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1 Introduction

In the memorial work of $\mathrm{L}\mathrm{i}_{\mathrm{o}\mathrm{n}\mathrm{S}}[6]$ the optimal control theory for distributed parameter

systems has been developed in full extent. The optimal control theory of [6] covers a wide

variety of distributed parameter systems, e.g., elliptic, parabolic, hyperbolic and other

types of systems, and a great number of results including optimality conditions in terms

of adjoint state equations for quadratic cost problems are established. Especially in [6]

Lions studied the quadratic cost control problems for hyperbolic controlled systems of the

form
$\ddot{y}+A(t)y=f+Bv$ , $v\in \mathcal{U}_{ad}\subset \mathcal{U},$

$\}$ (1.1)
$y(0)=y0\in V$, $\dot{y}(0)=y1\in H$,

where $H,$ $V$ are Hilbert spaces, $Varrow H^{\mathrm{c}}arrow V’$ is a Gelfand triple, $f$ is a forcing function,

$A(t)$ is the differential operator defined by some bilinear form on $V,$ $B$ is a controller, $v$

is a control and $y=y(v)$ denotes the solution state for given $v\in \mathcal{U}_{ad}\subset \mathcal{U},$ $\mathcal{U}_{ad}$ is an

admissible subset of the Hilbert space $\mathcal{U}$ of control variables. The attached quadratic cost

functional to (1.1) is given by

$J(v)=||c_{y}(v)-Z_{d}||_{M}^{2}+(Rv, v)_{U}$ , $v\in \mathcal{U}$ , (1.2)

where $M$ is a Hilbert space of observation variables, $z_{d}$ is a desired obvervation state in

$M$ and $C$ is an observation operator, and $R$ is a positive definite, symmetric operator on
$\mathcal{U}$ . The quadratic optimal control problem is to find and characterize an element $u\in \mathcal{U}_{ad}$ ,

called optimal control, such that

$\inf_{v\in^{u_{a}}d}J(v)=J(u)$ . (1.3)
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In this paper, we study the quadratic cost optimal control problem for linear nonau-

tonomous systems governed by damped second order equations of the form

$\ddot{y}(v)+A_{2}(t)\dot{y}(v)+A_{1}(t)y(v)=f(t)+Bv$ , $v\in \mathcal{U}_{ad}\subset \mathcal{U},$

$\}$ (1.4)
$y(0;v)=y_{0}\in V$, $\dot{y}(0;v)=y_{1}\in H$,

where $A_{1}(t)$ is the operator defined by a bilinear form on $V$ , and $A_{2}(t)$ is the operator

defined by another bilinear form on $V_{2}$ . We assume that inclusions $V\subset V_{2}\subset H$ are

continuous embeddings. The quadratic cost subject to the system (1.4) is given by (1.2).

The optimal control theory for the system (1.4) is not devoloped in Lions [5], $\mathrm{B}\mathrm{a}\mathrm{r}\mathrm{b}\mathrm{u}[2]$ ,

Lasiecka and $\mathrm{T}\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{g}\mathrm{i}\mathrm{a}\mathrm{n}\mathrm{i}[4]$. The following five practical partial differential equations having

damping terms are covered by the system (1.4).

Example 1.1 (Damped wave equation)

Let $\Omega\subset \mathrm{R}^{n}$ be a bounded domain and let $\Gamma=\partial\Omega$ be a smooth boundary of $\Omega$ . We denote
$Q=(\mathrm{O}, T)\cross\Omega$ and $\Sigma=(0, T)\chi$ F. Then the damped wave equation is described by

$\frac{\partial^{2}}{\frac\partial,\partial \mathrm{n}d^{2}}y(t,x[y(t, X)+\kappa\frac{\frac{\partial}{\mathit{3}^{t}}}{\partial t}y(t,X)]=g(t,x)\mathrm{o}\mathrm{n}\Sigma)-\kappa\triangle y(\partial t,X)-\triangle y(t,x)=f(t,’ x)$

in $Q,$

$\}$

$y(0, x)=y_{0}(x)$ , $\overline{\partial t}^{y(0,X)}=y_{1}(x)$ in $\Omega$ ,

where $\kappa$ is a positive constant.

Example 1.2 (Air damped wave equation)

The wave equation having air damped effect is described by

$y(t, x)=0$ on $\Sigma$ ,

$\frac{\partial^{2}}{\partial t^{2}}y(t, X)+\alpha\frac{\partial}{\partial t}y(t, X)-\Delta y(t, X)=f(t, x)$ in $Q,$

$\}$

$y(0, x)=y_{0}(x)$ , $\frac{\partial}{\partial t}y(0, x)=y_{1}(x)$ in $\Omega$ ,

where $\alpha>0$ .

Example 1.3 (Euler-Bernoulli beam equation)

The transverse vibration of a beam of length 1 is described by the following Euler-Bernoulli
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beam equation with damping

$= \frac{x}{I_{h}}f(t)$ in $(0, T)\cross(0,1)$ ,

$\frac{\partial^{2}}{\partial x^{2}}y(t, x_{\partial x})?_{x}=1=\frac{\partial^{3}}{\partial x^{3}}y(t, x)|_{x1}==0$

, $t\in(0,\tau)$ ,$\frac{\partial^{2}}{\partial t^{2}}y(t, x)+\frac{\partial^{2}}{\partial x^{2}}[EI(_{X})\frac{\partial^{2}}{\partial x^{2}}y(t, X)+c_{D}I(_{X})\frac{\partial^{3}}{\partial x^{2}\partial t}y(t, X)]\}$

$y(t, 0)=-y(t, x)?_{x=}0=0$ , $t\in(0, T)$ ,

$y(0, x)=y_{0}(x)$ , $\overline{\partial t}^{y(0,X)}=y_{1}(x)$ in $(0,1)$ ,

where $I_{h},$ $EI,$ $c_{D}I$ are physical constants.

