
Fast RNC and NC Algorithms for Maximal Path Sets and
Applications to Superstrings with Flipping

東京女子大学上原隆平 (Ryuhei Uehara)
東京電機大学陳致中 (Zhi-Zhong Chen)

State University of New York at Buffalo, Xin He

1 Introduction

The maximal path set (MPS) problem is to find,
given an undirected graph $G=(V, E)$, a maximal
subset F of E such that the subgraph induced by
F is a forest in which each connected component is
a path. In [3], Chen introduced this problem and
showed that parallel algorithms for it can be used to
design parallel approximation algorithms for the fa-
mous shortest superstring problem (SSP). It is worth
mentioning that SSP has been extensively studied
due to its important applications in DNA sequenc-
ing and data compression [1, 4, 10, 11].

In [3], Chen presented an NC algorithm and an
RNC algorithm for the MPS problem. The former
runs in $O(\log^{3}n)$ time with $O(n+m)$ processors on
a CRCW PRAM and the latter runs in $O(\log^{2}n)$ ex-
pected time with $O(n+m)$ processors on a CRCW
PRAM. In this paper, we present two faster par-
allel algorithms for the problem. Our first algo-
rithm runs in $O(\log n)$ expected time with $O(n+m)$
processors on a CRCW PRAM. This algorithm is
faster and more efficient than Chen’s RNC algo-
rithm. Our second algorithm runs in $O(\log^{2}n)$ time
with $O(\triangle^{2}(n+m)/\log n)$ processors on an EREW
PRAM, where \triangle is the maximum degree of the in-
put graph. Compared with Chen’s NC algorithm,
this algorithm is $\mathrm{f}\mathrm{a}s\mathrm{t}\mathrm{e}\mathrm{r}$, runs on a weaker computa-
tion model, and is more efficient for input graphs of
bounded degree.

Our RNC algorithm for the MPS problem has a
similar structure to that of Israeli and Itai’s RNC al-
gorithm (I&I algorithm, for short) for the maximal
matching problem [6]. Namely, given a graph $G’$,
both the I&I algorithm and our algorithm proceeds
in stages; in each stage, their main jobs are to com-
pute a random matching M in a certain subgraph of
G and to delete (from G) some edges incident to the
vertices matched by M . In the I&I algorithm, the
expected number of edges deleted in each stage is a
constant fraction of the number of edges in $G[6]$.
However, our algorithm does not have this property.
Instead, we define a potential function ϕ and prove
that in each stage, $\phi(G)$ decreases by a constant frac-
tion on average. This is the key for us to obtain the
desired time bound. Our NC algorithm for the MPS
problem is obtained by carefully derandomizing the
RNC algorithm. An immediate consequence of the
results is that the parallel approximation algorithms
for SSP given in [3] can be made faster.

In [7], Jiang et al. introduced an interesting varia-

tion of SSP. Let $S=\{s_{1}, \cdots , s_{n}\}$ be a set of n strings
over an alphabet Σ . A superstring-wiih-flipping of S

is a string s over Σ such that for each i , at least one of
s_{i} and its reverse is a substring of s . The amount of
compression achieved by a superstring-with-flipping
s of S is $|S|-|s|$, where $|s|$ is the length of s and
$|S|$ is the total length of the strings in S . Define

$\mathrm{S}\mathrm{S}\mathrm{P}_{F}$ to be the following problem: Given a set S of
strings, find a shortest superstring-with-flipping of
S . Like SSP, $\mathrm{S}\mathrm{S}\mathrm{P}_{F}$ is $\mathrm{N}\mathrm{P}$-hard [7] and it is of inter-
est to design approximation algorithms for $\mathrm{S}\mathrm{S}\mathrm{P}_{F}$.
In [7], Jiang et al. presented a polynomial-time
approximation algorithm for $\mathrm{S}\mathrm{S}\mathrm{P}_{F}$ that produces a
superstring-with-flipping whose length is at most 3
optimal. They also pointed out that there is a greedy
algorithm for $\mathrm{S}\mathrm{S}\mathrm{P}_{F}$ that produces a superstring-
with-flipping by which the amount of compression
achieved is at least $\frac{1}{2}$ optimal [7]. At present, no bet-
ter sequential approximation algorithms for $\mathrm{S}\mathrm{S}\mathrm{P}_{F}$

are known. Also, no parallel approximation algo-
rithm for $\mathrm{S}\mathrm{S}\mathrm{P}_{F}$ has been given previously. Here, us-
ing the ideas in our parallel algorithms for the MPS
problem, we give an NC approximation algorithm
for $\mathrm{S}\mathrm{S}\mathrm{P}_{F}$ that produces a $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{e}\Gamma \mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{n}\mathrm{g}- \mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}-\mathrm{f}\mathrm{l}\mathrm{i}\mathrm{P}\mathrm{P}\mathrm{i}\mathrm{n}\mathrm{g}$

by which the amount of compression achieved is at
least $\frac{1}{3+\epsilon}$ optimal for any $\epsilon>0$.

Recall that the EREW PRAM is the parallel
model where the processors operate synchronously
and share a common memory, but no two of them
are allowed simultaneous access to a memory cell
(whether the access is for reading or for writing
in that cell). The CRCW PRAM differs from the
EREW PRAM in that both simultaneous reading
and simultaneous writing to the same cell are al-
lowed; in case of simultaneous writing, the processor
with lowest index succeeds.

For lack of space, we will omit the proofs of most
facts, lemmas, theorems, and corollaries from this
extended abstract.

2 The RNC algorithm
In this section, we present an RNC algorithm for
the MPS problem for undirected graphs. At the end
of this section, we will also mention how to modify
it for digraphs.

We start by giving several basic definitions. Let G

be an undirected graph. The vertex set and edge set
of G are denoted by $V(G)$ and $E(G)$, respectively.
The neighborhood of a vertex v in G , denoted $N_{G}(v)$,
is the set of vertices in G adjacent to $v;d_{G}(v)=$

数理解析研究所講究録
950巻 1996年 113-119 113

$|Nc(v)|$ is the degree of v in G . Vertices of degree
0 are called isolated vertices. For $F\subseteq E(G)$, let
$G[F]$ denote the graph $(V(G), F)$. A subset M of
E is a matching in G if no two edges in M have
a common endpoint. A matching is maximal if it
is not properly included in any other matching. We
use $V(M)$ to denote the set of all vertices v such that
v is an endpoint of some edge in a matching M . By
a path, we always mean a simple path. Note that a
single vertex is considered as a path (of length 0).
A set F of edges in G is called a path set if $G[F]$ is a
forest in which each connected component is a path.
Intuitively speaking, if F is a path set, then $G[F]$

is a collection of vertex-disjoint paths. A maximal
path set (MPS) in G is a path set that is not properly
contained in another path set. The MPS problem is
to find, given G , an MPS in G .

