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Abstract

An algorithm $D$ is a decision algorithm if $D$ decide whether a problem has an explanation
or not ( $D$ outputs “yes” or “no”). An algorithm $S$ is a search algorithm if $S$ find an
explanation for a problem (when the problem has an explanation). An explanation is called
a natural evidence.

We consider the following three graph problems: $k$-COLORABILITY, k-BANDWIDTH,
and $k$-TREE. In this paper, we discuss the efficiency of finding a natural evidence for the
graph problems when its search algorithm can employ its decision algorithm as oracle. We
will show that for each the three problem if the decision problem is solvable in time $D(n)$

then the corresponding search problem is solvable in $O(n^{2}\mathrm{x}D(n))$ time.

1 Introduction

In this paper, we discuss the efficiency of finding a natural evidence for the graph problems when
its search algorithm can employ its decision algorithm as oracle. Such subject is investigated
as gap between decision and search [1, 2, 3, 4, 5, 6]. Problems in $NP$ have a natural evidence.
For example, for $k$-COLORABILITY its natural evidence is a function $f$ : $V(X)arrow\{1, \cdots, k\}$

such that $f(u)\neq f(v)$ whenever $\{u, v\}\in E$ . For $k$-COLORABILITY its decision problem is
deciding whether input graph $G$ satisfies $k$-COLORABILITY or not. In the decision problem, it
is only shown to exist a its natural evidence. Its search problem is finding its a natural $\mathrm{e}\dot{\mathrm{v}}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}$.
We will call an algorithm which solves a decision problem by decision algorithm. Similarly, the
term search algorithm can be defined. The gap is considered as efficiency of a search algorithm
with help of its decision algorithm as oracle. In other words if there exists a search algorithm
which employs a corresponding decision algorithm as an oracle, and which computes a natural
evidence in $O(f(n))$ time, then we say that the gap is at most $O(f(n))$ .

In this paper, we will show that for some graph problems, critical graphs are useful to obtain a
natural evidence. Critical graphs for some properties have information about a natural evidence.
Furthermore those natural evidences are easy to get from the information of critical graphs.
Hence if we obtain a critical graph for a property II then we can efficiently find a natural
evidence concerned with II using the information. We will demonstrate only two problems k-
COLORABILITY and $\mathrm{k}$-BANDWIDTH, but the technique discussed in this paper is effective
for $k$-TREE. For search problem of $k$-TREE, it is known there exists a linear time

$.\mathrm{a}1.\mathrm{g}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{m}$

when $k$ is fixed, hence for $k$-TREE there is no gap between decision and search.

2 Preliminaries

We consider finite undirected and connected graphs without loops and without multiple edges.
Let $G=(V, E)$ and $G’=(V,E’)$ be graphs. $G’$ is a supergraph of $G$ if $E\subseteq E’$ .
Deflnition 2.1 Let $G=(V, E)$ be a graph.
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(1) $G$ satisfies $k$-COLORABILITY if there is a function $f$ : $Varrow\{1, \cdots, k\}$ such that $f(u)\neq$

$f(v)$ whenever $\{u, v\}\in E$ ,

(2) $G$ satisfies $k$-BANDWIDTH if there is a bijection $f$ : $Varrow\{1, \cdots, |V|\}$ such that for all
$\{u,v\}\in E,$ $|f(u)-f(v)|\leq k$ , and

(3) $G$ satisfies $k$-TREE if there is a pair $D=(S, T)$ with $S=\{X_{1}|i\in I\}$ a collection of subsets
of $V$ and $T=(I, F)$ a tree, with one node for each subset of $S$ , such that the following
three conditions are satisfied:

(1) $. \bigcup_{1\in I}X_{\dot{|}}=V$
, for each $1\leq i\leq|I||x_{i}|-1\leq k$ ,

(2) for all edges $\{u,w\}\in E$ , there is a subset $X_{i}\in S$ such that both $v$ and $w$ are contained
in $X_{i}$ ,

(3) for each vertex $x$ the set of nodes $\{i|x\in X_{i}\}$ forms a subtree of T.