Example 1.4 (Periodic Viscous damping of beam equation)

In the dynamics of vibrating beams we consider the case where the damping effect is

viscous and periodic in time. This vibration equation is described by

$\frac{\partial^{2}}{\frac{\partial t^{2}\partial^{2}}{\partial x^{2}}}y(y(t,0)y(t,xt,x))=\frac{}{\partial x}y+1\frac{\partial^{4}}{\partial x}, x2_{x=}^{\alpha}1|_{x1}^{(t}=\frac{4\partial^{3}y(t}{)4_{x=}\partial x3}y(t,x)=,0,t\in(0,\tau)(t,xt0’)+p\in(=0,\tau))\frac{\partial}{\partial t}y(t, X)=\frac{x}{I_{h}}f(,t)$

in $(0,T)\mathrm{x}(0,1),$

$\}$

$y(0, x)=y_{0}(x)$ , $\overline{\partial t}^{y(0,X)}=y_{1}(X)$ in $(0,1)$ ,

where $p(t)$ is a periodic function in $t$ and $I_{h},$ $\alpha_{1}>0$ are physical constants.

Example 1.5 (Structural damped plate equation)

The structural damped plate equation is described by

$\frac{\partial^{2}}{y(t\partial t^{2}},y(tx)’=0,\frac{\partial}{\partial \mathrm{n}}x)-\alpha 2\triangle\frac{\partial}{(t\partial t}y(ty,x)’=0\mathrm{o}\mathrm{n}\Sigma X)+\triangle 2y(,t, X)=f(t, x)$

in $Q,$

$\}$

$y(0, x)=y_{0}(x)$ , $\frac{\partial}{\partial t}y(0, x)=y_{1}(x)$ in $\Omega$ ,

where $\alpha_{2}>0$ is a constant.

The purpose of this paper is to extend the general quadratic optimal control theory

for the hyperbolic (undamped) system (1.1) with (1.2) in Lions [6] to the damped second

order system (1.4) with (1.2), which includes the examples 1.1-1.5. Further discussions

and results for (1.4) are explained in Ha [3]. For related researches of damped second

order systems, we refer to Banks, Ito and Wang [1], Lions $[5, 8]$ , and Lions and Magenes

[7].
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2 Damped second order evolution equations

Let $X$ be a Hilbert space. $(\cdot, \cdot)x$ denotes an inner product on $X$ with the induced
norm $||\cdot||_{X}$ . $X’$ denotes the dual space of $X$ and $\langle\cdot, \cdot\rangle_{X’,X}$ denotes a dual pairing between
$X’$ and X. $\Lambda_{X}$ denotes the canonical isomorphism from $X$ onto $X’$ . Let us introduce

underlying Hilbert spaces to describe damped second order system equations. Let $H$ be a
real pivot Hilbert space, its norm $||\cdot||_{H}$ is denoted simply by $|\cdot|_{H}$ . For $i=1,2$ , let $V_{i}$ be a

real separable Hilbert space. Assume that each pair $(V_{i}, H)$ is a Gelfand triple space with

the notation, $V_{i}arrow H\equiv H^{/}arrow V_{i}^{/}$ , which means that the embedding $V_{i}\subset H$ is continuous
and $V_{i}$ is dense in $H$ , so that the embedding $H\subset V_{i}’$ is also continuous and the identified
$H\equiv H’$ is dense in $V_{i}’$ . From now on, we write $V_{1}=V$ for notational convenience. We shall

give the exact description of damped second order evolution equation. Let $0<T<\infty$ be

a fixed terminal time.

Let $a_{1}(t;\phi, \varphi),$ $t\in[0, T]$ be a family of bilinear forms on $V\cross V$ satisfying

i) $a_{1}(t;\phi, \psi)=a_{1}(t;\psi, \phi)$ for all $\phi,$ $\psi\in V$ and $t\in[0, T]$ , (2.1)

ii) there exists $c_{11}>0$ such that

$|a_{1}(t;\phi, \varphi)|\leq c_{11}||\phi||_{V}||\varphi||_{V}$ for all $\phi,$ $\psi\in V$ and $t\in[0, T]$ (2.2)

and there exist $\alpha_{1}>0$ and $\lambda_{1}\in \mathrm{R}$ such that

$a_{1}(t;\phi, \phi)+\lambda_{1}|\phi|_{H}^{2}\geq\alpha_{1}||\phi||_{V}^{2}$ for all $\phi\in V$ and $t\in[0, T]$ , (2.3)

iii) the function $tarrow a_{1}(t;\phi, \varphi)$ is continuously differentiable in $[0, T]$

and there exists $c_{12}>0$ such that

$|\dot{a}_{1}(t;\phi, \varphi)|\leq c_{12}||\phi||v||\varphi||V$ for all $\phi,$ $\psi\in V$ and $t\in[0, T]$ . (2.4)

where $= \frac{d}{dt}$ . Then we can define the operator $A_{1}(t)\in \mathcal{L}(V, V’),$ $t\in[0, T]$ defined by the

relation
$a_{1}(t;\phi, \varphi)=\langle A_{1}(t)\phi, \varphi\rangle_{VV};$, for all $\phi,$ $\varphi\in V.$ (2.5)

Similarly by (2.4) we have the operator $\dot{A}_{1}(t)\in \mathcal{L}(V, V’),$ $t\in[0, T]$ defined by

$\dot{a}_{1}(t;\phi, \varphi)=\langle_{A}\dot{4}_{1}(t)\phi, \varphi\rangle_{V^{l}},V$ for all $\phi,$ $\varphi\in V$. (2.6)