Throughout this paper, unless stated otherwise,
G always denotes the input (undirected) graph, Δ

denotes the maximum degree of G , and n and m de-
note the numbers of vertices and edges in G , respec-
tively. As the input representation of G , we assume
that $V(G)=\{0,1, \cdots, n-1\}$ and that each vertex
has alist of the edges incident to it. Thus, each edge
$\{.i,j\}$ has two copies-one in the edge list f.or vertex

ι and the other in the edge list for vertex γ .

2.1 Description of the algorithm
The top-level structure of our RNC algorithm is de-
scribed by the following pseudo-code:

1: $F:=\emptyset;G’:=c$;
2: for each vertex $i\in G’$ do $R[i]:=i$;
3: while $G’$ has at least one edge do begin
4: remove all isolated vertices from $G’$;
5: $M:=FIND\ovalbox{\tt\small REJECT} A\tau CH(G’, R)$;
6: $F:=F\cup M$;
7: $UPDA\tau E(c’, R, M)$

8: end;

The algorithm maintains an array R for which the
following is an invariant: For each vertex i in $G’$,
$R[i]=i\mathrm{i}\mathrm{f}d1,\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}j\mathrm{i}G\mathrm{S}[F\mathrm{t}\iota_{\mathrm{e}\mathrm{o}\mathrm{t}\mathrm{h}\mathrm{v}}(i)=0,$$\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{r}\mathrm{e}R\mathrm{X}\mathrm{O}[i]=\mathrm{f}\mathrm{d}\mathrm{e}\mathrm{g}\mathrm{r}\mathrm{e}\mathrm{e}1\mathrm{i}\mathrm{n}j\mathrm{i}\mathrm{f}dc[F](i)\mathrm{t}\mathrm{h}\mathrm{e}=$

connected component of $G[F]$ containing i . Note
that we have the invariant before the first execution
of the while-loop of the algorithm.

Let us sim-
ply explain what subroutines FIND-MATCH and
UPDATE do. FIND-MATCH returns a random
matching M in $G’$ such that each connected com-
ponent of $G[F\cup M]$ contains at most one edge in
M. UPDATE updates the array R so that the in-
variant is kept, and deletes those edges e from $G’$

such that $e\in M$ or $F\cup\{e\}$ is not a path set. Thus,
by a simple induction on the number of iterations
of the while-loop in the algorithm, we can show the
correctness of the algorithm.

FIND-MATCH is the heart of our algorithm.
Given $G’$ and R , FIND-MATCH performs the fol-
lowing steps:

Fl. In parallel, for each $i\in V(G’)$, choose a neigh-
bor $t(i)$ at random. Let L be the list of the
pairs $(i, t(i))$ for the vertices i in $G’$.

F2. In parallel, for each $j\in V(G’)$, if there are two
or more pairs $(i, t(i))$ in L with $t(i)=j$, then
choose one of them arbitrarily and delete the
rest from L .

F3. Let S be the set of those edges $\{i,j\}$ in $G’$

with $(i,j)\in L$ or $(j, i)\in L$. Let H be the
graph (U, S) , where U is the set of endpoints of
edges in S. (Comment: For each vertex i in H ,
$d_{H}(i)=1$ or 2.)

F4. In parallel, for each $i\in U$, randomly select an
edge incident to i in H .

F5. Set $M’$ to be the set of those edges $e\in S$ such
that e was selected by both its endpoints in step
F4.

F6. For each $i\in V(M’)$, select i if $R[i]=i$, and
randomly select one of i and $R[i]$ if $i<R[i]$.

F7. Set M to be the set of those edges $e\in M’$ such
that both endpoints of e were selected in step
F6.

F8. Return M .
It is not difficult to see that M is always a match-

ing such that each connected component of $G[F\cup M]$

contains at most one edge in M . Note that steps
Fl through F5 have previously been used in the
I&I’s algorithm for maximal matching $[6, 8]$. Fol-
lowing [8], we say that a vertex i in $G’$ is good if
$\sum_{j\in N_{G},(i)^{\frac{1}{d_{G},(j)}}}\geq\frac{1}{3}$, and say that an edge in $G’$ is
good if at least one of its endpoints is good. Then,
we have the following lemmas:
Lemma 2.1 $[6, 8]$ At least half the edges in $G’$ are
good.
Lemma 2.2 [6] For each good vertex i in $G’$,
$\mathrm{P}\mathrm{r}[i\in V(M’)]$ is no less than a positive constant.
Lemma 2.3 For all vertices i in $G’$,
$\mathrm{P}\mathrm{r}[i\in V(M)|i\in V(M’)]\geq\frac{1}{4}$.
Corollary 2.4 For each good vertex i in $G’,$ $\mathrm{p}_{\mathrm{r}}[i\in$

$V(M)]$ is no less than a positive constant. Conse-
quently, for each good edge $\{i,j\}$ in $c’,$ $\mathrm{P}\mathrm{r}1i\in V(M)$

or $j\in V(M)]$ is no less than a positive constant.
Next, let us turn to UPDATE. Given $G’,$ R , and

M , UPDATE performs the following steps:

Ul. Remove the edges in M from $G’$.
U2. In parallel, for each edge $\{i, j\}\in M$, perform

the following steps:
U2.1. If $R[i]=i$ and $R[j]=j$, then set $R[i]=$

j and $R[j]=i$.
U2.2. If $R[i]=i$ and $R[j]=k\neq j$, then first

set $R[i]=k$ and $R[k]=i$, next remove
j and all its incident edges from $G’$, and
finally remove the edge $\{i, k\}$ from $G’$ if it
is in $G’$.

U2.3. If $R[i]=k\neq i$ and $R[j]=l\neq j$, then
first set $R[k]=l$ and $R[l]=k$, next remove
$i,$ j , and all their incident edges from $G’$,
and finally remove the edge $\{k, l\}$ from $G’$

if it is in $G’$.
It is easy to verify that UPDATE really updates

the array R so that the invariant is kept and that
UPDATE really deletes those edges e from $G’$ such
that $e\in M$ or $F\cup\{e\}$ is not a path set.

