QM-curves and Q-curves

Y. Hasegawa & K. Hashimoto & F. Momose

The Shimura-Taniyama conjecture has been almost solved [W][W-T] [Di]. This is the first report of our work on modular conjecture. Its a special case of the modular conjecture for the abelian variety of GL(2)-type(due to Serre[Se]). We give a partial answer to its conjecture for avelian variety of GL(2)-type with extra twistings [Sh][Mo1][Ri1]. The abelian variety A over O is a O-simple abelian variety whose ring of endomorphisms over \mathbb{Q} is an order of an algebraic number field of degree equal to dim A. By the congruence relation [Sh][De], we know that any Q-simple factor of the jacobian variety $J_1(N)$ of modular curves $X_1(N)$ is of GL(2)-type. The modular conjecture for abelian variety A over \mathbb{Q} of GL(2)-type states that A is isogenous over \mathbb{Q} to a \mathbb{Q} -simple factor of $J_1(N)$ for the integer N with $N^{\dim A} = \text{conductor of } A/\mathbb{Q}$. The \mathbb{Q} -curve E is an elliptic curves over \mathbb{Q} which is isogenous to its conjugate E^{σ} for any $\sigma \in \operatorname{Gal}(\mathbb{Q}/\mathbb{Q})$ [Gr]. The Q-HBV is an abelian variety A over $\bar{\mathbb{Q}}$ whose ring of full endomorphism is an order of totally real algebraic number fields of degree $= \dim A$ and its F-isogeny to its conjugate A^{σ} for any $\sigma \in \operatorname{Gal}(\mathbb{Q}/\mathbb{Q})$ [Ri2]. The \mathbb{Q} -curves are special cases of Q-HBV, we know that any Q-HBV is a simple factor of an abelian variet of GL(2)-type [Py]. Now, let A be an abelian variety over \mathbb{Q} of GL(2)-type and E the field of fractions of the ring of endomorphisms over \mathbb{Q} . Then E is totally real or CM-field [Mu]. Let F be the center of the \mathbb{Q} -algebra of the ring $M = (\operatorname{End}_{\bar{\mathbb{Q}}}A) \otimes \mathbb{Q}$ of full ring of endomorphisms of A. Then F is totally real algebraic number field or an imaginary quadratic field. In the first case, M is isomorphic to a matrix algebra $M_r(F)$ or $M_r(D)$ for totally indefinite quaternion algebra over F. In the latter case, M is isomorphic to $M_r(F)$ and A is isogenous over \mathbb{Q} to r-tupple of an elliptic curve with complex multiplication by F. We call the latter case CM-type. If A is CM-type, then A is modular [Sh]. So, we discuss non CM case. We may assume that the maximal order \mathcal{O}_E of E acts on A over \mathbb{Q} [Sh]. Let \wp be a prime of \mathcal{O}_E , lying over a rational prime $p, V_{\wp}(A) = V_{\wp}(A) \otimes E_{\wp}$, and $\rho = \rho_p$ the Galois representation of $G = G_Q = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on $V_p(A)$. Then $\det \rho_p = \varepsilon \cdot \theta_p$ for the cyclotomic character θ_p and a character ε of finite order. By a famous result of Faltings(Tate-Shavarevich conjecture), A is modular if and only if $\rho_{\mathcal{P}}$ associates to a cusp form of $\Gamma_1(N)$ of weight 2. The field E is generated by $a_l = \text{Tr}\rho_{\mathcal{P}}(\sigma_l)$ for primes $l \nmid p$ -conductor of A/\mathbb{Q} and Frobenius element σ_l of l, and F is generated by $a_l^2 \varepsilon^{-1}(l)$ for primes $l \nmid p$ -cond. of A/\mathbb{Q} [Mo1][Ri1]. For a Dirichlet character χ , let A_{χ} be an abelian variety over \mathbb{Q} obtained by the χ -twisting [Sh]. Then A_{χ} is determined up to isogeny over \mathbb{Q} . We note that A is modular if and only if A_{χ} is modular [Sh].

Now, let $\delta = \delta(E/F(\zeta_{r^2}))$ be the different of E over $F(\zeta_r)$ for r = order of ε and a primitive r-th character ζ_r . Our first result is as follows. We may assume that \mathcal{O}_E of integers of E acts on A over \mathbb{Q} . For a prime \wp of \mathcal{O}_E , let $\rho = \rho_{\wp}$ be the \wp -adic representation on the \wp -divisible points on A, and $\bar{\rho}$ its reduction mod \wp .

