Uniform convexity, uniform non-squareness and von Neumann-Jordan constant for Banach spaces

Mikio KATO (加藤幹雄) and Yasuji TAKAHASHI (高橋泰嗣)

Kyushu Institute of Technology and

Okayama Prefectural University

Introduction

In connection with the famous work [7] of Jordan and von Neumann concerning inner products Clarkson [2] introduced the von Neumann-Jordan (NJ-) constant for Banach spaces X. Despite its fundamental nature very little is known on the NJ-constant by now. This note is a résumé of some recent results of the authors [12, 15] on the NJ-constant especially concerning some geometrical properties of Banach spaces such as uniform convexity, uniform non-squareness, and also super-reflexivity.

1. Definitions and prelimainary results

The von Neumann-Jordan constant for a Banach space X ([2]), we denote it by $C_{\mbox{NJ}}(X)$, is defined to be the smallest constant C for which

(1.1)
$$\frac{1}{C} \le \frac{\|x + y\|^2 + \|x - y\|^2}{2(\|x\|^2 + \|y\|^2)} \le C$$

hold for all x, y \in X with (x, y) \neq (0, 0). (Note that the left and right-hand side inequalities in (1.1) are equivalent; indeed, put x+y = u, x-y=v). The following facts are easily seen:

A. Proposition. (i) $C_{\mbox{NJ}}(X) = 2^{2/t-1}$, $1 \le t \le 2$, if and only if

$$\| A : l_2^2(X) \rightarrow l_2^2(X) \| = 2^{1/t},$$

where $A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ and $\begin{pmatrix} 2 \\ 2 \end{pmatrix}(X)$ denotes the X-valued $\begin{pmatrix} 2 \\ 2 \end{pmatrix}$ -space; and hence

(ii) $C_{\rm NJ}({\rm X'}) = C_{\rm NJ}({\rm X}),$ where X' is the dual space of X. (This was observed for L in Clarkson [2].)

Let us recall some classical and recent results in [7], [2], and [10], [9] (see also [11]), where the NJ-constant is calculated for some concrete Banach spaces:

B. Theorem. (i) 1 \leq C_{NJ}(X) \leq 2 for any Banach space X; and C_{NJ}(X) = 1 if and only if X is a Hilbert space (Jordan and von Neumann [7]).

- (ii) Let $1 \le p \le \infty$. Then, $C_{NJ}(L_p) = 2^{2/t-1}$, where $t = \min\{p, p'\}$, 1/p + 1/p' = 1 (Clarkson [2]; see also [10]).
- (iii) Let $1 \leq p$, $q \leq \infty$. Then, for $L_p(L_q)$ (L_q -valued L_p -space on arbitrary measure spaces), $C_{NJ}(L_p(L_q)) = 2^{2/t-1}$, where $t = \min\{p, q, p', q'\}$, 1/p + 1/p' = 1/q + 1/q' = 1; and for the Sobolev space $W_p^k(\Omega)$, $C_{NJ}(W_p^k(\Omega)) = 2^{2/t-1}$, where $t = \min\{p, p'\}$ (Kato and Miyazaki [10]).
- (iv) For E = $C_c(K)$ resp. $C_b(K)$ (the spaces of continuous functions on a locally compact Hausdorff space K which have compact support resp. are bounded), $C_{NJ}(E) = 2$ (Kato and Miyazaki [9]).

The above results (iii) (in particular, (ii)) can be obtained in a more simple way than [10] by using arguments in Hashimoto, Kato and Takahashi [8; Corollary 3.6; see also Theorem 3.2].

Let us recall some definitions. A Banach space X is called:

- (i) strictly convex if $\|(x + y)/2\| < 1$ whenever $\|x\| = \|y\|$ = 1, $x \neq y$,
- (ii) uniformly convex provided for each ε (0 $< \varepsilon <$ 2) there exists a $\delta >$ 0 such that $\| (x + y)/2 \| < 1 \delta$ whenever $\| x y \| \ge \varepsilon$, $\| x \| = \| y \| = 1$,
- (iii) (2, ε)-convex, ε > 0, (cf. [13]) provided min{||x + y||, ||x y||} \leq 2(1 ε) whenever ||x|| = ||y|| = 1,
- (iv) uniformly non-square ([5]; cf. [1], [3]) if there is a $\delta > 0$ such that there do not exist x and y in the closed unit ball of X for which $\|(x + y)/2\| > 1 \delta$ and $\|(x y)/2\| > 1 \delta$. (Note that uniform non-squareness is equivalent to (2, ϵ)-convexity.)

