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Shape Optimization Problem
on the Lateral Boundary

for Thermodynamical Phase Separation
Atsushi KADOYA (Hiroshima Shudo University)

1. Formulation of an optimization problem
This paper is concerned with an optimization problem on the lateral boundary 0f2 for a
thermodynamical phase separation model formulated in a domain {2.

() is a bounded domain in R (N = 2 or 3) with smooth boundary 00 and T is a fixed
positive number. Our state problem SP(I") is of the form

~

pu)y + Aw)y —Au=f inQ:=(0,T) xQ,

wy — A —pAw, — kAw + € + g(w) — N(w)u} =0 in Q,
§€p(w) inQ,

u=hp onXp:=(0,T)xT,

@ + nou = hN on EN = (OT) X I‘I, V.= 8Q\P,

on
ow 0

o 0, %{—,uA’wt — kAw+ £+ gw) = N(w)u} =0 on ¥ := (0,T) x 9,
L u(0,-) = ug,w(0,) =wy in Q.

Throughout this paper, we use the following notation.

For a general (real) Banach space Y, we denote by |- |y the norm in Y and by Y* the dual
of Y. Also, for a positive finite number T', we denote by C,([0,T];Y) the space of all weakly
continuous functions u : [0,7] — Y, and by definition “u, — u in Cy([0,7);Y) as n — +c0”
means that for each z* € Y*, (z*,u,(t))y+ y converges to (z*,u(t))y+y uniformly in ¢t € [0, 7]
as n — 400, where (-, )y« y is the duality pairing between Y* and Y.

For simplicity we put

H:=[2Q), V= H\(Q), Hy:= {v € H; deaz — 0}, V= V N Ho,

and
IT:={T" € 0Q; T is compact in 09, o(I') > 0}.
For each I' € II, we put
V() :={2€V;z=0ae. onl}



112

which is a closed subspace of V', and
(v,w) = vadx for v,w € H,
(v,w)aq := é Q‘deO’ for v,w € L*(0Q),
a(v,w) = /QV’U -Vwdz forv,weV.

In general, given a subset E of Q, xz denotes the characteristic function of E defined on
Q.

We now introduce a notion of convergence in II. By definition, a sequence {I',} C II

converges to [ € II, denoted by I',, — I' in II as n — +oco0, if the following conditions (C1) —
(C3) are satisfied:

(C1) If {ny} is a subsequence of {n}, z € V(I',,,) and 2z — z weakly in V as k — +o0,
then z € V(I').

- (C2) For any z € V(I'), there is a sequence {z,} C V such that z, € V(I'y), n = 1,2, --
and z, — zin V as n — +oco.

bl

(C3) xr, — xr in L}0Q) as n — +o0.

Also, a subset IT" of II is said to have property (C), if II' is compact in the sense of (C1) —
(C3), namely, any sequence {I",,} of II' contains a subsequence convergent to a certain I' € TI".

We suppose precise assumptions on the data as follows.

(H1) p is a maximal monotone graph in IR x R whose domain D(p) and range R(p) are open
in R, and it is locally bi-Lipschitz continuous as a function from D(p) onto R(p), and
there are constants Ay > 0 and « with 1 < a < 2 such that

Ip(r1) = plra)| > 20l =72l

Z e T 1 for all 1,75 € D(p).

(H2) [ is a maximal monotone graph in R x IR such that D(8) = [o.,¢*] for constants 0.,
o* with —co < 0, < 0* < +00.

(H3) ) is a C*-function from R into itself and g is a C'-function from R into itself; )’ is the
derivative of .

(H4) (1) f e W(0,T; H);

(ii) hp € WY2(0,T; HY2(69)) such that there is a function hp € W'2(0,T;V) with
p(hp) € W2(0,T;V);
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(iii) hy € WY2(0,T; L2(0)) N L>=(X) such that
nginf D(p) < hy(t,z) < ngsup D(p) for a.e. (t,2) €X
and there are positive constants A; and A} such that
p(r)(ngr — hy(t,z)) > —Aqjr| — A} for all » € D(p) and a.e. (t,z) € .