<u>Th 1</u> Assume that there exists a prime \wp of \mathcal{O}_E which divides δ , $\wp|p \neq 2$, and A has semistable reduction at p. Then,

- (1) There exists a quadratic field k such that $\bar{\rho}$ is isomorphic to the induced representation $\operatorname{Ind}_{k}^{\mathbb{Q}}\chi$ for a character χ of $G_{k}=\operatorname{Gal}(\bar{k}/k)$.
- (2) If $p \ge 5$ or p = 3 and k is imaginary or A has super singular reduction at p, then A is modular.

For its proof, see [Mo2]. It has many corollaries. Let E be a non-CM \mathbb{Q} -curve defined over an extension L of \mathbb{Q} of $(2, \dots, 2)$ -type, and $A = \operatorname{Re}_{L/\mathbb{Q}}(E/L)$ is \mathbb{Q} -simple. Define the degree $N = N_E$ of E by the l.c.m of the square free degrees of isogenies $\varphi: E \to E^{\sigma}$ for $\sigma \in \operatorname{Gal}(L/\mathbb{Q})$. The following is a partial result for the Ribet's conjecture for \mathbb{Q} -curves [Ri3]. This can be extend to \mathbb{Q} -HBV.

<u>Th 2</u> If a prime $p \ge 5$ divides N and A has semistable reduction at p, then A is modular.

The Q-curves of degree N corresponds to Q-rational points of the modular curves $X_0^*(N) = X_0(N)/ < \{W_l\} >_{l(N)}$ for Atkin involutions W_l [El]. We get many examples, if $X_0^*(N) = \mathbb{P}^1$. cf [Py].

For other examples, we explain the QM-curves. The QM-curve is a curve C over \mathbb{Q} of genus 2 such that the ring of full endomorphisms of its jacobian variety J(C) is an order of indefinite quaternion algebra D and $\operatorname{End}_{\mathbb{Q}}J(C)\neq\mathbb{Z}$. Hashimoto-Murabayashi calculated many examples [H-M].

Th 3 If a prime $p \neq 2$ ramifies in D, and C has good reduction at p, then J(C) is modular.

The above results can be extend to more general cases. Using Pyle's [Py] results, we have many examples of modular QM-curves over number fields [H-M]. Further, the condition on reduction at p can be improved in some cases. Especially, if the abelian variety A of GL(2)-type has potentially ordinary reduction at p, the we have a criterion for modular conjecture.

References

[De] Deligne, P., Formes modulaires et représentation l- adiques, sém. Bourbaki, 1968/1969, exposé n° 355, Lecture note in Math., 179, Springer-Verlag, pp. 139-172.

[Di] Diamond, F., On deformation rings and Hecke rings, preprint.

[El] Elkies, N., Remarks on elliptic K-curves, preprint.

[Gr] Gross, B.H., Arithmetic on Elliptic Curves with Complex Multiplication, Lecture note in Math., 776, Springer-Verlag.

[H-M] Hashimoto, K., Murabayashi, N., Shimura curves as intersections of Humbert surface and defining equations of QM-curves of genus two, Tohoku Math. J., 47(1995), pp.271-296.

[Mo1] Momose, F., On the *l*-adic representation s attached to modular forms, J. Facult. of Sci. Univ. of Tokyo, **28**(1981) No.1, pp.89-109.

[Mo2] Momose, F., Galois action on some ideal section points of the abelian variety associated with a modular form and its application, Nagoya Math. J., 91(1983), pp.19-36.

[Mu] Mumford, D., Abelian varieties, Oxford Univ. Press, 1970.

[Py] Pyle, E.E., Abelian varieties over \mathbb{Q} with large endomorphism algebras and their simple components over \mathbb{Q} , Thesis, Univ. of California at Barkley. [Ri1] Ribet, K.A., Twists of modular forms and endomorphisms of abelian varieties, Math. Ann., 1980, pp.239-244.

[Ri2] Ribet, K.A., Fielsds of definition of abelian varieties with real multiplication, Conference on Arithmetic Geometly with an Emphasis on Iwasawa Theory, 1993, pp.107-118, Contemp. Math., 174, AMS, 1994.

[Ri3] Ribet, K.A., Abelian varieties over Q and modular forms, Proceeding of KAIST Math. Workshop, pp.53-79.

[Se] Serre, J.P., Sur les représentations modulaires de degré 2 de $Gal(\mathbb{Q}/\mathbb{Q})$, Duke Math. J., 54(1987), pp.179-230.

[Sh] Shimura, G., Introduction to the arithmetic theory of automorphic functions, Publ. Math. Soc. Japan, no. 11, Princeton Univ. Press, 1971. [T-W] Taylor, R., Wiles, A., Ring theoretic properties of certain Hecke algebras, Ann. of Math., 141(1995), pp.553-572.

[W] Wiles, A., Modular elliptic curves and Fermat's last theorem, Ann. of Math., 141(1995), pp.443-551.