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CLASSIFICATION OF THE LOCAL
SHADOWS OF MOVING SURFACES
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ABSTRACT. We classify the bifurcation of generic local pictures of shadows for one-
parameter families of surfaces in the Euclidean 3-space.

§1. INTRODUCTION

In this paper we consider the problem: how dose the bifurcation of shadows for
moving surface look like ?

One of the motivations for the study of the shadows of surfaces is given in Vision
Theory([ 4 ],/ 9]). In [ 9 ], Lions et. al. studied the so-called Shape-from-Shading
problem. This problem corresponds, roughly speaking, to the reconstruction of a

" shape (a surface) from the brightness of the two-dimensional image.

Firstly they considered that shape of the surface is related to the image brightness
by the Horn image irradiance equation (see Horn [ 5 |, chap. 10) which relates the
brightness of the image I(y1,y2) to the reflectance

(0.1) R(n) = I(y1,92)

where R is the reflectance map which specifies the reflectance of a surface as a
function of its orientation (or unit normal) n. The reflectance depends in general
on the reflectance properties of the surface and on the distribution of light sources.

If the surface is given locally by = = wu(yi,y2), the equation (0.1) is written
explicitly in terms of the unknown function u (see Lions. et. al [ 9]). Here, we only
describe a simple example of this general class of equations. In the case of single
vertical light source, the equation (0.1) becomes

1
(0.2) (1+[Vul?) "2 = I(y1,92)
where Vu = (a%’lil, 577‘2) and ¥y = (y1,¥2) , |Vu| denotes the Euclidian norm of Vu.
The equation (0.2) is a Hamilton-Jacobi equation. They studied the equation (0.2)
as an application of the theory of viscosity solutions for various kinds of boundary
value problems. The boundary in these problems was considered as the edge of the
shadows of a surface.
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However, they only considered this problem for the simple boundaries. For
the detailed study, we need to classify the local shape of shadows of surfaces. A
classification of the shadows of generic submanifolds with codimension 1 in R**!
was given by O. A. Platonova [ 12 ]. The result is generalized to classifications of
the shadows of generic submanifolds in R"*! with an arbitrary codimension by K.
Watanabe [ 14 |.

In this paper we shall study the normal forms of shadows of one parameter
families of surfaces and illustrate how shadows of surfaces change when surfaces
move along one parameter in R3.

Let R3 be the Euclidian space with coordinate (x,1,%2). The subset G in R? is
called the shadow of a surface H in R3, if G is the image of projection 7 along a
certain direction (for example, z-axis), where

7R3 — R?

is given by
W(I:,y]_, y2) = (y17 y2)

Let H be a closed surface in R3. We shall denote the set of embeddings from H
to R® by
Emb(H,R®) = {i : H — R®| i is an embedding}

which is a Borel-space if we adopt the Whitney topology. We consider the following
set

P ={e: HxI<—R>xRle(p,t) = (it(p), t), ir € Emb(H,R?)},

where I is an open interval in R which contains the origin. For any e € P, e is
regarded as a family of elements of Emb(H, R?®) with a parameter ¢, and the i image
e(H x I) is a 3-dimensional submanifold in R3 x R.
We suppose that the moving surfaces have the shadow in R? x R. For any e € P,
the image of IT o e is called a shadow of e, where II : R® x R — R? x R is the
canonical projection defined by

O(z,y1,92,t) = (Y1,92, 1)

Our purpose in this paper is local classification of the bifurcation of the image of
ITo e along the parameter ¢ under the parameterized diffeomorphisms. The precise
definition is given as follows.

Definition 1.1. Let D and D’ be set germs in (R? x R, 0). We say that D and D’
are ¢-diffeomorphic if there exist diffeomorphism germs $: (R?xR,0) — (R?xR,0)
and ¢ : (R,0) — (R, 0) such that (D) = D’ and 1,09 = don;, where m, : RZxR —
R is the projection to the second components.

Under the above notation, we define Dy = DN(R?x {t}) and D} = D'n(R?x {t}).
If D and D' are t—diffeomorphic, then ®(D;) = D’ 4(t)» that is the bifurcations of

{D:}iem,0) and {Di}ie(r,0) along the parameter ¢ are diffeomorphic. Our main
result in this paper is the following theorem.
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Theorem A. There exists a residual subset @ C P with the following property:
For any'e € Q and for any point Yy of the shadow Il o e(H X I), the set germ of
the shadow at Yy is t—diffeomorphic to one of the set germ in the following list:

r=1

PGy normal forms of set germs of the shadows

°Go {(y1,92,t) € R* x Rly; € R}

OG2 :

0C;'l {(y17y27t) € R2 X Rlyl g O}

Gy {(y1,92,t) € R® x Rfy; € R}

lG;

1G4 {(y1,92,t) € R? x R|27y5 — 256y7 — 144y1y3t
+4y3t3 — 16y,t* + 128y#t? < 0}

The above classification of shadows is obtaines via a classification of deﬁhing
functions of embedded surfaces e(H x I). ( See Theorem 2.3. See also Proposition