114

2.2 Complexity analysis

In this subsection, we prove the following theorem:

Theorem 2.5 The RNC algorithm runs
in $O(\log n)$ expected time using $O(n+m)$ proces-
sors on a CRCW PRAM.
The algorithm uses $O(n+m)$ processors; every ver-
tex and every edge in $G’$ has a processor associated
with it. Each processor associated with a vertex
(resp., edge) uses one bit of its local memory to re-
member whether the vertex (resp., edge) has been
deleted or not from $G’$.

Clearly, the first three steps of the algorithm
takes $O(1)$ time with $O(n)$ processors on an EREW
PRAM. We claim that each iteration of the while-
loop can be done in $O(1)$ time with $O(n+m)$ pro-
cessors on a CRCW PRAM. To see the claim, first
observe that removing isolated vertices from $G’$ can
be done in $O(1)$ time with $O(n+m)$ processors on a
CRCW PRAM. According to [6], steps Fl through
F5 of FIND-MATCH can be done in $O(1)$ time
with $O(n+m)$ processors on a CRCW PRAM. Other
steps of FIND-MATCH use no more resources.
Thus, FIND-MATCH can be done in $O(1)$ time
with $O(n+m)$ processors on a CRCW PRAM. It is
also easy to see that UPDATE can be done in $O(1)$

time with $O(n+m)$ processors on a CRCW PRAM.
This establishes the claim. In the remainder of this
subsection, we will show that the expected number
of iterations of the while-loop is $O(\log n)$. This to-
gether with the claim implies the theorem.

We proceed to the proof of the fact that the
expected number of iterations of the while-loop is
$O(\log n)$. We use a potential function argument. For
a subgraph \mathcal{G} of the input graph G and a path set
F in G , define

$\phi(\mathcal{G}, F)=\sum_{\mathrm{e}\mathrm{d}\mathrm{g}\mathrm{e}\{i,j\}}$

in
$\mathcal{G}(2-d_{G[}f1(i))(2-dG[\mathcal{F}1(j))$

.

For a random variable X , let $\mathcal{E}X$ denote the ex-
pected value of X , and let $\mathcal{E}(X|B)$ denote the ex-
pected value of X given that event B occurs.
Lemma 2.6 (Main Lemma). Fix an iteration of
the while-loop. Let $G_{b}’$ and $G_{a}’$, respectively, be the
graph $G’$ before and after the iteration. Similarly,
let F_{b} and F_{a} , respectively, be the path set F be-
fore and after the iteration. Then, $\mathcal{E}(\phi(G_{b}’, F_{b})$ -

$\phi(G_{a}’, Fa))\geq \mathcal{E}(\phi(G’F_{b}b’)-\phi(c’Fa)b’)\geq c\cdot\phi(G_{b}’, F_{b})$

for some constant $c>0$.
Proof. For each edge $e=\{i,j\}$ in $G_{b}’$, let $X_{e}=$

$(2-dc[Fb](i))(2-dG[Fb](j)),$ $Y_{e}=(2-d_{G[F]a}(i))(-,-$

$d_{G}[F_{a}](j)),$ $Z_{e}=X_{e}-Y_{e}$, and B_{e} be the event that
$i\in V(M)$ or $j\in V(M)$. Let the number of edges in
$G_{b}’$ be $m_{b}’$. Clearly, $\phi(c_{b}’, p_{b})\leq 4m_{b}’$.

Fix an edge $e=\{i,j\}$ in $G_{b}’$. We claim that
$\mathcal{E}(Z_{e}|B_{e})\geq$.

1 . To see the claim, assume that
$i\in V(M)$ or $J\in V(M)$ (i.e., event B_{e} occurs). Ac-
cording to the values of $d_{G[F_{b}]}(i)$ and $d_{G[F_{b}]}(j)$, we
have the following four cases:

Case 1: $dc[F_{b}](i)=d_{G[F]}(bj)=0$. Then, we have
$X_{e}=4$. If both $i\in \mathrm{t}^{\gamma}(M)$ and $j\in V(M)$, then
$\mathrm{Y}_{e}=1$; otherwise, $\mathrm{Y}_{e}=\underline{?}$. Thus, $Z_{e}\geq 2$.

Case 2: $d_{G[F_{b}]}(i)=0$ and $d_{G[F_{b}]}(j)=1$. Then, we
have $X_{e}=2$. If $j\in V(M)$, then $\mathrm{Y}_{e}=0$; otherwise,
$i\in V(M)$ and $\mathrm{Y}_{e}=1$. Thus, $Z_{e}\geq 1$.

is
$\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{i}1\mathrm{a}\mathrm{r}\mathrm{t}_{0}b_{\mathrm{a}}^{p]}Case\mathit{3}.\cdot dcb(\mathrm{e}S2i).=1$

and $d_{G[F_{b}}$] $(j)=0$. This case

$X_{e}=1Case\mathit{4}\cdot\cdot d_{\sqrt{e}](i)}\mathrm{a}\mathrm{n}\mathrm{d}cF_{b=}0$

.
$=d_{G},b_{e}(\mathrm{T}\mathrm{h}\mathrm{u}\mathrm{S}[Fbj)=1=1.\cdot$

Then, we have

Since one of the four cases must occur, we al-
ways have Z_{e} \geq 1 whenever event B_{e} occurs.
This implies that $\mathcal{E}(Z_{e}|B_{e})\geq 1$, establishing the
claim. From the claim, it follows that $\mathcal{E}(Z_{e})\geq$

$\mathcal{E}(Z_{e}|B_{e})\mathrm{P}\mathrm{r}[B_{e}]\geq \mathrm{P}\mathrm{r}[B_{e}]$. Thus, if e is good, then
by Corollary 2.4, $\mathcal{E}(Z_{e})\geq \mathrm{P}\mathrm{r}[B_{e}]\geq c’$ for some con-
stant $c’>0$. Combining this with the fact that $G_{a}’$

is a subgraph of $G_{b}’$, we now have

$\mathcal{E}(\phi(G_{b}’, Fb)-\phi(G_{a}’, Fa))$

\geq $\mathcal{E}(\phi(G_{b}’, F_{b})-\phi(G_{b}’, F_{a}))$

$=$ $\mathcal{E}(\sum X_{e}- \sum \mathrm{Y}_{e})$

edge e in $G_{b}’$ edge e in $G_{b}’$

$=$ $\mathcal{E}(\sum Z_{e})$

edge e in $G_{b}’$

$=$ \sum $\mathcal{E}Z_{e}$

edge e in $G_{b}’$

\geq \sum $\mathcal{E}Z_{e}$

good edge e in $G_{b}’$

\geq \sum $c’$

good edge e in $G_{b}’$

\geq $c’m_{b}’/2$.