In order to consider a class of damping operators we introduce the second family of

bilinear forms $a_{2}(t;\phi, \varphi),$ $t\in[0,T]$ on $V_{2}\cross V_{2}$ . It is assumed that

i) $a_{2}(t;\phi, \psi)=a_{2}(t;\psi, \phi)$ for all $\phi,$ $\psi\in V_{2}$ and $t\in[0, T]$ , (2.7)
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ii) there exists $c_{21}>0$ such that

$|a_{2}(t;\phi, \varphi)|\leq c_{21}||\phi||_{V_{2}}||\varphi||_{V_{2}}$ for all $\phi,$ $\psi\in V_{2}$ and $t\in[0, T]$ (2.8)

and there exist $\alpha_{2}>0$ and $\lambda_{2}\in \mathrm{R}$ such that

$a_{2}(t;\phi, \phi)+\lambda_{2}|\phi|_{H}^{2}\geq\alpha_{2}||\phi||_{V_{2}}2$ for all $\phi\in V_{2}$ , (2.9)

iii) the function $tarrow a_{2}(t;\phi, \varphi)$ is continuously differentiable in $[0, T]$

and there exists $c_{22}>0$ such that

$|\dot{a}_{2}(t;\phi, \varphi)|\leq c_{22}||\phi||_{V_{2}}||\varphi||_{V_{2}}$ for all $\phi,$ $\psi\in V_{2}$ and $t\in[0, T]$ . (2.10)

Then we have a family of the operators $A_{2}(t)\in \mathcal{L}(V_{2}, V_{2}/),$ $t..\in[0, T]$ by t.he relation

$a_{2}(t;\phi, \varphi)=\langle A_{2}(t)\phi, \varphi\rangle_{V_{2}V_{2}}’$, for all $\phi,$ $\varphi\in V_{2}$ . (2.11)

Also by (2.10) we have $\mathit{1}\dot{4}_{2}(t)\in \mathcal{L}(V2, V_{2’}),$ $t\in[0, T]$ defined by

$\dot{a}_{2}(t;\phi, \varphi)=\langle\dot{A}_{2}(t)\phi, \varphi\rangle V_{2}’,V_{2}$ for all $\phi,$ $\varphi\in V_{2}$ . (2.12)

We suppose that $V$ is continuously embeded in $V_{2}$ . Then we see that $Varrow V_{2}arrow H\equiv$

$H’arrow V_{2}’arrow V’$ and $\langle\phi, \varphi\rangle_{V’,V}=\langle\phi, \varphi\rangle_{V_{2}’,V}2$ for $\phi\in V_{2}’,$ $\varphi\in V$ and $\langle\phi, \varphi\rangle_{V’,V}=(\phi, \varphi)_{H}$

for $\phi\in H,$ $\varphi\in V$ .
We consider the following abstract damped second order evolution equation

$\ddot{y}+A_{2}(t)\dot{y}+A_{1}(t)y=f$ in $(0,T)$ ,
$y(0)=y_{0}\in V$,
$\dot{y}(0)=y_{1}\in H$,

(2.13)

where $f\in L^{2}(0, T;V_{2’})$ and $= \frac{d}{dt}T2$ .
We define a Hilbert space, which will be a solution space, as

$W(0, T)=\{g|g\in L^{2}(0, T;V),\dot{g}\in L^{2}(0, T;V2),\ddot{g}\in L^{2}(0, T;V’)\}$

with inner product

$(g_{1}, g_{2})_{w(0,T})= \int_{0}^{T}\{(g_{1}(t), g2(t))Vdt+(\dot{g}1(t),\dot{g}2(t))V_{2}+(\ddot{g}1(t),\ddot{g}2(t))_{V}’\}dt$

and induced norm

$||g||_{W(\tau)}0,=(||g||_{L^{2}(}^{2}0,T;V)||\dot{g}||^{22}L^{2}(0+,\tau;V2)+||\ddot{g}||_{L^{2}(0,T};V’))^{\frac{1}{2}}$
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Definition 2.1 A function $y\in W(0, T)$ is a variational solution of (2.13) if $y$ satisfies the

following equation for every $t\in[0, T]$

$y(0)=y0\in V$,

$\langle\ddot{y}(t), \phi\rangle V’,V+a_{2}(t;\dot{y}(t), \phi)+a_{1}(t;y(t), \phi)=\langle f(t), \phi\rangle V_{2}’,V_{2}$ , $\forall\phi\in V,$

$\}$ (2.14)

$\dot{y}(0)=y_{1}\in H$ .

We shall state the existence and uniqueness result of solutions of (2.13).

Theorem 2.1 Assume that $a_{1}$ and $a_{2}$ satisfy $(2.1)-(2.4)$ and $(2.7)-(2.10)$ , respectively and
$f\in L^{2}(0, T;V_{2’})$ . Then the equation (2.13) has a unique variational solution $y$ in $W(0, T)$ .
Moreover, the solution $y$ depends continuously on the data, that is, the map

$(f, y_{0}, y_{1})arrow y$

is continuous from $L^{2}(0, T;V_{2’})\cross V\cross H$ into $W(0, T)$ .

A proof of Theorem 2.1 is given in Ha [3]. The next regularity of solution is important.

Theorem 2.2 Assume that the conditions in Theorem 2.1 hold. Then $y\in C([0, T];V)$

and $\dot{y}\in C([0, T];H)$ .

The following energy equality for (2.13) is essential in proving Theorem 2.2 $(\mathrm{c}\mathrm{f}.[3])$ .

