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7.1 Introduction

Let fi, f2,..., fr be holomorphic functions defined in an open set U of the complex space C".
Let X be the analytic set f;'(0) N ... f7(0). Let z € X, and let g1,92,...,9s be a system of
generators of ideal I(X )z, of the generators of the holomorphic functions which vaunish ideuntically
on a neighborhood of zg in X. zo is called a simple point of X if the matrix (J¢;/0z;) attains
its maximal rank. Otherwise, zo is called a singlar point(singularity) of X. For r = 1, zo is called
a Hypersurface singularity of X. Let V be an analytic set in C". A singular point xg of V is
said to be isolated if, for some open neighborhood W of zp in C", W NV — {20} is a smooth

submanifold of W — {z}.

Example
For a holomorphic function f(zo,...,z) defined in a neighborhood U of the origin in C**?| let

X ={(z0,..-,22} € U|f(20,...,20) = 0. Then if

‘ of
O0zn

{z:(O,...,O)}:{g—iz...: =0}NnX,

X has an isolated singularity at x.



Let (X,z) be a germ of normal isolated singularity of dimension n. Suppose that X is a
Stein space. Let 7w : (M, E) — (X,z) be a resolution of singularity. Then for 1 <z < n —1,
dim(R'm,9m)x is finite. Rim, 9 has support on z. hey are idependent of the resolution.

In fact

dim(R'm,9m)x = dimHF (X, 90) (1<i<n—2)

and

dim(R" 'n,9m)x = dzmzz(()g(__{zji;‘”{)

where L?(X — {z}) is the subspace of I'(X — {z},9K) consisting of n-form on X — {z} which
are square integrable near z.

We denote them by

R(X,z) := dim(R'r,9m)x (1<i<n—2)

and

P,(X,z) := dim(R'm,9nm)x.

The invariant P,(X, z) is called the geometric genus of (X, z).

In the theory of two-dimensional singularities, simple elliptic singularities and cusp singularities
are regarded as the next most reasonable class of singularities after rational singularities. What
are natural generalizations in three-dimensional case of those singularities. They are purely ellip-

tic singularities. We define the purely elliptic singularities.

Definition ([2])
For each positive integer m, the m-genus of a normal isolated singularity (X, z) in an n-dimensional

analytic space is defined to be

dim (X — {z},9(mK)

bm(Xo2) = — X - )

where K is the canonical line bundle on X — {z}, and L¥™(X — {z}) is the set of all holomor-

phic m-ple n-forms on X — {z} which are L*/™-integrable at z.

The m-genus &, is finite and does not depend on the choice of a Stein neighborhood X.
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Definition ([3])

A singularities (X, ) is said to be purely elliptic if 6, (X,z) = 1 for every positive integer m.

When X is a two-dimensional analytic space, purely elliptic singularities are quasi-Gorenstein
singularities. In higher dimensions, however, purely elliptic singularities are not always quasi-

Gorenstein.

Theorem ([4])
Let (X, z) be a quasi-Gorenstein normal isolated singularity of dimension 8, then

—KM - Cz(M)

Q{Pg(Xvw)" 2%

= dim . H'(M,9).

Consequently quasi-Gorenstein purely elliptic singularities of dimension § are classified into 6

classes.

(1) R' (X, z) = 2p, (0,0)-type.
p =1 — Hilbert modular cusp singularities.
p > 1 — Tsuchihashi cusp singularities ([1]).
(2) A'(X,z) = 2, (0,1)-type.
(3) A'(X, z) = 2, (0,2)-type.
(4) R' (X, z) = 0, (0,0)-type.
(5) R'(X,z) = 0, (0,1)-type.
(6) K (X, z) = 0, (0,2)-type.
Simple elliptic singularities and cusp singularities are characterized as two-dimensional purely

elliptic singularities of (0,1)-type and of (0,0)-type, respectively.

Definition ([2})
A three-dimensional singularity (X, z) is a simple K3 singularity if the following two equivalent
(Watanabe-Ishii[5]) conditions are satisfied:
(1) (X,z) is a Gorenstein purely elliptic singularity of (0,2)-type.
(2) The exceptional divisor D is a normal K3 surface for any Q-factorial terminal modification

6:(Y,D) — (X, 2).