A Banach space Y is said to be finitely representable in X if for any $\lambda > 1$ and for each finite-dimensional subspace F of Y, there is an isomorphism T of F into X for which

$$\lambda^{-1} \| x \| \le \| Tx \| \le \lambda \| x \|$$
 for all $x \in F$.

X is said to be *super-reflexive* ([6]; cf. [1], [3], [14]) if no non-reflexive Banach space is finitely representable in X.

Super-reflexive spaces are characterized as those uniformly convexifiable:

- C. Theorem (Enflo [4]; cf. [1], [3], [14]). A Banach space X is super-reflexive if and only if X admits an equivalent uniformly convex norm.
- 2. Uniform convexity, super-reflexivity and von Neumann-Jordan constant

We bigin with the following proposition which will give effective examples later.

- 2. 1 Proposition. Let $\lambda >$ 1. Let $X_{2,\ \lambda}$ be the space l_2 equipped with the norm $\| \mathbf{x} \|_{2,\ \lambda} := \max\{ \| \mathbf{x} \|_{2},\ \lambda \| \mathbf{x} \|_{\infty} \}$. Then:
 - (i) $X_{2,\ \lambda}$ is isomorphic to a Hilbert space and

$$C_{NJ}(X_{2,\lambda}) = \min\{\lambda^2, 2\}.$$

(ii) $X_{2, \lambda}$ is not strictly convex for any $\lambda > 1$.

Proof (sketch). (i) Since

 $\|x\|_2 \le \|x\|_{2,\;\lambda} \le \lambda \|x\|_2 \quad \text{for all } x \in X_{2,\;\lambda},$ we have

$$\| x+y \|_{2, \lambda}^{2} + \| x-y \|_{2, \lambda}^{2} \leq \lambda^{2} (\| x+y \|_{2}^{2} + \| x-y \|_{2}^{2})$$

$$= \lambda^{2} 2 (\| x \|_{2}^{2} + \| y \|_{2}^{2})$$

$$\leq \lambda^{2} 2 (\| x \|_{2, \lambda}^{2} + \| y \|_{2, \lambda}^{2}),$$

or $C_{NJ}(X_{2, \lambda}) \le \lambda^2$. By considering $x = (1/\lambda, 1/\lambda, 0, ...)$ and $y = (1/\lambda, -1/\lambda, 0, ...) \in X_{2, \lambda}$, we have $C_{NJ}(X_{2, \lambda}) = \min\{\lambda^2, 2\}$.

(ii) To see that $X_{2,\ \lambda}$ is not strictly convex, take an α satisfying $(1/\lambda)^2 + \alpha^2 \le 1$ and $0 < \alpha \le 1/\lambda$; then put $x = (1/\lambda, 0, 0, ...)$ and $y = (1/\lambda, \alpha, 0, ...)$.

Now, in the following two theorems we see that uniform convexity is nearly characterized by the condition $C_{\mbox{NJ}}(X)$ < 2.

- 2. 2 Theorem. (i) If X is uniformly convex, then $C_{\mbox{NJ}}(X) < 2$; the converse is not true; indeed,
- (ii) For any $\epsilon>0$ there exists a Banach space X (isomorphic to a Hilbert space) with $C_{\rm NJ}({\rm X})$ < 1 + ϵ which is not even strictly convex.