Let $\mathbb{I}_{c}(k)$ be the property $k$-COLORABILITY, II$b(k)$ be $k$-BANDWIDTH, and $\Pi_{t}(k)$ be k-
TREE. Each critical graph for $\mathbb{I}_{c}(k)$ is a complete $k$-partite graph. The critical graph with $n$

nodes for II $b(k)$ is the $k\mathrm{t}\mathrm{h}$ power of a path on $n$ nodes, denoted by $P_{n}^{k}$ (see [8, 7]). In the lemma
2.1, it is shown that every critical graph with $n$ nodes for II$b(k)$ is isomorphic to $P_{n}^{k}$ , that is, the
critical graph is uniquely decidable if its isomorphisms are identified. For any positive integer
$k$ and $n,$ $P_{n}^{k}$ is a diameter critical graph and a interval graph. Each critical graph for $\Pi_{t}(k)$ is a
k-tree.

Lemma 2.1 Let $G=(V,E)$ be a critical graph for $\Pi_{b}(k)$ and $|V|=n$ . Then $G$ is $i_{\mathit{8}omo}rphiC$

to $P_{n}^{k}$ .
Proof. Since $G$ satisfies $\Pi_{b}(k)$ , there is a bijection $f$ : $Varrow\{1,2, \cdots,n\}$ such that for all $\{u, v\}$ ,
$|f(u)-f(v)|\leq k$ . For convenience, $v_{i}$ expresses the node $u\in V$ such that $f(u)=i$. Since $G$ is
a critical graph for II $b(k),$ $\{v:, v_{j}\}$ is in $E$ for $\mathrm{a}\mathrm{U}i$ and $j$ such that $|i-j|\leq k$ . This means that
$G$ is isomorphic to $P_{n}^{k}$ . $q$

$\square$

Definition 2.2 Let II be a graph property. A graph $X=(V, E)$ is a critical graph for II if

(1) $X$ satisfies $\Pi$ , and

(2) $X’$ dose not satisfies II for any supergraph $X’$ of $X$ .
Definition 2.3 A graph property II is hereditary if it cannot be destroyed by removing edges
from the graph; i.e., whenever a graph $G=(V, E)$ satisfies the property II then also a graph
$G’=(V, E’)$ satisfies $\Pi$ , where $E’\subseteq E$ .

3 Results

Our search algorithm has two phases:

(1) Constructing a critical graph from the input graph,

(2) Obtaining a natural evidence from the constructed critical graph.

In oder to construct a critical graph, search algorithm adds edges according to answer of decision
algorithm. The order of adding edges does not dominat whether the output is a critical graph
or not if its property is hereditary.

Let $\overline{E}$ be the set of pairs $e=\{u, v\}$ such that $e\not\in E$ . For phase (1), the pairs in $\overline{E}$ are
numbered in any order. Let $(e_{1}, e_{2}, \cdots,e_{m})$ be the set $\overline{E}$ which is numbered by an arbitrary
order. Then, for phase (1), our search algorithm is as follows:
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Procedure PHASEI

input a graph $G=(V,E)$
output a critical graph $G’=(V,E’)$ for a property $\Pi$

$E’:=E$ ;
for $i:=1$ to $m$ do

( Check whether $G’$ satisfies II or not by the decision $\mathrm{a}\mathrm{l}\mathrm{g}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{m}$ )$*$

if (V, $E’\cup\{e_{i}\}$ ) satisfies the property then $E:=E’\cup\{e_{i}\}$ ;

The following lemma guarantees correctness of PHASEI.

Lemma 3.1 Let $G=(V,E)$ be $a$ input graph such that $|V|=n$ . If a graph property II $i_{\mathit{8}}$

hereditary, then PHASEI outputs a critical graph for II.

Proof. Let $E’$ be the set of pairs $e=\{u, v\}$ such that $e\not\in E$ , and $(e_{1}, e_{2}, \cdots,e_{m})$ be the set $\overline{E}$

which is numbered by an arbitrary order. Suppose, to the contrary, that the output graph $G’=$

(V, $E\cup Add$) is not a critical graph for $\Pi$ , where $Add=\{e_{i_{1}}, e_{i_{2}}, \cdots,e_{i_{\mathrm{p}}}\}$ is the set of the added
edges in the prosess of PHASEI and $i_{s}<i_{t}$ iff $s<t$ . Then, there is a nonempty subset of $E’$ -