The notion of a simple K3 singularity is defined as a three-dimensional isolated Gorenstein

purely elliptic singularity of (0,2)-type.
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Example
Let f(z,y,z,w) be a quasi-homogeneous polynomial of type (p,q,r,s: h) with p+q+r+s=h,
and suppose f(z,y, z,w) = 0 defines an isolated singularity at the origin in C*. Then the origin

is a simple K3 singularity.

Next we consider the case where (X, z) is a hypersurface singularity definred by a nondegenerate

polynomial

f= Zavmv € Clzo, z1,...,Zal],

and z = 0 € C"*!. Recall that the Newton boundary I‘(f) of f is the union of the compact
faces of T'+(f), where I'y(f) is the convex hull of Uu";eo(n + R3*') in R**'. For any face A of
T4(f), set fp := anA a,z’. We say f to be nondegenerate, if

dfa _0fa __ Ofa

Boo " Bzr T Ba

has no solution in (C*)**! for any face A.

When f is nondegenerate, the condition for (X, z) to be a purely elliptic singularity is given as

follows:

Theorem ([3])
Let f be a nondegenerate polynomial and suppose X = f': 0 has an 1solated singularity at
z=0¢€C".
(1) (X,z) is purely elliptic if and only 1f (1,1,...,1) € T'(f).
(2) Letn =3 and let Ao be the face of I'(f) containing (1,1,1, 1) in the relative interior of Ao.
Then (X, z) is a simple K3 singularity if and only if dimrfo = 3.

Thus if f is nondegenerate and defines a simple K3 singularity, then fp, is a quasi-homogeneous
polynomial of a uniquely determined weight a called the weight of f.
Yonemura([6]) classified nondegenerate hypersurface simple K3 singularities into ninety five

classes in terms of the weight of f.



7.2 Parameters in a defining equation

Yonemura calculate the weights of hypersurface simple K3 singularities by nondegenerate
polynomials and obtained examples such that the polynomial f is quasi-homogeneous and that
{f = 0} C C* has a simple K3 singularity at the origin. The minimum number of parameters
in the polynomial is less than or equal to 19 and is associated with the moduli of the K3 surface
with singularities. The need for a unique form may be questioned. However, defining equations
were not unique. So, in this section, we try to impose a condition to construct a unique form for
quasi-homogeneous polynomials énd decide conditions of their parameters.

We can take the following form for a weighted quasi-homogeneous polynomial f in C"*! with

the coordinate [zo,z1,22,...,Za):

vf=f0+f1+f2+~..+fm

where f;(0 < i < m) is a homogeneous polynomial of degree i in C"*'. And let W =
(wo, w1, ..., ws) be the weight. Then we can take the following form for the homogencous poly-

nomial of each degree i:
ko _k k .
E QkokyoknTolTy ... Za” (ki € No,0 <1< n).
ko+ki+4...+kn=1

Let < be the lexical linear ordering of the terms of the homogeneous polynomials for 0 < i < m

in turn from the minimal term to the maximal term given below:

Definition

Let K = (ko,k1,...,kn) (ki € No,0<i < n)and let ax X* denote the term

K _ ko k1 k
apg X" = Qkoky..knTo Ty ---Ty' -

Then ax X% & b X" if there exists an integer s(0 < s < n) such that k; = I; for m =
0,1,...,8s—1and k; < I,.

Example

mg<<xgx1<<m3<<x§<<$g

Hereafter, for the sake of simplicity, we shall sometimes omit the coefficients in indicating terms.
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We will consider the following procedure by using this ordering.

Step 1
We try a term X% to eliminate by a suitable analytic transformation with respect to X. We find
a condition of the coefficient of term X ¢ where we can make the term X% to eliminate without
generating the term X Ki « X¥i We classify the following two cases by the above condition.
Case 1 : We can make the term X¥¢ to eliminate without generating the term X¥i « XK,
Case 2 : Otherwise for case 1.

For the condition of case 1, we make the term X to eliminate without generating the term
X¥i « X*®i. For the condition of case 2, we don’t use the anayltic transformation and go to

next step.

Step 2
We make the coefficient of the term which determine the weight (wp, w1, ..., w, 1) for the quasi-

homogeneous polynomial equal to 1 by the magnification of the coordinate.

Let Wy be the set of defining equations which has a nondegenerate hypersurface simple K3
singularity at the origin and let #m(f) be the minimum number of parameters of defining equation
for any f € Wi. Then for #m(f) = (1 < i < 3), there exists 3 types, 8 types, 7 types,

respectively. In general, the relation of the parameters is a simultaneous equation of them.