(H5) (i) wuo € V such that p(ug) € H and uy = hp(0,-) a.e. on 08
(i) wo € H(Q) such that

o, < l/wd:r‘—'m<a*
NRTOT A
87.00 . . .
and o 0 a.e. on 012 and there is £ € H satisfying
n

¢ € Blwo) ae. inQ, —kAwy+ & € V.

Corresponding to functions hp, hy and I' € II, we consider the function hr : [0,T] — V'

given by

hr(t) = hp(t) a.e. on T, _

a(hr(t), z) + (nohr(t) — hy(t),2)oq = 0 for all z € V(I');
note under condition (H4) and o(I') > o for a positive constant oy that such a‘fubﬁctio_n,
hr exists in W2(0,T;V) and |hr|wi2rv) < K for a certain constant K depending only
on quantities in (H4) and ¢p. Moreover, if I'y — I' in II as n — +oo, then hr, — hr in
C([0,T};V) as n — +co (cf. [6]).

We now give the weak formulation for state problem SP(I') for each I' € II. -
Definition 1.1. A couple {u,w} of functions u : [0,7] — V and w: [0,T] — H?*(Q) is
called a (weak) solution of SP(I'), if the following properties (w1) — (w4) are fulfilled:

(W1) u— hr € Cu([0, T VD)), p(u) € Cu((0,T; H), p(u)’ € L2(0,T; V(I')*),

w € Cy([0, T]; H*(2)) with dult) =0 a.e. on 00 forall t € [0,T), and w' € L*(0,T; H).
(w2) u(0) = up and w(0) = wo.n

(w3) For all z € V(') and a.e. t € [0,T],

%(P(U) (t) + Aw)(8), 2) + a(u(t), z) + no(u(t) — hr(t), 2)aa = (f(1), 2).

(w4) There exists a function £ € L*(0,T; H) such that £ € f(w) a.e. in @ and

%(w(” 1 — pAn) + K(Aw(t), An) = (g(w(t) + &(t) = N (w(t)u(t), An) = 0

for all n € H*(Q2) with ng =0 a.e. on 0 and a.e. t € [0,T].
n
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According to a result [5, Theorem 2.2], problem SP(I") has an unique solution {u,w} for
each I' € II. Based on the solvability of SP(I"), we now propose an optimization problem.

For a given non-empty subset II. of II having property (C'), our optimization problem,
denoted by P(Il.), is to find a set ', € II, such that

J(I,) = inf J(T),

Iell,

where

J(I) = A /Q fur — ualdzdt + Blur —wallg, + C / o IhaPdodt T €L,

)

A, B, C are positive constants, ug, wq, hq are given in L?(Q), C(Q), L*(%), respectively, and
{ur,wr} is the solution of state problem SP(I'); do stands for the surface element on 6.

Our main results are stated as follows.

Theorem 1.1. Let I, be a non-empty subset of I having property(C). Then, optimiza-
tion problem P(Il;) has at least one solution T, € Tl,.

The above existence result is obtained from the following theorem on the continuous
dependence of the solution {ur,wr} of SP(I') upon I' € II.

Theorem 1.2. Let {I',} be a sequence in I1 such that T',, — ' in Il as n — 40, and
{tn, w,} and {u,w} be the solutions of SP(T',) and SP(T'), respectively. Then

Up — u 0 Cy([0,T]; V), w, — w in Cu([0,T]; H3())

as n — +co.
For a detailed proofs, see a forthcoming paper [3].

It is easily seen from Theorem 1.2 that any minimizing sequence {I",,} C II. of the cost
functional J(-) on Il. contains a subsequence convergent to a solution of P(IL,).

2. Regular approximation for P(Il.)

In this section, from the numerical point of view we discuss regular approximation of
SP(I') and P(I1,).

