exist x and y in the closed unit ball of X
for which || (x + y)/2l > 1 — 6 and || (x — y)/2I> 1 — 6. (Note

that uniform non-squareness is equivalent to (2, & )—convexity. )

A Banach space Y is said to be finitely representable in X if for
any A > 1 and for each finite-dimensional subspace F of Y, there is

an isomorphism T of F into X for which
A xS NTxI=A Il xll for all x € F.
X is said to be super-reflexive ([61; cf. [11, [31, [13], [14]) if no

non-reflexive Banach space is finitely representable in X

Super-reflexive spaces are characterized as those uniformly con-

vexifiable:
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C. Theorem (Enflo [4]; ef. [1]1, [3]1, [14]). A Banach space X is
super-reflexive if and only if X admits an equivalent uniformly convex

norm.

2. Uniform convexity, super—-reflexivity and von Neumann—-Jordan

constant

We bigin with the following proposition which will give effective

examples later.

2.1 Proposition. Let A > 1. Let X2 A be the space l2 equipped

with the norm | x || = max{ || xIl ., A Il x|l o} Then:

2, A 2

(i) X2 2 is isomorphic to a Hilbert space and

C( ) = min{A %, 2}.

NJ X2, A

(ii) X2 A is not strictly convex for any A > 1.

Proof (sketch). (i ) Since

<
HxII2 = |Ixl 2 A = A lell2 for all x € XZ,A’
we have
2 2 2 2 2
_ < —
le+yll2,/1+llx y”z,A = A (I|x+yll2 + |l x yllz)
2 2 2
= %2015 +lyl3)
2 2 2
< A%0xly , +lvly
2
= . i i = 1 , 1 , 0, ... d
or CNJ(X2, l) = A By considering x (/A /A ) and y
. 2
= (W/A, -1/A, 0, ...) € XZ,IL’ we have CNJ(XZ,}{) = min{A , 2}.
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(ii ) To see that X is not strictly convex, take an @ satis—

2, A
fying (1//1)2 +a2 < 1and 0 <a= 1/A; then put x = (1/A, 0, 0,

...)andy = (/A, a, 0, ...).

Now, iri the following two theorems we see that uniform convexity

is nearly characterized by the condition CNJ(X) < 2

2.2 Theorem. (i ) If X is uniformly convex, then CNJ(X) < 2; the
converse is not true; indeed,

(ii ) For any & > 0 there exists a Banach space X (i.somorphic to
-a Hilbert space) with CNJ(X) < 1 + € which is not even strictly con-

vex.

Proof (sketch). (i ) Let X be uniformly convex. Let & be any

positive number with 0 < ¢ < 21/2. Then, there exists a 0 > 0 such
that [ xI £ 1, Iyl £ 1 and [[x — yll = ¢ imply

’ | 2 | 2 2

(2. 1) h(x + y)/21l < (1 —=o){Clhxll™ + 1yl )/2)

(ef. [1], p.190). Now, let x and y be any elements in X with
I x|l 2 + Iyl 2 = 1. We first assume that l x — yll =2 €. Then,

using (2. 1), we have

2 2
(2.2) lx + vyl = +1lx — yll =~ = 2(2 —06).
Next, if llx — yll = ¢, we have
2 2 2 2 o2
(2. 3) lx + vyl T +llx — vyl == 20llxll™ +1lyll™) +e

< 2(1 + 82/2).

Consequently, by (2.2) and (2. 3) we obtain
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Ix + vyl 2 +01x — yii 2
200zl +1yl?

< 1 4+ max{1— 6, 52/2},

or CNJ(E) < 2.

(ii ) By Proposition 2.1, for the spaces X (A > 1) we have

2, A

CNJ(XZ, A) — 1 as A — 1, whereas X2, 2 is not strictly convex.

Although the condition CNJ(X) < 2 does not even imply strict
convexity for X, it assures the existence of an equivalent norm on X

for which X becomes uniformly convex (cf. Theorem C):

2. 3 Theorem. Let CNJ(X) < 2. 'Then, X is super-reflexive; the

converse is not true.

Proof. Assume C:= CNJ(X) < 2. Let x and y be any elements in

X with [[xl =lyll = 1. Then,
. 1 2 2,11/2
min Il & x +eyl < [ (lx+ yI% +1x - y1 5}
g, =11
1
1/2 2 2.1/2
= cPaxn? vt
= 20)'/?

that is, X is (2, € )—convex with some ¢, or equivalently uniformly
non—-square, which implies that X is super-reflexive (James [6]; see
also [1], [13]).

For the latter assertion, consider the space X Indeed,

2, {2

X2 [2 is isomorphic to a Hilbert space and hence super-reflexive,

whereas C __(X

- n n
NJ 2,[2) = 2 by Proposition 2.1. (! and loo are also

1
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such examples. )

2. 4 Definition. Let ENJ(X) be the infimum of all NJ-constants

for equivalent norms of X.

Theorems 2. 2 and 2. 3 assert that super-reflexivity is character-

ized by the condition ENJ(X) < 2.

2. 5 Theorem. The following are equivalent:

(i) ;0 < 2

(ii ) X is super-reflexive.

(iii ) X admits an equivalent uniformly convex norm

(iv) X admits an equivalent uniformly non—square norm.

(v ) X admits an equivalent uniformly smooth norm (cf. [1]).

(vi) X is J-convex (cf. [1]).

For some further conditions quivalent to super-reflexivity, we

refer the reader to [1]1, [3] and [14].

2.6 Corollary. ENJ(X) = 2 if and only if X is not super-reflexive.

3. Uniform non—-squareness and von Neumann—-Jordan constant

Very recently the authors [15] proved some homogeneous character—
izations of uniformly non-square spaces, one of which is similar to a
well-known characterization of uniformly convex spaces (we have used

it in the proof of Theorem 2. 2!):
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3.1 Theorem Let 1 < p < o©. For a Banach space X the follow—

ing are equivalent:
(i) X is uniformly non-square.

(ii ) There exist some ¢ and § (0 < e, 6 < 1) such that

lx — yll2 201 —¢), IxII=< 1, llyll = 1 implies

“x;y”pé “ _6)||xnpg Iyl ®

(iii ) There exists some 6 (0 < § < 2) such that for any x, y in X,

p p p p
X +y X -y IxlIl 7+ |yl
< _
“ 2 ” + ” 2 ” = (2 6) 2 :

. 2 2
(iv) ITA : I°(X) - (X< 2
P b
We omit the proof, which will appear elsewhere.

Owing to Theorem 3.1 a precise characterization of Banach spaces

with NJ-constant less than two is obtained (cf. Theorems 2.2 and 2. 3):

3. 2 Theorem The following are equivalent:
(i) CNJ(X) < 2
(ii ) X is uniformly non-square.

(ifi ) X is (2, € )—convex for some & > 0.
To see this, merely recall Proposition A.
3. 3 Corollary. CNJ(X) = 2 if and only if X is uniformly square.

3. 4 Note. Further investigation on the NJ-constant is made in

-1
[12] especially for the spaces having NJ-constant 22/p 1 S p = 2

’
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(the same value of that of Lp—spaces; see Proposition B).

(1]

2]

[31]

[4]

[51]

Our results stated in this note are summarized as follows:

reflexive

CNJ(X) < 2

& super—reflexive
© uniformly convexifiable
& J-convex

CNJ(X) < 2

& uniformly non—square
& (2, € )-convex

uniformly convex
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