Lemma 2.1 Assume that all conditions in Theorem 2.1 hold. Let $y$ be the solution of

(2.13). Then, for each $t\in[0,T]$ we have the following energy equality

$a_{1}(t;y(t), y(t))+| \dot{y}(t)|_{H}^{2}+2\int_{0}^{t}a_{2}(\sigma;\dot{y}(\sigma),\dot{y}(\sigma))d\sigma$

$=$ $a_{1}(0;y0, y \mathrm{o})+|y1|_{H^{+}}2\int_{0}^{t}\dot{a}_{1}(\sigma;y(\sigma), y(\sigma))d\sigma+2\int_{0}^{t}\langle f(\sigma),\dot{y}(\sigma)\rangle_{V’}V_{2}d\sigma$ .$(2’ 2.15)$

3 Optimal control problems and adjoint systems

Let $\mathcal{U}$ be a Hilbert space of control variables. Let $B$ be an operator satisfying

$B\in \mathcal{L}(\mathcal{U}, L2(0, \tau;V_{2’}))$ , (3.1)

which is called as a controller. For each $v\in \mathcal{U}$ , we consider the following controlled damped

second order system:

$\{$

$\ddot{y}(v)+A_{2}(t)\dot{y}(v)+A_{1(t)y}(v)=f+Bv$ in $(0, T)$ ,
$y(0;v)=y_{0}\in V,\dot{y}(0;v)=y_{1}\in H$.

(3.2)
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Here in (3.2) $A_{1}(t),$ $A_{2(t})$ and $f$ are operators and a forching function satisfying the as-

sumptions given in Section 2. By virtue of Theorem 2.1 and (3.1), we can define the affine

solution map $varrow y(v)$ of $\mathcal{U}$ into $W(0, T)$ . We shall call $y(v)$ the state of the controlled

system (3.2), where $y(v)$ is the solution of (3.2). The observation of the state is assumed

to be given by $z(v)=Cy(v)$ , where $C\in \mathcal{L}(W(0, T),$ $M)$ is an operator called the observer,

and $M$ is a Hilbert space of observation variables. The cost function associated with the

controlled system (3.2) is given by

$J(v)=||c_{y(v)-z_{d}}||_{M}^{2}+(Rv, v)_{\mathcal{U}}$ for all $v\in \mathcal{U}$ , (3.3)

where $z_{d}\in M$ is a desired value of $z(v)$ and $R\in \mathcal{L}(\mathcal{U})=\mathcal{L}(\mathcal{U},\mathcal{U})$ is symmetric and

positive, i.e.,
$(Rv, v)_{\mathcal{U}}=(v, Rv)_{\mathcal{U}}\geq\gamma||v||^{2}u$

’ (3.4)

for some $\gamma>0$ . Let $\mathcal{U}_{ad}$ be a closed convex subset of $\mathcal{U}$ , which is called the admissible set.

The quadratic cost optimal control problems for (3.3) subject to (3.2) are:

i) Find an element $u\in \mathcal{U}_{ad}$ such that

$\inf_{v\in \mathcal{U}_{ad}}J(v)=J(u)$ . (3.5)

ii) Give a characterization of such the $u$ .
We shall call $u$ the optimal control for the optimal control problem. It is easily verified as

in the proof of Lions [6, Chap.1] that under the assumption (3.4), there exists a unique

optimal control $u$ for the cost (3.3) enjoying (3.5). Thus the problem i) is solved and the

problem ii) is solved generally in [6, Chap. 1] as that the optimality condition for $u$ is

given by the variational inequality

$J’(u)(v-u)\geq 0$ for all $v\in \mathcal{U}_{ad}$ , (3.6)

where $J’(u)$ denotes the Gateaux derivative of $J(v)$ in (3.3) at $v=u$ . The objective of

this section is to write down formally the optimality condition (3.6) in terms of adjoint

state systems. By Theorem 2.2 we know that $y(v)\in C([0, T];V)$ and $\dot{y}(v)\in C([0,T];H)$ .
Therefore, in order to avoid the complexity of setting up observation spaces, we consider

the following four types of distributive and terminal value observations. That is, the

following cases:

1. We take $C_{1}\in \mathcal{L}(L^{2}(\mathrm{o}, T;V),$ $M)$ and observe $z(v)=c_{1y(v)}$ .

2. We take $C_{2}\in \mathcal{L}(L^{2}(0,T;V2),$ $M)$ and observe $z(v)=C2\dot{y}(v)$ .
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3. We take $C_{3}\in \mathcal{L}(V;M)$ and observe $z(v)=c_{3y}(\tau;v)$ .
4. We take $C_{4}\in \mathcal{L}(H;M)$ and observe $z(v)=c_{4\dot{y}}(\tau;v)$ .

For each case we can introduce an adjoint state system, and formally calculate the con-
dition (3.6) and derive necessary optimality conditions, which solves the problem ii) in a

satisfactory manner. Further the justifications of such conditions under stronger assump-
tions on observers $C_{i}(i=1,2,3)$ can be given. Because of the lack of space we consider

two cases of $C_{1}\in \mathcal{L}(L^{2}(0, \tau;V),$ $M)$ and $C_{2}\in \mathcal{L}(L^{2}(0, \tau;V_{2}),$ $M)$ .

3.1 Case of $C_{1}\in \mathcal{L}(L^{2}(0, \tau;V),$ $M)$

If we choose $z(v)=c_{1y}(v)$ , then the cost function is given by

$J(v)=||c_{1y()}v-Z_{d}||^{2}M+(Rv, v)_{\mathcal{U}}$ , $v\in \mathcal{U}_{ad}$ . (3.7)

Then it is verified easily that the optimality condition (3.6) is written as

$(c_{1y()}u-z_{d}, C1(y(v)-y(u)))_{M}+(Ru, v-u)u\geq 0\forall v\in \mathcal{U}_{ad}$ , (3.8)

where $u$ is the optimal control for (3.7). Using the canonical isomorphism $\Lambda_{M}$ , we can

transform the condition (3.8) to

$\int_{0}^{T}\langle C*\Lambda M(1;t)-z_{d()}t), y(v;t)-y(u;t)\rangle V\prime c_{1y}(u,Vdt+(Ru, v-u)u\geq 0,$ $\forall v\in \mathcal{U}_{ad}$ . (3.9)