Proof (sketch). (i) Let X be uniformly convex. Let ϵ be any positive number with $0<\epsilon<2^{1/2}$. Then, there exists a $\delta>0$ such that $\|\mathbf{x}\|\leq 1$, $\|\mathbf{y}\|\leq 1$ and $\|\mathbf{x}-\mathbf{y}\|\geq \epsilon$ imply

(cf. [1], p. 190). Now, let x and y be any elements in X with $\|x\|^2 + \|y\|^2 = 1.$ We first assume that $\|x - y\| \ge \varepsilon$. Then, using (2.1), we have

(2.2)
$$\|x + y\|^2 + \|x - y\|^2 \le 2(2 - \delta).$$

Next, if $\|x - y\| \le \varepsilon$, we have

(2.3)
$$\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 \le 2(\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2) + \varepsilon^2$$

 $\le 2(1 + \varepsilon^2/2).$

Consequently, by (2.2) and (2.3) we obtain

$$\frac{\|x + y\|^{2} + \|x - y\|^{2}}{2(\|x\|^{2} + \|y\|^{2})} \le 1 + \max\{1 - \delta, \epsilon^{2}/2\},$$

or $C_{NJ}(E)$ < 2.

(ii) By Proposition 2.1, for the spaces $X_{2,\lambda}$ ($\lambda>1$) we have $C_{\rm NJ}(X_{2,\lambda})\to 1$ as $\lambda\to 1$, whereas $X_{2,\lambda}$ is not strictly convex.

Although the condition $C_{\rm NJ}(X)<2$ does not even imply strict convexity for X, it assures the existence of an equivalent norm on X for which X becomes uniformly convex (cf. Theorem C):

2.3 Theorem. Let $C_{\mbox{NJ}}(X) <$ 2. Then, X is super-reflexive; the converse is not true.

Proof. Assume $C:=C_{\mbox{NJ}}(X)<2$. Let x and y be any elements in X with $\|x\|=\|y\|=1$. Then,

$$\min_{\mathbf{\epsilon}_{i} = \pm 1} \| \epsilon_{1} \mathbf{x} + \epsilon_{2} \mathbf{y} \| \leq \left\{ \frac{1}{2} (\| \mathbf{x} + \mathbf{y} \|^{2} + \| \mathbf{x} - \mathbf{y} \|^{2}) \right\}^{1/2}
\leq C^{1/2} (\| \mathbf{x} \|^{2} + \| \mathbf{y} \|^{2})^{1/2}
= (2C)^{1/2}.$$

that is, X is $(2, \varepsilon)$ -convex with some ε , or equivalently uniformly non-square, which implies that X is super-reflexive (James [6]; see also [1], [13]).

For the latter assertion, consider the space $X_{2,\sqrt{2}}$. Indeed, $X_{2,\sqrt{2}}$ is isomorphic to a Hilbert space and hence super-reflexive, whereas $C_{\rm NJ}(X_{2,\sqrt{2}})=2$ by Proposition 2.1. $(\lfloor \frac{n}{1} \rfloor \text{ and } \lfloor \frac{n}{\infty} \rfloor \text{ are also } 1)$

such examples.)

2. 4 Definition. Let $\widetilde{\mathsf{C}}_{NJ}^{}(\mathsf{X})$ be the infimum of all NJ-constants for equivalent norms of X.

Theorems 2.2 and 2.3 assert that super-reflexivity is characterized by the condition $\widetilde{C}_{\rm NJ}({\rm X})$ < 2.

- 2. 5 Theorem. The following are equivalent:
- $(i) \tilde{C}_{N,I}(X) < 2.$
- (ii) X is super-reflexive.
- (jii) X admits an equivalent uniformly convex norm.
- (iv) X admits an equivalent uniformly non-square norm
- (v) X admits an equivalent uniformly smooth norm (cf. [1]).
- (vi) X is J-convex (cf. [1]).

For some further conditions quivalent to super-reflexivity, we refer the reader to [1], [3] and [14].