The last inequality follows from Lemma 2.1. On
the other hand, we have $\phi(G_{b}’, F_{b})\leq 4m_{b}’$. Thus,
$\mathcal{E}(\phi(G’b’ Fb)-\phi(G_{a}’, F_{a}))\geq c’m_{b}’/2\geq\frac{c’}{8}\phi(c_{b}’, Fb)$.
This completes the proof. 1
Note that $\phi(G’, \emptyset)=4m$ and that the while-loop is
iterated until $\phi(G’, F)<1$. Thus, by Lemma 2.6
above and Theorem 1.3 in [9], we immediately have
that the expected number of iterations of the while-
loop is at most $\int^{4m}\frac{1}{cx}d_{X}=O(\log n)$. This com-
pletes the proof $\mathrm{o}i$ the theorem.

2.3 Extension to digraphs
We start by giving several basic definitions. Let D

be a digraph. The vertex set and arc set of D are
denoted by $V(D)$ and $A(D)$, respectively. For a sub-
set M of $A(D)$, we use $V(M)$ to denote the set of all
vertices v such that v is the tail or head of some arc
in $\mathit{1}\mathrm{t}/I$. The underlying graph of D is the undirected
$\mathrm{g}_{\Gamma}\mathrm{a}\{u,v\}_{\mathrm{W}}\mathrm{P}\mathrm{h}(V\mathrm{i}\mathrm{t}\mathrm{h}(D)(u’,Ev)_{\in}^{\mathrm{w}\mathrm{h}\mathrm{r}\mathrm{e}E\mathrm{o}\mathrm{n}\mathrm{S}\mathrm{i}\mathrm{f}}’ A(D\mathrm{e})\mathrm{o}\mathrm{r}(\mathrm{C}v, u)\in A\mathrm{s}\mathrm{t}\mathrm{s}\mathrm{o}(D).\mathrm{T}\mathrm{h}\mathrm{t}\mathrm{h}_{\mathrm{o}\mathrm{s}}\mathrm{e}\mathrm{e}\mathrm{e}tail\mathrm{d}\mathrm{g}\mathrm{e}\mathrm{s}$

and head of an arc (u, v) are u and v , respectively.
The indegree (resp., outdegree) of a vertex u in D

is the number of arcs with head (resp., tail) u in D

and is denoted by $d_{D}^{-}(u)$ (resp., $d_{D}^{+}(u)$). The total
degree of a vertex u is $d_{D}^{-}(u)+d_{D}^{+}(u)$ and is denoted
by $d_{D}(u)$. Vertices of total degree 0 are called $\iota so-$

lated vertices. For $B\subseteq A(D)$, let $D[B]$ denote the
digraph $(V(D), B)$. Hereafter, a path in D always
means a simple directed path. Note that a single

115

vertex is considered as a path (of length 0). A set
B of arcs in D is called a directed path set (DPS)
if $D[B]$ is an acyclic digraph in which the indegree
and outdegree of each vertex are both at most 1.
Intuitively speaking, if B is a DPS, then $D[B]$ is a
collection of vertex-disjoint paths. A maximal di-
rected path set. (MDPS) in D is a DPS that is not
properly contained in another DPS.

Throughout this subsection, D always denotes the
input digraph, and n and m denote the numbers
of vertices and arcs in D , respectively. As the in-
put representation of D , we assume that $V(D)=$
$\{0,1, \cdots, n-1\}$ and that each vertex i has two lists;
one of the lists consists of all arcs with tail i and the
other consists of all arcs with head i .

The top-level structure of our RNC algorithm for
finding an MDPS in a given digraph D is described
by the following pseudo-code:

1: $B:=\emptyset;D’:=D$;
2: for each $i\in V(D’)$ do $R1^{i}$] $:=i$;
3: while $D’$ has at least one arc do begin
4: remove all isolated vertices from $D’$;
5: $G’:=\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{r}\mathrm{l}\mathrm{y}\mathrm{i}\mathrm{n}\mathrm{g}$ graph of $D’$;
6: $M:=FIND_{-}MA\tau CH(G’, R)$;
7: $M’:=\{(i, j)\in A(D)|\{i,j\}\in M\}-\{(i,j)\in$

$A(D)|\{i,j\}\in M,$ $(j, i)\in A(D)$, and $i>j$ };
8: $B:=B\cup M’$;
9: $D_{-}UPDATE(D’, R, M^{;})$

10: end;
The algorithm maintains an array R for which the

following is an invariant: For each $i\in V(D’),$ $R[i]=$
i if $d_{D[B]}(i)=0$, and $R[i]=j$ if $d_{D[B]}(i)=1$, where
$j\neq i$ is the unique vertex satisfying that $d_{D[B](j)}=$
1 and that there is a directed path either from i to

j or from j to i in $D[B]$. Note that we have the
invariant before the first execution of the while-loop
of the algorithm.

D-UPDATE updates the array R so that the in-
variant is kept, and deletes those arcs e from $D’$ such
that $D\in M’$ or $D’\cup\{e\}$ is not a DPS. More pre-
cisely, given $D’,$ R , and $M’$, D-UPDATE performs
the following steps:
Dl. Remove the arcs in $M’$ from $D’$.
D2. In parallel, for each arc $(i,j)\in M’$, perform

the following steps:
D2.1. If $R[i]=i$ and $R[j]=j$, then set $R[i]=$

j and $R[j]=i$, remove all arcs with tail
i or head j from $D’$, and remove the arc
(j, i) from $D’$ if it is in $D’$.

D2.2. If $R[i]=i$ and $R[j]=k\neq j$, then set
$R[i]=k$ and $R[k]=i$, remove j and all
its incident arcs from $D’$, remove all arcs
with tail i from $D’$, and remove the arc
(k, i) from $D’$ if it is in $D’$.

D2.3. If $R[i]=k\neq i$ and $R[j]=j$, then set
$R[k]=j$ and $R[j]=k$, remove i and all
its incident arcs from $D’$, remove all arcs
with head j from $D’$, and remove the arc
(j, k) from $D’$ if it is in $D’$.