We want to write down the condition (3.9) in terms of adjoint state equations. For this,

we introduce the adjoint system by

$\ddot{p}(u)-A_{2}(t)\dot{p}(u)+(A_{1}(t)-\dot{A}_{2}(t))p(u)=c_{1}*\Lambda_{M(c_{1}()z_{d}}yu-)$ in $(0, T),$
$\}$ (3.10)

$p(u;T)=\dot{p}(u;T)=0$ ,

where $p(u)$ denotes an adjoint state depending on the optimal control $u$ .
Now we proceed the formal calculation. Multiply both sides of the equation in (3.10)

by $y(v;t)-y(u;t)$ and integrate them on $[0, T]$ . Then we have

$\int_{0}^{T}(\ddot{p}(u;t), y(v;t)-y(u;t))dt-\int_{0}^{T}(A2(t)\dot{p}(u;t), y(v;t)-y(u;t))dt$

$+ \int_{0}^{T}(A_{1(t})p(u;t),$ $y(v;t)-y(u;t))dt- \int_{0}^{T}(\lrcorner\dot{4}_{2}(t)p(u;\theta), y(v;t)-y(u;t))dt$

$=$ $\int_{0}^{T}(c*\Lambda_{M(}C_{1}y(u;t)-z_{d(}t)),$$y(v;t)-y(u;t))1dt$
$=$ $(c_{1y}(u)-\mathcal{Z}_{d}, c1(y(v)-y(u)))_{M}$ . (3.11)
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Using integration by parts and using the symmetricity of $A_{1}(t)$ and $A_{2}(t)$ and $p(u;^{\tau})=$

$\dot{p}(u;T)=y(v;\mathrm{O})-y(u;\mathrm{o})=\dot{y}(v;0)-\dot{y}(u;0)=0$ , the left hand side of (3.11) is calculated

formally as

$- \int_{0}^{T}(\dot{p}(u;t),\dot{y}(v;t)-\dot{y}(u;t))dt-\int_{0}^{T}(\dot{p}(u;t), A2(t)(y(v;t)-y(u;t)))dt$

$+ \int_{0}^{T}(p(u;t), A_{1}(t)(y(v;t)-y(u;t)))dt$

$- \int_{0}^{T}(\frac{d}{dt}(A_{2}(t)p(u;t))-A2(t)\dot{p}(u;t), y(v;t)-y(u;t))dt$

$=$ $\int_{0}^{T}(p(u;t),\ddot{y}(v;t)-\ddot{y}(u;t))dt+\int_{0}^{T}(p(u;t), A_{1}(t)(y(v;t)-y(u;t)))dt$

$- \int_{0}^{T}(\frac{d}{dt}(A_{2}(t)p(u;t)), y(v;t)-y(u;t))dt$

$=$ $\int_{0}^{T}(p(u;t), (\frac{d^{2}\prime}{dt^{2}}+A_{1}(t))(y(v;t)-y(u;t)))dt$

$+ \int_{0}^{T}(A2(t)p(u;t),\dot{y}(v;t)-\dot{y}(u;t))dt$

$=$ $\int_{0}^{T}(p(u;t), (\frac{d^{2}}{dt^{2}}+A_{2}(t)\frac{d}{dt}+A_{1}(t))(y(v;t)-y(u;t))dt$

$=$ $\int_{0}^{T}(p(u;t), B(v-u)(t))dt$

$=$ $\langle B^{*}p(u), v-u\rangle u’\mu=(\Lambda_{\mathcal{U}}^{-1}B^{*}p(u), v-u)_{\mathcal{U}}$ . (3.12)

Thus, by (3.11) and (3.12), the condition (3.9) is established formally as

$(\Lambda_{\mathcal{U}}^{-1}B^{*}p(u)+Ru, v-u)u\geq 0\forall v\in \mathcal{U}_{ad}$. (3.13)

Here in (3.13) we do not know that $B^{*}$ can apply to $p(u)$ , i.e., $p(u)\in L^{2}(0, T;V_{2})$ or not.

The above calculations suggest us that if $C_{1}$

$C_{1}\in \mathcal{L}(L^{2}(0, \tau;V2),$ $M)$ , (3.14)

then by $C_{1}^{*}\Lambda_{M}(cy(u)-z_{d})\in L^{2}(0, \tau;V_{2’})$ and $\dot{A}_{2}\in L^{\infty}(0,T;\mathcal{L}(V2, V_{2}^{J}))$ (by (2.10)), we

know that the adjoint system (3.10) is well-posed and permits a unique solution $p(u)$ in

$W(\mathrm{O}, T)$ . Thus the above calculations have exact meanings under the assumption (3.14).

Hence we have the following theorem.

Theorem 3.1 Assume that all conditions of Theorem 2.1 hold. Assume further that $C_{1}$

satisfy (3.14). Then the optimal control $u$ for (3.7) subject to (3.2) is characterized by the

following system of equations and inequality:

$\ddot{y}(u)+A_{2}(t)\dot{y}(u)+A_{1}(t)y(u)=Bu+f$ in $(0, T),$
$\}$ (3.15)

$y(u;0)=y0\in V$, $\dot{y}(u;0)=y1\in H$,
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$\ddot{p}(u)-A_{2}(t)\dot{p}(u)+(A_{1}(t)-_{A}\dot{4}_{2}(t))p(u)=C^{*}\Lambda M(1C1y(u)-z_{d})$ in $(0, T),$
$\}$ (3.16)

$p(u;^{\tau})=0,\dot{p}(u;\tau)=0$,

$(\Lambda_{\mathcal{U}}^{-1*}Bp(u)+Ru, v-u)u\geq 0,$ $\forall v\in \mathcal{U}_{ad}$ , (3.17)

with

$\dot{y}(uy(u)),’\dot{p}(u)\in L^{2}(\mathrm{o},\tau,’ V_{2})p(u)\in L2(0,T.V),$

.
$\}$ (3.18)

For a detailed proof of Theorem 3.1, see Ha [3].