- 2.6 Corollary. $\tilde{C}_{NJ}(X) = 2$ if and only if X is not super-reflexive.
- 3. Uniform non-squareness and von Neumann-Jordan constant

Very recently the authors [15] proved some homogeneous characterizations of uniformly non-square spaces, one of which is similar to a well-known characterization of uniformly convex spaces (we have used it in the proof of Theorem 2.2!):

- 3.1 Theorem. Let 1 . For a Banach space X the following are equivalent:
 - (i) X is uniformly non-square.
- (ii) There exist some ϵ and δ (0 $< \epsilon$, $\delta <$ 1) such that $\|x y\| \ge 2(1 \epsilon)$, $\|x\| \le 1$, $\|y\| \le 1$ implies

$$\left\|\frac{\mathbf{x}+\mathbf{y}}{2}\right\|^{\mathbf{p}} \leq (1-\delta)^{\frac{\|\mathbf{x}\|^{\mathbf{p}}+\|\mathbf{y}\|^{\mathbf{p}}}{2}.$$

(iii) There exists some δ (0 < δ < 2) such that for any x, y in X,

$$\left\| \frac{x+y}{2} \right\|^{p} + \left\| \frac{x-y}{2} \right\|^{p} \le (2-\delta)^{\frac{\|x\|^{p} + \|y\|^{p}}{2}}.$$

(iv)
$$\| A : l_p^2(X) \rightarrow l_p^2(X) \| < 2.$$

We omit the proof, which will appear elsewhere.

Owing to Theorem 3. 1 a precise characterization of Banach spaces with NJ-constant less than two is obtained (cf. Theorems 2. 2 and 2. 3):

- 3. 2 Theorem. The following are equivalent:
- $(i) C_{NJ}(X) < 2.$
- (ii) X is uniformly non-square.
- (iii) X is (2, ε)-convex for some $\varepsilon > 0$.

To see this, merely recall Proposition A.

- 3.3 Corollary. $C_{NJ}(X) = 2$ if and only if X is uniformly square.
- 3. 4 Note. Further investigation on the NJ-constant is made in [12] especially for the spaces having NJ-constant $2^{2/p-1}$, $1 \le p \le 2$

(the same value of that of L_p -spaces; see Proposition B).

Our results stated in this note are summarized as follows:

References

- [1] B. Beauzamy, Introduction to Banach spaces and their geometry, 2nd Ed., North Holland, 1985.
- [2] J. A. Clarkson, The von Neumann-Jordan constant for the Lebesgue space, Ann. of Math. 38 (1937), 114-115.
- [3] D. van Dulst, Reflexive and super-reflexive Banach spaces, Math. Centre Tracts 102, Math. Centrum, Amsterdam, 1978.
- [4] P. Enflo, Banach spaces which can be given an equivalent uniform—
 ly convex norm, Israel J. Math. 13 (1972), 281-288.
- [5] R. C. James, Uniformly non-square Banach spaces, Ann. of Math. 80 (1964), 542-550.

- [6] R. C. James, Super-reflexive Banach spaces, Canad. J. Math. 24 (1972), 896-904.
- [7] P. Jordan and J. von Neumann, On inner products in linear metric spaces, Ann. of Math. 36 (1935), 719-723.
- [8] K. Hashimoto, M. Kato and Y. Takahashi, Generalized Clarkson's inequalities for Lebesgue-Bochner spaces, to appear in Bull. Kyushu Inst. Tech., Math. Natur. Sci. 43 (1996).
- [9] M. Kato and K. Miyazaki, Remark on generalized Clarkson's inequalities for extreme cases, Bull. Kyushu Inst. Tech., Math. Natur. Sci. 41 (1994), 27-31.
- [10] M. Kato and K. Miyazaki, On generalized Clarkson's inequalities for $L_{p}(L_{p})$ and Sobolev spaces, to appear in Math. Japon.
- [11] M. Kato and Y. Takahashi, On Clarkson-Boas-type inequalities, RIMS Kokyuroku (Kyoto Univ.) 897 (1995), 46-58.
- [12] M. Kato and Y. Takahashi, On the von Neumann-Jordan constant for Banach spaces, to appear in Proc. Amer. Math. Soc.
- [13] J. Kuelbs, Probability on Banach spaces, Marcel Dekker, New York-Basel, 1978.
- [14] L. Schwartz, Geometry and probability in Banach spaces, Lecture Notes in Math. No. 852, Springer, 1981.
- [15] Y. Takahashi and M. Kato, Von Neumann-Jordan constant and uniformly non-square Banach spaces, preprint.