Add $Fill=\{e_{i_{j_{1}}}, e_{i}, \cdots,ej_{2}i_{j}q\}$ such that (V, $E\cup Add$ $\cup$ Fill) is a critical graph for $\Pi$ . Note that
$(Add\cap Fill)=\emptyset$ and $(Add\cup Fill)\subseteq\overline{E}$. Let us pay attention to the $i_{j_{1}}$ -th loop of the for loop in
PHASEI. In the just before the $i_{j_{1}}$ -th loop, $G$ represents the graph (V, $E\cup\{e_{1},$ $e_{2},$ $\cdots$ , $e_{i_{j_{1}}-1}\}$ ).
In the $i_{j_{1}}$ -th loop, it is checked that whether (V, $E\cup\{e_{1},$ $e_{2},$ $\cdots,e|j_{1^{-}}1\}\cup\{e_{i_{j_{1}}}\}$ ) satisfies $\Pi$ or
not. Since the answer of the check is “no”, (V, $E\cup\{e_{1},e_{2},$ $\cdots,e_{11^{-1}}\}j\cup\{e_{i_{j_{1}}}\}$) dose not satisfies
$\Pi$ . On the other hand, (V, $E\cup\{e_{1},$ $e_{2},$ $\cdots,e_{i_{\mathrm{j}}-}\}\cup\{e_{i_{\mathrm{j}_{1}}}\}$ ) is a subgraph of the critical graph
(V, $E\cup Add\cup Fill$ ) such that $(E\cup\{e_{1}, e_{2}, \cdots,e_{i_{j}1}-1\})\subseteq$ ($E\cup Add$ $\cup$ Fill). This contradicts that
II is hereditary. $\square$

$\Pi_{c}(k),$ $\Pi_{b}(k)$ and $\Pi_{u}(k)$ are hereditary. Next we will show that natural evidences of $G$ for $\mathbb{I}_{c}(k)$ ,
$\Pi_{b}(k)$ and $\Pi_{u}(k)$ are computable from each critical graphs in $O(n^{2})$ time in lemma 3.2, 3.3, and
3.4 respectively.

Lemma 3.2 Let $G=(V,E)$ be $a$ input graph such that $|V|=n$ , and $G’=(V, E’)$ be a critical
graph for $\Pi_{c}\mathit{8}uch$ that $E\subseteq E’.$ A natural evidence of $G$ for $\Pi_{c}$ is computable from the critical
$graph\mathit{8}G’$ in $O(n^{2})$ time.

Proof. To show this lemma, it is sufficient to construct a function $f$ : $Varrow\{1, \cdots, k\}$ such that
$f(u)\neq f(v)$ whenever $\{u, v\}\in E$ in $O(n^{2})$ time. Let $M’$ be the adjacent matrix of $G’$ . Since
every critical graph for $\Pi_{c}(k)$ is a complete $k$-partite graph, the complement $\mathrm{g}\mathrm{r}\mathrm{a}_{\mathrm{P}}\mathrm{h}\overline{G^{J}}$ of $G’$ has
$k$ components. And each component in $\overline{G’}$ is a complete graph. In the procedure COLORING,
coloring function $f$ is constructed as follows : nodes $u$ and $v$ are in $C$ iff $f(u)=f(v)$ , where
$C$ is a component of $\overline{G’},$ $u$ and $v$ are nodes in $V$ . It is clear that the function $f$ created by
COLORING is a natural evidence for $\Pi_{c}(k)$ with input $G$ , and the running time $\dot{\mathrm{o}}\mathrm{f}$ COLORING
is $O(n^{2})$ time.

Procedure COLORING

input $M’$

output a natural evidence $f$

$R:=\{1,2, \cdots,n\}$ ;
$i:=1$ ;
$j:=1$ ;
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for $i:=1$ to $\mathrm{n}$ do
if $i\in R$ then

begin
Define $f(h)=j$ for all $h$ such that $M’(i, h)=0$ ;
( Note that $M’(i,$ $i)=0$ for $1\leq i\leq n^{*}$ )
Remove $h$ from $R$ for all $h$ such that $M’(i, h)=0$ ;
$j:=j+1$;

end.

$\square$

Lemma 3.3 Let $G=(V,E)$ be $a$ input graph such that $|V|=n$ , and $G’=(V, E’)$ be a critical
graph for $\Pi_{b}$ such that $E\subseteq E’.$ A natural evidence of $G$ for II $b$ is computable from the critical
graphs $G’$ in $O(n^{2})$ time.

Proof. To show this lemma, it is sufficient to construct a bijection $f$ : $Varrow\{1, \cdots, n\}$ such
that for all $\{u, v\}\in E,$ $|f(u)-f(v)|\leq k$ . Let $M’$ be the adjacent matrix of $G’$ . We will show
that $f$ can be obtained from $M’$ in $O(n^{2})$ time.