3.2 Case of $C_{2}\in \mathcal{L}(L^{2}(0, \tau;V_{2}),$ $M)$

When the observation $z(v)$ is given by $z(v)=c_{2\dot{y}}(v)$ , the cost function is defined as

$J(v)=||c_{2\dot{y}}(v)-Z_{d}||_{M}2+(Rv, v)u$ , $v\in \mathcal{U}_{ad}$ . (3.19)

Let $u$ be the optimal control for (3.19) and assume that $A_{1}$ satisfies

$\dot{A}_{1}\in L^{\infty}(0,$ $T;\mathcal{L}(V_{2}, V^{J})$ . (3.20)

Then we have the following theorem.

Theorem 3.2 Assume that (3.20) and all conditions of Theorem 2.1 hold. Then the

optimal control $u$ for (3.19) subject to (3.2) is characterized by the following system of
equations and inequality:

$\ddot{y}(u)+A_{2}(t)\dot{y}(u)+A_{1}(t)y(u)=Bu+f$ in $(0, T),$
$\}$ (3.21)

$y(u;0)=y_{0}\in V$, $\dot{y}(u;0)=y_{1}\in H$,

$\ddot{p}(u)-A_{2}(t)\dot{p}(u)+A_{1}(t)p(u)+\int_{t}\tau\dot{A}1(\sigma)p(\sigma)d\sigma=c_{2M}*\Lambda(C_{2}\dot{y}(u)-zd)$ in $(0, T),$
$\}$

$p(u;\tau)=0,\dot{p}(u;\tau)=0$ ,
(3.22)

$(-\Lambda_{\mathcal{U}}^{-1}B^{*}\dot{p}(u)+Ru, v-u)u\geq 0,$ $\forall v\in \mathcal{U}_{ad}$ , (3.23)

with

$y(u)\dot{y}(u),’\dot{p}(u)\in Lp(u)\in L2(0,T.’.V)2(0,T,V_{2})’$

.
$\}$ (3.24)
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4 Applications to optimal control problems

In this section we develop the optimal control theory for practical damped second order

partial differential equations. Let us consider the bilinear forms defined by

$a_{1}(t; \phi, \psi)=\sum_{i,j=1}^{n}\int_{\Omega}a_{ij}(t, x)\frac{\partial\phi(x)}{\partial x_{i}}\frac{\partial\psi(_{X)}}{\partial x_{j}}dX+\int_{\Omega}a_{0}(t, X)\phi(x)\psi(x)dX$, $\forall\phi,$ $\psi\in V$ (4.1)

and

$a_{2}(t; \phi, \psi)=\sum_{i,j=1}^{n}\int\Omega)bij(t,$$x \frac{\partial\phi(x)}{\partial x_{i}}\frac{\partial\psi(x)}{\partial x_{j}}dX+\int_{\Omega}b\mathrm{o}(t, X)\phi(X)\psi(X)dX$, $\forall\phi,$ $\psi\in V_{2}$ , (4.2)

where $a_{ij},$ $b_{ij,0}a,$ $b0$ are the functions satisfying

$\{$

(i) $a_{ij}=a_{ji}$ , $b_{ij}=b_{ji}$ ,

(ii) $a_{ij},$ $b_{ij},$ $a0,$ $b0\in C^{1}([0, T];L^{\infty}(\Omega))$ ,

(iii) $\sum_{i,j=1}^{n}aij(t, x)\xi_{i}\xi_{j}\geq\alpha_{1}(\xi_{1}^{2}+\cdots+\xi_{n}^{2})$, $\alpha_{1}>0$ , $\xi_{i}\in \mathrm{R}$ ,

(iv) $\sum_{i,j=1}^{n}bij(t, x)\xi i\xi_{j}\geq\alpha_{2}(\xi_{1}^{2}+\cdots+\xi_{n}^{2})$ , $\alpha_{2}>0$ , $\xi_{i}\in$ R.

(4.3)

Let $f\in L^{2}(0, T;V_{2}J)$ and $B\in \mathcal{L}(\mathcal{U}, L^{2}(\mathrm{o}, \tau;V_{2’}))$. Since the bilinear forms given in (4.1)

and (4.2) satisfy all conditions of Theorem 2.1, we have a unique solution $y\in W(0, T)$ of

$\langle\ddot{y}(v;t), \phi\rangle Vl,V+a_{2}(t;\dot{y}(v;t), \phi)+a1(t;y(\mathrm{a}.v\mathrm{e}.’.t\mathrm{i}\mathrm{n}(), \phi)0,$$\tau=\langle f),\forall v\in \mathcal{U},\forall\phi\in(t)+Bv(t),\phi\rangle V’,V_{2}V2$

, $\}$ (4.4)

$y(v;0)=y_{0}\in V$, $\dot{y}(v;0)=y1\in H$ .
In order to consider distributed observation and control for the Dirichlet problem,

we set $V=V_{2}=H_{0}^{1}(\Omega),$ $H=L^{2}(\Omega)$ . We choose a control variable space $\mathcal{U}=L^{2}(Q)=$

$L^{2}(\mathrm{o}, T;L2(\Omega))$ to treat a distributed control. Then it is clear that $\Lambda_{\mathcal{U}}=I$ . Let $f\in L^{2}(Q)$

and let us take $B=I$, the identity operator. From (4.4) we find a unique solution $y(v)$ of