7.3 Relation of parameters

For #m(f) = 2, we consider the relation of parameters in a defining equation of nondegenerate
hypersurface simple K3 singularity which is constructed by the procedure in section 2. Then we
obtain the following results:

Result
foa : 23 + Azoz1Z273 + Toxh + 2322 + 2125 + padzd =0 (O3 427 — A%)% # (2(92u — 8))%,

2 3 4 5 2. 2 5
fse s zgz1 + zy23 + zox3 + 23 + Az17223 + przz; =0

160(1250% + 8Mdp + 22527 + 4X>u® + 108u*) # 3125 — 642°.

The number n of f, denotes the number of the defining equation in the classification by Yone-

mura.



We show a file(program) of Mathematica for the above computation. The file name is the same

name as the f, in the above result

File: 84
£84=x0"3+p x0 x1 x2 x3+x0 x273+x173 x2+x1 x3"4+q x2°2 x3°3;
dx0 = D[£84,x0]; dx1 = D[f84,x1]; dx2 = D[£f84,x2]; dx3 = D[£84,x3];
€0=dx0; el=Expand[(9dx0 x0-8dx1 x1-3dx2 x2+2dx3 x3)/27];
e2=Expand[(-8dx1 x1+6dx2 x2+2dx3 x3)/(-18x2)];
e3=Expand[(dx1 x1-3dx2 x2+2dx3 x3)/9];
fO=Expand[e0 x2°2]; fi=Expand[el x2°8]; f2=Expand[e2 x2°9]; f3=Expand[e3 x2°3];
g0=3a"2+c+p b d; gl=a"3 c-b"3; g2=b"3-q ¢"2 d"3-a ¢"2; g3=b d"4-a c;
a=(b d"4)/c; jO=y~3+3x"2 z+p x y~2; jl=y~2-2"2; j2=x"3-x y z-q y"2 z;
y=z; sO=Expand[j0/(z2"3)]; s1=Expand[j2/(2"3)];
ul=3t"2+p t+1; u2=t"3-t-q;
y=-z; t0=Expand[j0/(z"3)]; t2=Expand[j2/(z-3)];
v1i=3t"2+p t-1; v2=t"3+t-q;
Timing[Reduce[{ul, u2}=={0, 0},t]]
{0.1333333333332121*Second, p*(-18 + p~2)*q + 27*q"2 == -16 + p~2 &&
t == (-p + 9%q)/(-12 + p~2)}
Timing[Reduce[{v1, v2}=={0, 0},t]]
{0.1333333333332121*Second, p*(18 + p~2)*q + 27%xq"2 == 16 + p~2 &&
t == (p + 9%q)/(12 + p~2)}
File 1: f84
£86=x0"2 x1+x1°3 x3+x0 x374+x2°6+p x1 x272 x3"2+q x2 x375;
dx0 = D[£86,x0]; dx1 = D[f86,x1]; dx2 = D[£86,x2]; dx3 = D[£86,x3];
g0=dx0; gi=dxl; g2=Expand[(dx3 x3-5dx2 x2+8dx1 x1-4dx0 x0)/25]; g3=dx3;
x0=(-(x3"4)/(2x1)); x3=(x2"5)/(x1"3)];
hi=Expand[(gl 4x1°26)/(x2°5)]; h2=Expand[g3 x1°22];
ul=12a"5+4p a"4 b+b"5; u2=a"5+2p a"4 b+bq a"2 b”"3-2b"5;
vi=12t"5+4p t74+1; v2=t"b+2p t°4+bq t72-2;
Timing[Reduce[{v1, v2}=={0, 0}, t]]
{2.966666666667152*Second,
2000#p~2%q + 128%p~4#q~2 + 3600%p*q~3 + 64*p~3%q~4 +
1728*q"5 == 3125 - 64*p~5 &&

t == (-369140625*p - 585000%p~6 - 2048*p~11 +
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7312500%p~3%q + 960xp~8%q - 379687500%q 2 +
924000%p~5%q~2 - 2048%p~10%q~2 + 4050000%p=2%q~3 +
704*p~T*q~3 + 1512000%p~4%q~4)/

(791015625 + 4212500%p~5 + 4096%p~10)}
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