At first, we introduce the approximation p¥, 8% and x[. for p, # and xr, respectively, which
are defined below. ) ,

(a) Let D(p) := (r,,r*) for —oco < r, <r* < 400, and choose two families {a,;0 < v < 1}
and {b,;0 <v < 1} in D(p) such that

r,<a,<ay<a <b <b,<b, <r ifO<v<iv<l

and
ay | re, b, Tr" asv | 0.
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Then, p” : R — R is defined for each v € (0,1} by
plby) +r—=10, | forr > b,,
pr(r) =< p(r) for a, <r <b,,
play) +r—a, forr <a,.

(b) For each 0 < £ < 1, 8 is the Yosida-approximation of 8, namely,

B5(r) = r — I+ 56)‘17‘7 r € R.

&

(c) Let {xL} = {x};0 < 7 < L,T" € I} be a family of smooth functions on 02 and
suppose that it satisfies the followmg properties (x1) — (x3):

(x1) 0 < xr < X% < 1; supp(xf) C {z € 0 dist(z,I) < 7} forall 7 € (0 1] and ' € L.

(x2) For each 7 € (0, l] {x%; T € I1.} is compact in L'(0Q).

(x3) Let V(7,T) :={z € V;xfz =0 a.e. onI'} for each 7 € (0,1} and I" € H frlo0
and T, € II., then there are a subsequence {n;} of {n} and I' € Il such that Xr * — xpr in

LY(0Q) as k — oo, and V (7, In,) — V(T') in V as k — oo in the sense of Mosco [6].

6
Now we propose a regular approximation for SP(T), referred as SP(I)**™, v,e,7,6 €
(0, 1], by the penalty method:

pY(u)s + AMw)y — Au = f in Q,
— A(—pAw; — kAw + [ (w) + g(w) — N (w)u) =0 in @,
% = —%(u — hp) + (1 — xp)(hAn — nou) on X,
' 0
51—1—) =0, 6 —(—pAw; — kAw + (w) + g(w) — N(w)u) =0 on %,
n
| 2(0) = ug, := min{max{ug,a,},b,}, w(0) =wp in Q.

veTd

The notion of a weak solution of SP(I") is given below.

Definition 2.1. A couple {u,w} of functions u : [0,7] — V and w : [0,T] — H?*(Q) is
called a solution of SP(I")**™ if the following conditions (wl)' — (w4)’ are satisfied:
C(wl) we WY2(0,T; H)nC([0,T); V),
w € WH(0,T; H) N Cy([0, T); H*(£2)) with
(w2)" u(0) = ugy, w(0) = wp.
(w3)! For all z € V and ae. t €[0,T],

(p”(w)'(t) + A(w) (1), 2) + alu(t), 2)

T

+ (AL (ult) = hp(t)) = (1 = XF) (1) = ngult)), 2on = (/ (), ).

ow(t)
on

=0 a.e. on 0§ for all t € [0,T].

on
(w4)' For all 5 € H*(Q) with — = =0 a.e. on 90 and a.e. t € 10,7,
n

(w'(t),n — pdn) + K(Aw(t), An) — (g(w(t)) + B (w(t)) — N (w(t))u(t), An) = 0.
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According to a result in [4], SP(I')**"® has a unique solution {u,w}. Our regular approx-
imate optimization problem P(II.)**"¢ is to find I'**"® € II, such that

Juﬂﬁ(rrmf):: inf Jumﬁ(r)’

Tell,

where

JrE(T) = A/Qlu — ug|*dadt + Blw — wdlg,(@ + C/_.\:(l — xp)|hal*dodt,

{u,w} is the solution of SP(T)*<™.

Finally, we show a convergence result.

Theorem 2.1. Let 1L, {p*}, {5}, {xL} be as above. Then:

(1) For v,e,7,6 € (0,1], P(IL)”*™® has at least one solution T'*™ ¢ Tl,.

(2) Let {v.}, {en}, {ma} and {6,} be any null sequences and let {T), := ['n=nT™ée} pe o
sequence of solutions of P(Il,)"»»™® . Then, {I',} contains a subsequence convergent in Il
and any limit T, is a solution of P(Il.).

For a detailed proof, see a forthcoming paper [3].
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