$y(v)=0$ on $\Sigma$ ,

$\frac{\partial^{2}}{\partial t^{2}}y(v)+A_{2}(t)\frac{\partial}{\partial t}y(v)+A1(t)y(v)=f+v$ in 2,
$\}$ (4.5)

$y(v;0, x)=y_{0}(x)$ , $\frac{\partial}{\partial t}y(v;\mathrm{o}, x)=y_{1}(x)$ on $\Omega$

and also the solution $y$ satisfies

$y(v)$ , $\frac{\partial y(v)}{\partial x_{i}}$ , $\frac{\partial y(v)}{\partial t}$ , $\frac{\partial^{2}y(v)}{\partial t\partial x_{i}}\in L^{2}(Q)$ , (4.6)

where $A_{1}(t)=A_{1}(t, x, \frac{\partial}{\partial x}),$ $A2(t)=A_{2}(t, x, \frac{\partial}{\partial x})$ are operators given as

$A_{1}(t)=A_{1}(t,$ $x,$ $\frac{\partial}{\partial x})=-\sum_{i,j=1}^{n}\frac{\partial}{\partial x_{j}}(a_{ij}(t, X)\frac{\partial}{\partial x_{i}})+a_{0}(t, X)$ ,

$A_{2}(t)=A_{2}(t,$ $x,$ $\frac{\partial}{\partial x})=-\sum_{i,j=1}^{n}\frac{\partial}{\partial x_{j}}(b_{ij}(t, X)\frac{\partial}{\partial x_{i}})+b_{0}(t, x)$ , $(t, x)\in Q$ .
$\}$ (4.7)
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In what follows we assume $R\in \mathcal{L}(L^{2}(Q))$ . Here we study only the case where $C_{1}=I$ :
$L^{2}(0, T;H_{0}^{1}(\Omega))arrow L^{2}(Q)$ is an identity distributive observation. Since $M=L^{2}(Q)$ , we

have $\Lambda_{M}=I$ and the cost functional $J(v)$ is given by

$J(v)= \int_{Q}(y(v;t, x)-z_{d}(t, x))^{2}dXdt+\int_{Q}Rv(t, X)v(t, X)dxdt$, $v\in \mathcal{U}_{ad}\subset L^{2}(Q)$ , (4.8)

where $z_{d}\in L^{2}(Q)$ . Then the optimal control $u$ subject to (4.5) with (4.8) is characterized

by

$\int_{Q}(y(u;t, x)-Z_{d(t},$ $x))(y(v;t, x)-y(u;t, X))dXdt$

$+$ $\int_{Q}Ru(t, x)(v(t, X)-u(t, X))d_{X}dt\geq 0$ , $\forall v\in \mathcal{U}_{ad}$ . (4.9)

For the optimal control $u$ satisfying (4.9) we introduce an adjoint state system in accor-

dance with Theorem 3.1 as follows:

$\frac{\partial^{2}}{\partial t^{2}}p(u)-A_{2}(t)\frac{\partial}{\partial t}p(u)+[A_{1}(t)-_{A}\dot{4}_{2()}t]p(u)=y(u)-z_{d}$ in $Q,-$

$p(u)=0$ on $\Sigma$ ,

$p(u;T, x)=0$, $\frac{\partial}{\partial t}p(u;T, X)=0$ in $\Omega$ ,

(4.10)

where

$\dot{A}_{2}(t)=\frac{\partial}{\partial t}A_{2}(t,$ $x,$ $\frac{\partial}{\partial x})=-\sum_{i,j=1}^{n}\frac{\partial}{\partial x_{j}}(\frac{\partial}{\partial t}b_{ij}(t, X)\frac{\partial}{\partial x_{i}})+\frac{\partial}{\partial t}b_{0}(t, x)$ . (4.11)

Since $V=V_{2}$ , by Theorem 2.1 there exists a unique solution $p(u)$ of (4.10) in the sense of

distribution on 2 and the solution $p(u)$ satisfies

$p(u)$ , $\frac{\partial p(u)}{\partial x_{i}}$ , $\frac{\partial p(u)}{\partial t}$ , $\frac{\partial^{2}p(u)}{\partial t\partial x_{i}}\in L^{2}(Q)$ . (4.12)

Consequently, by Theorem 3.1 we have the following optimality condition

$\int_{Q}(p(u;t, x)+Ru(t, x))(v(t, X)-u(t, X))dxdt\geq 0$ , $\forall v\in \mathcal{U}_{ad}$ . (4.13)

Note that we can derive this optimality condition (4.13) directly by multiplying (4.10) by

$y(v)-y(u)$ and integrating it on $Q$ .

Example 4.1 We consider the case without any constraint, that is, $\mathcal{U}_{ad}=\mathcal{U}=L^{2}(Q)$ .

In this case it follows from (4.13) that

$p(u)+Ru=0$ in $Q$ .
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Thus, the optimal control $u=-R^{-1}p(u)$ is obtained by solving the following system of

partial differential eqautions:

$\frac{\partial^{2}}{\partial t^{2}}y(u)+A_{2}(t)\frac{\partial}{\partial t}y(u)+A_{1}(t)y(u)=f-R^{-1}p(u)$ in $Q$ ,

$y(u)=0,$ $p(u)=0$ on $\Sigma$ ,

$\frac{\partial^{2}}{\partial t^{2}}p(u)-A_{2}(t)\frac{\partial}{\partial t}p(u)+[A_{1}(t)-\dot{A}_{2}(t)]p(u)=y(u)-zd$ in 2,
$\}$ (4.14)

$y(u;0, x)=y_{0}(x)$ , $\frac{\partial}{\partial t}y(u;0, x)=y_{1}(x)$ in $\Omega$ ,

$p(u;^{\tau}, x)=0$ , $\frac{\partial}{\partial t}p(u;T_{X},)=0$ in $\Omega$ .