D2.4. If $R[i]=k\neq i$ and $R[j]=l\neq j$, then
set $R[k]=l$ and $R[l]=k$, remove $i,$ j , and
all their incident arcs from $D’$, and remove
the arc (l, k) from $D’$ if it is in $D’$.

We say that a vertex i in $D’$ is good if it is good
in $G’$ (the underlying graph of $D’$), and say that an
arc in $D’$ is good if its tail or head is good.
Lemma 2.7 At least one third of the arcs in $D’$ are
good.
From Corollary 2.4, it is easy to see the following
lemma:
Lemma 2.8 For each good arc (i,j) in $D’,$ $\mathrm{P}\mathrm{r}[i\in$

$V(M’)$ or $j\in V(M’)]$ is no less than a positive con-
stant.
To prove that the expected number of iterations of
the while-loop is $O(\log n)$, we need to modify the
potential function in the last subsection as follows:
For a subgraph D of the input digraph D and a DPS
B in D , define

$\phi(D, B)$

$=$
$\sum_{\mathrm{a}\mathrm{r}\mathrm{c}(i,j)\mathrm{i}\mathrm{n}D}(1-d^{+}(D[B\mathrm{J}i))(1-d^{-}(j))D[\mathcal{B}]$

$(2-d_{D[}B](i))(2-d_{D[\mathcal{B}}](j))$.

Then, using Lemma 2.7 and Lemma 2.8, we can
show the following lemma by a similar proof to that
of Lemma 2.6:
Lemma 2.9 Fix an iteration of the while-loop. Let
$D_{b}’$ and $D_{a}’$, respectively, be the digraph $D’$ be-
fore and after the iteration. Similarly, let B_{b} and
B_{a} , respectively, be the DPS B before and after
the iteration. Then, $\mathcal{E}(\phi(D_{b}’, B_{b})-\phi(D_{a}’, B_{a}))\geq$

$\mathcal{E}(\phi(D_{b}’, B_{b})-\phi(D_{b}’, Ba))\geq c\cdot\phi(D_{b}’, B_{b})$ for some
constant $c>0$.
Note that $\phi(D’, \emptyset)=4m$ and that the while-loop is
iterated until $\phi(D’, B)<1$. Thus, by Lemma 2.9
above and Theorem 1.3 in [9], we immediately have
that the expected number of iterations of the while-
loop is at most $\int_{1}^{4m}\frac{1}{cx}d_{X}=O(\log n)$. From this, it
is not difficult to see that the RNC algorithm runs
in $O(\log n)$ expected time using $O(n+m)$ processors
on a CRCW PRAM. Therefore, we have:
Theorem 2.10 An MDPS can be computed in
$O(\log n)$ expected time with $O(n+m)$ processors
on a CRCW PRAM.
The following corollary will be used later:
Corollary 2.11 Given a digraph D and a DPS F

in D , an MDPS B in D with $F\subseteq B$ can be found
in $O(\log n)$ expected time with $O(n+m)$ processors
on a CRCW PRAM.

3 The NC algorithm
In this section, we obtain an NC algorithm for the
MPS problem by carefully derandomizing the RNC
algorithm in section 2.1. Recall that the RNC al-
gorithm consumes random bits only in steps Fl, F4,
and F6 of FIND-MATCH. Our first step toward
derandomizing the algorithm is to make these steps
consume a small number of random bits. More pre-
cisely speaking, we modify FIND-MATCH as fol-
lows:

Fl’. Randomly choose x and y such that $0\leq x,$ $y\leq$

$q-1$, where q is a (previously computed) prime

116

with $2\triangle\leq q\leq 4\triangle$. In parallel, for each $i\in$ 2.2.5. If $b_{1}=0$, then set $M’=M_{1}$; oth-
$V(G’)$, set $t(i)$ to be the j-th neighbor of i in $G’$ erwise, set $M’=M_{2}$.
if there is some (unique) j with $(j-1) \mathrm{L}\frac{q}{d_{G},(i)}\rfloor\leq$ 2.2.6. Same as step F6’ above.
$(x+iy)$ mod $q\leq j\lfloor_{\overline{d_{G}}\overline{(i)}}q,\rfloor-1$; otherwise, let $t(i)$

2.2.7. If $b_{2}=0$, then set $M_{x,y,b_{1},b_{2}}=\mathrm{i}\nu I_{3;}$

otherwise, set $M_{x,y,b_{1},b_{2}}=M_{4}$.be undefined. Further set L to be the list of all 2.2.8. Set $m_{x,y,b_{1},b_{2}}$ $=$ $\phi(G’, F)$ -

pairs $(i, t(i))$ such that $i\in V(G’)$ and $t(i)$ is not $\phi(G_{x,2}’, Fy,b_{1},b\cup M_{x,y,b_{1},b_{2}})$, where
undefined.

$G_{x,y,b1,b_{2}}’$ is the graph obtained from
F2’. Same as step F2 above. $G’$ by removing all edges e such that
F3’. Same as step F3 above. $e\in M_{x,y,b_{1},b_{2}}$ or $F\cup M_{x,y,b_{2}}b_{1},\cup\{e\}$ is
F4’. In parallel, for each connected component C not a path set.

of H that is a cycle, delete an arbitrary edge in 2.3. Among the quadruples (x, y, b_{1}, b_{2}) with
C from H . Next, partition the edges in H into $0\leq x,$ $y\leq q-1$ and $b_{1},$ $b_{2}\in\{0,1\}$, find a
two matchings M_{1} and M_{2} . quadruple $(x, y, b_{1}, b2)$ such that $m_{x,y,b_{1},b_{2}}$

F5’. Randomly set $M’$ to be one of M_{1} and M_{2} . is maximized.
F6’. In parallel, for each connected component C 2.4. Add the edges in $M_{x,y,b_{1},b_{2}}$ to F .

of $G[F. \cup M’]$ that is a cycle, select an arbitrary 2.5. Remove from $G’$ all edges e such that $e\in$

edge in $E(C)\cap M’$. Let M_{3} be the set of the $M_{x,y,b_{1)}b_{2}}$ or $F\cup\{e\}$ is not a path set.
selected edges, and $M_{4}=M’-M_{3}$. 3. Output M .