From lemma 2.1, $G’$ is isomorphic to $P_{n}^{k}$ . The correctness of procedure BIJECTION is based
on the following claims.

claim 1 Let $n$ be a integer such that $k\leq n$ . Then $P_{n}^{k}$ has exactly two nodes with $k$ degree.

claim 2 Let $n$ be a integer such that $k\leq n-1$ , and $H$ be a graph such that $H$ can be cotained by
dektion of a node with $k$ degree (and its incident edges) from $P_{n}^{k}$ . Then $H$ is isomorphic
to $P_{n-1}^{k}$ .

In the procedure BIJECTION, HEAD and TAIL represent the two nodes with $k$-degree. In
BIJECTION, $P_{n}^{k}$ is reduced in $P_{n-1}^{k}$ and $P_{n-2}^{k}$ is reduced in $P_{n-3}^{k}$ and so on. Once TAIL is
fixed, TAIL is never changed in BIJECTION. On the other hand HEAD is changed whenever
critical graph is reduced. We can get $f$ by finding HEAD in the reduced graph for each level.
Therefor we can get a natural evidence $f$ with the following procedure BIJECTION in $O(n^{2})$

time.

Procedure BIJECTION

Procedure MAKE-DEGREE-TABLE

output table of degrees

DEG $:=0$ ;
for $i:=1$ to $n$ do

DEG $:=0$ ;
for $j:=1$ to $n$ do

if $M’(i,j)=1$ then DEG $:=\mathrm{D}\mathrm{E}\mathrm{G}+1$ ;
DEGREE-TABLE$(i):=\mathrm{D}\mathrm{E}\mathrm{G}$ ;

end;
end.

Procedure DELETE-NODE$(i)$

input $i$ : node
function Modification of $M’$ and DEGREE-TABLE

for $j:=1$ to $n$ do

76



begin
if $M’(i,j)=1$ then

begin
Rewrite $M’(i,j)=1$ to $M’(i,j)=0$;
Rewrite $M’(j, i)=1$ to $M’(j, i)=0$;
DEGREE-TABLE$(j):=\mathrm{D}\mathrm{E}\mathrm{G}\mathrm{R}\mathrm{E}\mathrm{E}_{- \mathrm{T}\mathrm{A}\mathrm{B}}\mathrm{L}\mathrm{E}(i)-1$;

end
end;

end.

main
HEAD $:=\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{f}$ ;
TAIL: $=\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{f}$;
MAKE-DEGREE-TABLE;
for $i:=1$ to $n$ do

if DEGREE-TABLE$(i)=k$ then
if HEAD $=\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{f}$ then HEAD $:=i$ else TAIL: $=i$ ;

Define $f(\mathrm{H}\mathrm{E}\mathrm{A}\mathrm{D})=1$ and $f(\mathrm{T}\mathrm{A}\mathrm{I}\mathrm{L})=n$ ;
DELETE-NODE(HEAD);

for $h:=2$ to $n-k$ do
begin

$i:=1$ ;
while (DEGREE-TABLE$(i)\neq k$) or $(i=\mathrm{T}\mathrm{A}\mathrm{I}\mathrm{L})$ do $i:=i+1$ ;
HEAD $:=i$ ;
Define $f(\mathrm{H}\mathrm{E}\mathrm{A}\mathrm{D})=h$ ;
DELETE-NODE(HEAD);

end;

for $h:=k-1$ downto 1 do
begin

$i:=1$ ;
while (DEGREE-TABLE$(i)\neq h$ ) or $(i=\mathrm{T}\mathrm{A}\mathrm{I}\mathrm{L})$ do $i:=i+1$ ;
HEAD $:=i$ ;
Define $f(\mathrm{H}\mathrm{E}\mathrm{A}\mathrm{D})=n-h$ ;
DELETE-NODE(HEAD);

end
end.

$0$

Lemma 3.4 Let $G=(V,E)$ be $a$ input graph $\mathit{8}uch$ that $|V|=n$ , and $G’=(V, E’)$ be a critical
graph for $\Pi_{u}$ such that $E\subseteq E’.$ A natural evidence of $G$ for $\Pi_{u}i\mathit{8}$ computable from the critical
$graph\mathit{8}G’$ in $O(n^{2})$ time.

ロ
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