Example 4.2 We shall consider the unilateral problem in this example. Let us consider

the case where
$\mathcal{U}_{ad}=$ { $v|v\geq 0$ almost everywhere in $Q$}.

Then we can deduce from (4.13) that

$p(u)+Ru\geq 0$ almost everywhere in $Q$ ,
$u\geq 0$ almost everywhere in $Q$ ,

$(p(u)+Ru)u=0$ almost everywhere in Q.
${ }$

(4.15)

Accordingly, the optimal control $u$ is characterized by the solution of the system of uni-

lateral equations:

$\frac{\partial^{2}}{\partial t^{2}}y(u)+A_{2}(t)\frac{\partial}{\partial t}y(u)+A_{1}(t)y(u)-f\geq 0$ in $Q$ ,

$[p(u)+R( \frac{\partial^{2}}{\partial t^{2}}y(u)+A_{2}(t)\frac{\partial}{\partial t}y(u)+A_{1}(t)y(u)-f)]\cross$

$\frac{\partial^{2}}{p(u\partial t^{2}}p(u))+R-A2(t)^{\underline{\partial}}p(u)+[A1(t)-_{A}\dot{4}2(t)]p(u)=y(u)-Z\geq 0d\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{n}QQ,’|$ (4.16)

$[ \frac{\partial^{2}}{\partial t^{2}}y(u)+A_{2}(t)\frac{\partial}{\partial t}y(u)+A_{1}(t)y(u)-f]=0$ in $Q$ ,

$y(u)=p(u)=0$ on $\Sigma$ ,

$y(u;0, x)=y_{0}(x)$ , $\frac{\partial}{\partial t}y(u;^{0}, x)=y_{1}(x)$ in $\Omega$ ,

$p(u;T, x)=0$ , $\frac{\partial}{\partial t}p(u;T, x)=0$ in $\Omega$ .

Let us study (4.15) in details. From the last condition of (4.15) there are three possibilities

such that

(i) $u=0$ and $p(u)+Ru=p(u)>0$ almost everywhere in $Q$ ,
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(ii) $p(u)+Ru=0$ and $u>0$ , almost everywhere in $Q$ ,

(iii) there exists a region $Q_{1}\subset Q$ such that meas $(Q_{1})>0$ and

$u=0$ and $p(u)=0$ in $Q_{1}$ .

If the condition (iii) hold, then we have $y(u)=z_{d}$ in $Q_{1}$ , which implies

$\frac{\partial^{2}}{\partial t^{2}}z_{d}+A_{2}(t)\frac{\partial}{\partial t}zd+A1(t)_{Z_{d}}=f$ in $Q_{1}$ . (4.17)

Hence we assume that

$\frac{\partial^{2}}{\partial t^{2}}z_{d}+A_{2}(t)\frac{\partial}{\partial t}z_{d}+A_{1}(t)Z_{d}\neq f$ almost everywhere in Q. (4.18)

Then the case (i) and (ii) are possible. Thus, the optimal control $u$ satisfies either $u=0$

or $u=-R^{-1}p(u)$ . In particular, when $R=\nu\cross I,$ $\nu>0$ , we have

$u=- \frac{1}{\nu}\inf\{0,p(u)\}$ almost everywhere in Q. (4.19)

At this time, such the optimal control $u$ is determined by the solutions of following equa-

tions:

$\frac{}{\partial t^{2}}p(u\frac{\partial^{2}}{\partial t_{2}^{2},\partial}y(u)+A_{2()\frac{\partial}{\partial t\partial t\partial}y})-A2(tt)\frac p((u)+A_{1}(tu)+[A_{1()\dot{A}_{2}}t)y(-u)+\frac{1}{\nu,)}\inf\{0,p(t]p(u)=y(u(u)\}=f)-zd$

$\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{n}QQ’,$
$]$

$y(u)=0,$ $p(u)=0$ on $\Sigma$ , $\rangle$ (4.20)

$y(u;0, x)=y\mathrm{o}(x)$ , $\frac{\partial}{\partial t}y(u;0, X)=y1(x)$ in $\Omega$ ,
$]$

$p(u;T, x)=0$ , $\frac{\partial}{\partial t}p(u;T, x)=0$ in $\Omega$ .

Finally we note that other types of observation operators can be treated as in Example
4.1 and Example 4.2.

60



References

[1] H. T. Banks, K. Ito and Y. Wang, Well Posedness for damped second order systems

with unbounded input operators, Center for Research in Scientific Computation, North

Carolina State university, 1993.

[2] V. Barbu, Optimal control of variational inequalities, ${\rm Res}$earch Notes in Mathematics,

Pitman Advanced Publishing Program, Vol. 100, 1984.

[3] Junhong Ha, Quadratic optimal control problems for damped second order systems,

$PhD$-thesis, Kobe University, Japan.

[4] Lasiecka and higgiani, Differential and Algebraic Riccati Equations with Application

to $\mathrm{B}\mathrm{o}\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{r}\mathrm{y}/\mathrm{P}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}$ Control Problems: Continuous Theory and Approximation Theory,

Lecture Notes in Control and Information Sciences, Springer-Verlag, Vol. 164, 1991.

[5] J. L. Lions, Equations Differentielles Operationnelles et probl\’emes aux limits,

Springer-Verlag Berlin . Gotteningen. Heidelberg, 1961.

[6] J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations,

Sprin$ge\mathrm{r}$-Verlag Berlin Heidelberg New York, 1971.

[7] J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Appli-

cations I, II, Springer-Verlag Berlin Heidelberg New York, 1972.

[8] J. L. Lions, Contr\^olabilit\’e exacte perturbations et stabilisation de systemes distribu\’es,

Tome 1, RMA, Vol9, 1988.

61