F7’. Randomly set M to be one of M_{3} and M_{4} . It is clear that MAX-PATHSET always finds
an MPS in G . We next analyze its complexity.Note that the input parameters to the modified

FIND-MATCH are $G’$ and F . That is, we do not Step 1 can be implemented in $O(\log^{2}n)$ time with
$O(\Delta^{2}(n+m)/\log n)$ processors on an EREW PRAMuse the array R any more. Accordingly, UPDATE

can be modified to consist of the following single [2]. Step 2.1 can be simply done in $O(\log n)$ time
step: $\mathrm{W}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{p}\mathrm{R}\mathrm{A}\mathrm{M}o.((n+m)\mathrm{A}_{\mathrm{C}}\mathrm{C}\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g}/1\mathrm{o}\mathrm{g}\mathrm{t}\circ 15n\mathrm{i}^{\mathrm{P}\mathrm{n}\mathrm{E}},$

$\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{o}\mathrm{c}\mathrm{e}\mathrm{s}\mathrm{s}\mathrm{o}\mathrm{r}\mathrm{s}\mathrm{C}\mathrm{t}\mathrm{e}\mathrm{o}_{\mathrm{d}_{\mathrm{C}\mathrm{o}\mathrm{m}_{\mathrm{P}^{\mathrm{o}\mathrm{n}}}}\mathrm{s}}\mathrm{n}\mathrm{a}\mathrm{R}\mathrm{e}\mathrm{E}\mathrm{n}\mathrm{t}\mathrm{W}$

Ul’. Remove from $G’$ all edges e such that $e\in M$ in a planar graph can be computed in $O(\log n)$ time
or $F\cup\{e\}$ is not a path set. with $O((n+m)/\log n)$ processors on an EREW

PRAM. Using this fact, it is not hard to see thatIt should be easy to see that even if we modify steps 2.2.1 through 2.2.8 can be done in $O(\log n)$FIND-MATCH and UPDATE as above, the re- time with $O((n+m)/\log n)$ processors on an EREWsulting RNC algorithm is still correct. Next, we PRAM. Thus, step 2.2 can be done in $O(\log n)$
want to show that the expected number of iterations time with $O(\Delta^{2}(n+m)/\log n)$ processors on anof the while-loop in the modified RNC algorithm is EREW PRAM. Clearly, step 2.3 can be imple-still $O(\log n)$. To this end, first note that steps Fl’ mented in $O(\log\triangle)$ time with $O(\Delta^{2}/\log\Delta)$ pro-through F4’ have previously been used in [2], where cessors on an EREW PRAM. The implementationthe following lemma was shown: of step 2.4 is trivial. Let us consider how to im-
Lemma 3.1 [2] For each good vertex i in $G’,$ $\mathrm{P}\mathrm{r}1i\in$ plement step 2.5. First observe that $F\cup\{e\}$ is
$U] \geq\frac{1}{18}$. (Recall that U is the vertex set of $H.$) not a path set if and only if either the two end-
From points of e are in the same connected component
this lemma and the modified FIND-MATCH, it of $G[F]$ or at least one of the two endpoints of e

is easy to see that Corollary 2.4 still holds. This in has degree 2 in $G[F]$. Thus, to implement step
turn implies that Lemma 2.6 still holds. Thus, in 2.5, we compute the connected component of $G[F]$

a given iteration, $\phi(G’, F)$ decreases by a constant and the degrees of the vertices in $G[F]$ in $O(\log n)$

fraction on average. Now, we are ready to show our time with $O((n+m)/\log n)$ processors on an EREW
NC algorithm: PRAM. After this, we can find out all those edges

e such that $F\cup\{e\}$ is not a path set in $O(\log n)$

ALGORITHM $MAX_{-}PA\tau H$-SET time with $O((n+m)/\log n)$ processors on an
Input: An undirected graph G. EREW PRAM. Hence, each iteration of the while-
Output: An MPS F in G. loop in MAX-PATHSET takes $O(\log n)$ time
Initialization: Set $F=\emptyset$ and $G’=G$. with $O(\triangle^{2}(n+m)/\log n)$ processors on an EREW

PRAM. On the other hand, by Lemma 2.6, the1. Compute the maximum degree Δ of G and find while-loop in MAX-PATHSET is iterated at mosta prime q with $2\Delta\leq q\leq 4\Delta$. $O(\log n)$ times. Therefore, $MAx_{-PATHs}-E\tau$ runs
2. While $G’$ has at least one edge, perform the fol- in $O(\log^{2}n)$ time with $O(\Delta^{2}(n+m)/\log n)$ proces-

lowing steps: sors on an EREW PRAM. This establishes the fol-
2.1. Remove all isolated vertices from $G’$. lowing theorem:
2.2. In parallel, for each $(x, y, b_{1}, b2)$ with $0\leq$

Theorem 3.2 An MPS in a given undirected graph
$x,$ $y\leq q-1$ and $b_{1},$ $b_{2}\in\{0,1\}$, perform can be found in $O(\log^{2}n)$ time with $O(\triangle^{2}(n+$the following steps:

$m)/\log n)$ processors on an EREW PRAM.
2.2.1. Same as step Fl’ above except that Similarly, we can prove the following theorem:the first sentence is deleted.
2.2.2. Same as step F2’ above. Theorem 3.3 An MDPS in a given digraph can be
2.2.3. Same as step F3’ above. found in $O(\log^{2}n)$ time with $O(\Delta^{2}(n+m)/\log n)$

2.2.4. Same as step F4’ above. processors on an EREW PRAM.

117

Corollary 3.4 Given a digraph D and a DPS F in
D , an MDPS B in D with $F\subseteq B$ can be found in
$O(\log^{2}n)$ time with $O(\triangle^{2}(n+m)/\log n)$ processors
on an EREW PRAM.
An immediate consequence of Corollary 3.4 is that
Algorithm 5 in [3] can be made $\mathrm{f}\mathrm{a}s\mathrm{t}\mathrm{e}\mathrm{r}$.

4 An application to shortest
superstrings with flipping

For a string s , let s^{R} denote the reverse of s and $|s|$

denote the length of s . Let s and t be two distinct
strings, and let v be the longest string such that
$s=uv$ and $t=vw$ for some non-empty strings u

and w . $|v|$ is called the overlap between s and t and
is denoted by $ov(S, t)$. By $s\mathrm{o}t$, we denote the string
uvw .

Let $S=\{s_{1}, s_{2}, \cdots , s_{n}\}$ be a set of strings over
some alphabet Σ . Define $S^{R}=\{s_{1}^{R}, \ldots, S_{n}\}R$ and
$|S|= \sum_{i=1}^{n}|s_{i}|$. A superstring-with-flipping of S

is a string s over Σ such that for each i , at least
one of s_{i} and s_{i}^{R} is a substring of s . In the sequel,
a superstring-with-flipping is simply called a super-
string; this should be distinguished with the usual
definition of a superstring in the literature. The
amount of compression achieved by a superstring
s is $|S|-|s|$. Let $opt_{com}(S)$ denote the maximum
amount of compression achievable by a superstring
of S . W.l.o.g., we assume that the set $S\cup S^{R}$ is sub-
string free, i.e., no string in $S\cup S^{R}$ is a substring of
any other. For simplicity of explanation, we assume
that no string in S is a palindrome. At the end of
this section, we will point out why this assumption
is not essential to our results.

The overlap graph of S is a weighted digraph
$OG(S)=(S\cup S^{R}, A, ov)$, where $A=\{(s, t)|s,$ $t\in$

$S\cup S^{R},$ $s\neq t$, and $s\neq t^{R}$ } and each arc (s, t) has
weight $ov(S, t)$. For a subgraph D of $OG(S)$, the
weight of D is the total weight of the arcs in D and
is denoted by $ov(D)$. The mate of a vertex s in
$OG(S)$ is s^{R} . Similarly, the mate of an arc $e=(s, t)$
in $OG(S)$ is (t^{R}, s^{R}) and is denoted by e^{R} . Note
that e and e^{R} have the same weight. A (directed)
path P in $OG(S)$ is said to be legal if for every string
$s\in S$, at most one of s and its mate s^{R} is on P . The
mate of a legal path P in $OG(S)$ is the path consists
of the mates of the arcs on P , and is denoted by
P^{R} . Note that $ov(P)=ov(P^{R})$. For a legal path
$P=s,$ $t,$

$\ldots,$
u in $OG(S)$, we call $s\mathrm{o}t\mathrm{o}\cdots \mathrm{o}u$ the string

associated with P . Note that the string associated
with P is a superstring of the strings $s,$ $t,$ $\cdots,$ u and
has length $(|s|+|t|+\cdots+|u|)-ov(P)$. A legal path
P in $OG(S)$ is said to be Hamiltonian if for each
string s in S , either s or its mate s^{R} is on P . A
two-path cover of $OG(S)$ is a subgraph consisting of
a Hamiltonian legal path and its mate. We denote
by $opt_{c\circ v}(S)$ the weight of a maximum-weight two-
path cover of $OG(S)$. Then, we have the following
fact immediately:
Fact 1 $opt_{cov}(S)=2\cdot opt_{C}om(S)$. Moreover, the
amount of compression achieved by the string asso-
ciated with a Hamiltonian legal path P in $OG(S)$

is $ov(P)$. Especially, the amount of compression

achieved by the string associated with a maximum-
weight Hamiltonian legal path is $opt_{C}om(S)$.
Recall that a directed path set (DPS) in a digraph
$D=(V_{D}, A_{D})$ is a subset B of A_{D} such that the
digraph (V_{D}, B) is an acyclic digraph in which the
indegree and outdegree of each vertex are both at
most 1. Consider the following simple algorithm for
finding a two-path cover of $OG(S)$ with large weight:

Algorithm GREEDY
Input: $OG(S)=(S\cup S^{R}, A, ov)$.
1. Initialize B to be the empty set.
2. While the digraph $(S\cup S^{R}, B)$ is not a two-path

cover of $OG(S)$, perform the following: Add to
B the maximum-weight arc e and its mate e^{R}

such that $B\cup\{e, e^{R}\}$ is a DPS in $OG(S)$ but
$B\cup\{f, f^{R}\}$ is not a DPS in $OG(S)$ for all arcs
f with $ov(e)<ov(f)$.

3. Output the two-path cover $(S\cup S^{R}, B)$.
The following fact was implicitly mentioned in [7]:

Fact 2 [7] Let P be one of the two paths in the
two-path cover output by GREEDY. Then, the
amount of compression achieved by the string asso-
ciated with P is at least $\frac{opt_{\mathrm{c}}om(S)}{2}$.
Lemma 4.1 Suppose that the weights on the arcs
in $OG(S)$ are modified in a manner such that each
arc has the same weight as its mate. Let $oG’(s)=$
$(S\cup S^{R}, A, w)$ be the resulting digraph. Then, the
two-path cover $(S\cup S^{R}, B)$ output by GREEDY on
input $OG’(S)$ has weight $\geq\frac{w(C_{\max})}{3}$, where C_{\max} is
a maximum-weight two-path cover of $OG^{J}(s)$.
Our next goal is to parallelize GREEDY. To reach
this goal, we need to prove several lemmas. First,
several definitions are in order. An unweighted sub-
graph D of $OG(S)$ is said to be legal if the mate of
each vertex and each arc in D is also contained in D .
A DPS B in D is said to be legal if the mate of each
arc in B is also contained in B . A maximal legal DPS
in D is a legal DPS that is not properly contained
in another legal DPS. We want to design a paral-
lel algorithm for computing a maximal legal DPS in
a legal unweighted subgraph D of $OG(S)$. To this
end, we modify the RNC algorithm in subsection
2.3 as follows. The new input is a legal unweighted
subgraph D of $OG(S)$ and lines 8 and 9 therein are
replaced with the following five lines:

8’: for each $s_{i}\in S$, randomly select one of s_{i} and
its mate;

9’: $M_{1}’’:=\{e\in M’|$ both the tail and head of e

were selected in the $1\mathrm{a}s\mathrm{t}$ step};
10’: $M”:=M_{1}’’\cup$ { $e|e$ is in $D’$ and e^{R} is in $M_{1}^{;;}$ };
11’: $B:=B\cup M\prime\prime$;
12’: $D_{-}UPDA\tau E(D^{J}, R, M’’)$;

The crucial point is that for each vertex (resp.,
arc) in $D’$, the vertex (resp., arc) and its mate must
be removed from $D’$ in the same call of procedure
D-UPDATE. Moreover, from Lemma 2.8 and lines
8’ through 12’, it is easy to see the following lemma:
Lemma 4.2 For each good arc (i,j) in $D’,$ $\mathrm{P}\mathrm{r}[i\in$

$V(M^{;J})$ or $j\in V(M’’)]$ is no less than a positive
constant.

118

By this lemma and the discussions in subsection 2.3,
we have:
Lemma 4.3 Given a legal unweighted subgraph D

of $OG(S)$ and a legal DPS F in D , a maximal legal
DPS B in D with $F\subseteq B$ can be found in $O(\log n)$

expected time with $O(n+m)$ processors on a CRCW
PRAM, where m is the number of arcs in D .
To decrease the number of random bits used in line
8’ above, we further replace lines 8’, $9’,\mathrm{a}\mathrm{n}\mathrm{d}10$

’ above
with the following three lines:

8”:
$\mathfrak{t}^{\mathrm{u}\mathrm{s}\mathrm{e}M}$

’ to construct an undirected graph $K=$
$M’,$ $E_{K})$, where E_{K} consists of those edges
$e_{1},$ $e_{2}\}$ such that the head or tail of e_{1} is the

mate of the head or tail of e_{2} ;
9”: 3-color the vertices of K to partition $M’$ into

three independent sets $M_{1}’,$ $M_{2}’$, and $M_{3}’$;
10”: randomly set $M”$ to be one of $M_{1}’,$ $M_{2}’$, and

$M_{3}’$;

It is easy to construct $f\iota’$ and 3-color it in $O(\log n)$

time with $O(n/\log n)$ processors on an EREW
PRAM. Moreover, even if lines 8’ through 10’ are
replaced with lines 8” through 10”, Lemma 4.2 still
holds. This together with the discussions in section
3 implies the following lemma:
Lemma 4.4 Given a legal unweighted subgraph D

of $OG(S)$ and a legal DPS F in D , a maximal le-
gal DPS B in D with $F\subseteq B$ can be found in
$O(\log^{2}n)$ time with $O(n^{2}(n+m)/\log n)$ processors
on an EREW PRAM, where m is the number of arcs
in D .
Now, we are ready to present a parallelized version of
GREEDY. This algorithm is similar to Algorithm
5 in [3].

Algorithm PAR-GREEDY
Input: $OG(S)=(S\cup S^{R}, A, ov)$.
1. Let $c=1+ \frac{\epsilon}{3}$. In parallel, for each arc $e\in A$,

set $lev(e)=\lceil\log_{c^{O}}v(e)\rceil$ if $ov(e)>1$, and set
$lev(e)=0$ otherwise.

2. Compute $MaxLev= \max\{lev(e)|e\in A\}$.
3. Set $B=\emptyset$ and $c_{ur}Lev=MaxLev$.
4. While $c_{ur}Lev\geq 0$, perform the following steps:

4.1. Construct an unweighted digraph $D=$
$(S\cup S^{R}, E)$ by setting $E=B\cup\{e\in$
$A|\iota_{ev}(e)=CurLev\}$.

4.2. Compute a maximal legal DPS F in D

with $B\subseteq F$ and then update B to be
F .

4.3. Decrease $CurLev$ by 1.
5. Output the digraph $(S\cup S^{R}, B)$.
Lemma 4.5 Algorithm PAR-GREEDY finds a
two-path cover of $OG(S)$ with weight at least

$\frac{opt_{\mathrm{c}\circ v}(S)}{3+\epsilon}$.
Theorem 4.6 There is a parallel approximation
algorithm that produces a superstring of a given
set S of n strings by which the amount of com-
pression achieved is at least $\frac{1}{3+\epsilon}$ optimal for any
$\epsilon>0$. It runs in $O(\log n\cdot \mathrm{l}\mathrm{o}\mathrm{g}1+\epsilon/3|S|)$ expected
time with $O(|S|^{2})$ processors on a CRCW PRAM or
in $O(\log^{2}n\cdot \mathrm{l}\mathrm{o}\mathrm{g}1+\epsilon/3|S|)$ (deterministic) time with
$O(|s|^{2}+n^{4}/\log n)$ processors on an EREW PRAM.

Finally, we explain how to remove the assumption
that no string in S is a palindrome. Suppose some
strings in S are palindromes. We redefine $OG(S)$
as follows. For each string s in S , we introduce two
vertices one of which corresponds to s and the other
corresponds to s^{R} . That is, we treat s and s^{R} as
different vertices in $OG(S)$, even if s is a palindrome.
The edges of $OG(S)$ and their weights are defined
as before. Redefining $OG(S)$ in this way, we give no
influence on the above discussions.

References
[1] A. Blum, T. Jiang, M. Li, J. Tromp, and M.

Yannakakis, Linear approximation of shortest
superstrings, 23rd STOC, 1991, pp. 328-336.

[2] Z.-Z. Chen, A fast and efficient NC algorithm
for maximal matching, Inf. Proc. Lett., 55
(1995), 303-307.

[3] Z.-Z. Chen, NC algorithms for finding a max-
imal set of paths with application to com-
pressing strings, 22nd ICALP, LNCS vol. 944,
Springer-Verlag, 1995, pp. 99-110; journal ver-
sion to appear in Theoretical Computer Science.

[4] A. Czumaj, L. Gasieniec, M. Piotrow, and
W. Rytter, Parallel and sequential approxima-
tion of shortest superstrings, 4th SWAT, LNCS
vol. 824, Springer-Verlag, 1994, pp. 95-106.

[5] H. Gazit, Optimal EREW parallel algorithms
for connectivity, ear decomposition and st-
numbering of planar graphs, Proc. of the 5th
IEEE International Parallel Processing Sympo-
sium, 1991, pp. 84-91.

[6] A. Israeli and A. Itai, A fast and simple ran-
domized parallel algorithm for maximal match-
ing, Inf. Proc. Lett., 22 (1986), 77-80.

[7] T. Jiang, M. Li, and D.-z. Du, A note on short-
est superstrings with flipping, Inf. Proc. Lett.,
44 (1992), 195-199.

[8] D.C. Kozen, The Design and Analysis of Algo-
rithms, Springer, New York, 1992.

[9] R. Motwani and P. Raghavan, Randomized Al-
gorithms, Cambridge University Press, 1995.

[10] S. Rao Kosaraju, J.K. Park, and C. Stein, Long
tours and short superstrings, 35th FOCS, 1994,
pp. 166-177.

[11] S.-H. Teng and F. Yao, Approximating shortest
superstrings, 34th FOCS, 1993, pp. 158-165.

[12] J.-S. Turner, Approximation algorithms for the
shortest common superstring problem, Inf. and
Comp., 83 (1989), 1-20.

119