2.2 ). The notation pG(i) for the normal forms of shadows is named after the

notation pA( ) for the normal forms of the defining functions. Therefore Theorem
A gives 1nformat10ns about not only the shadows but also the locations of the
embedded surfaces e(H x I) from which the shadows come. The idea of the proof
of Theorem A is summarized as follows: Since the image of e is a hypersurface in
R x R? x R, it may be locally considered as a zero point set of a submersion F :
(R x R? x R,0) — (R, 0). We apply Zakalyukin’s classifications([ 15 ]) among such
function germs up to a certain equivalence relation, which preserves the bifurcation
of shadows. We can translate such a classification into the classification of Ilp. :
(F~1(0),0) — (R? x R,0) which corresponds to the local classification of IT o e
around a point. After that we apply the Thom’s transversality theorem to detect
the generic condition on e.

In §2, we study the local properties of submanifold e(H x I) around a smgle
pomt In §3, we give a proof of generic property of Theorem A.

All map germs considered here are differentiable of class C°°, unless stated
otherwise.

2. CLASSIFICATION OF THE LOCAL SHADOWS

In this section we prepare some local theory for the study of shadows.

Let e € P. For any (po,to) € H %I, since e(H xI) is a 3-dimensional submanifold
in R x R? x R, it follows from the implicit function theorem that there exists a
small neighborhood U of e(po,to) in R x R? x R and a function F : U — R such
that F|lynrxr2x{t,} is a submersion and

F10)=Un e(H x I).

We call F' a local equation of e at e(po,to).
Since we consider the local theory, It suffices to study submersion F : (R x R? x
R,0) — (R, 0) at the origin.
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Definition 2.1. Let F,F': (R x R? x R,0) — (R, 0) be function germs. We say
that F' and F' are t — (P — K)— equivalent if there exists a diffeomorphism germ

®: (RxR?xR,0) — (R xR?xR,0)
of the form
O(z,y1,y2,t) = (¢1(z, y1, Y2, t), d2(¥y1, Y2, ) $3(t))

such that ,
* — /
* < F >g(m — t)——< F >g(m v1w2.8)"

where €y, 4,,1) denotes the ring consisting of function germs (R x R? x R,0) —
(R,0). |

We remark that the following diagram commutes:

(R, 0) - (R0
(R x R? x R,0) —2—» (RxRé x R, 0)
Hv . | : ,H
(R? x R, 0) {#29s), (R? x R,0)

Tt e

R,t))  —2  (Rth)

It is clear that (¢2, ¢3) : (R? x R,0) — (R? x R,0) and ¢3 : (R,0) — (R,0) are
the diffeomorphisms.

Similarly we may define the ¢t — (P — K) — equivalence for function germs at
arbitrary base points. We have the following proposition.

Proposition 2.2. Let F, F': (R x R? x R,0) — (R, 0) be function germs. If F, F’
are t— (P — K)—equivalent then II(F~1(0)) and II(F'~*(0)) are t—dif feomorphic.

Proof. By definition, there exists a diffeomorphism germ ® = (¢4, ¢2, ¢3), such that

<F'o® >8(m.y1,y2.t):< F >8(w.y1,y2»t)’
so that F=1(0) = ®~1(F'~'(0)). By the commutative diagram, we obtain

(2, ¢3) TL(F~1(0))) = TI(F'~*(0)).
Set & = (¢, 43) and ¢ = ¢3, then we have S(II(F~1(0))) = I(F'~*(0)) and

mo® = ¢o7rt, where 7; : R2xR — R is the projection to the second component. 0O

For the local case, by Proposition 2.2, it is sufficient to consider the local shadows
of local equations F', that is, the image of Il = II|p-1(g) : (F71(0),0) — (R*xR, 0).
For f = F IRxR?x{o}, we consider the subspaces of £ 4, +,) given by

<8f af of

Te(P - IC)(f) = %,f>8(m,y1,y2) + (ay 3y2> (y1.92)°
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We also consider its codimensions
(P - K:)e - COd(f) = ding(m,yl,yg) / Te(P - ’C)(f)

Let F : (R x R? x R,0) — (R,0) be a function germ, we say that F is a
(P —K) —versal deformation of f = Flryrzx{o} : (R X R? x {0},0) — (R,0) if

OF
(-5? ]t=0>R + T(P - ’C)e(f) = g(x,yl Y2)*

In [ 8], Zakalyukin’s classification theorem is developed to the following theorem
which is useful for classification of local equations.

Theorem 2.3. Let F : (R x R® x R,0) — (R,0) be a function germ with (P —
K)e —cod(f) < 1, where f = Flgxrrxqo}- If F' is (P — K) —versal deformation of
f, then F' ist — (P — K) — equivalent to one of the germs in the following list:

OA : zhtl 4 Zi-c:l yixt~1 (0<k<n)
14, ohtl 4 okt £ y2 £ +y2) + Zi-:ll yizil 2<k<n+1)
In the case n = 2, by Theorem 2.3, we have the following corollary.

Corollary 2.4. Let F : (R x R?2 x R,0) — (R,0) be a function germ with (P —
K)e — cod(f) < 1, where f = Flryrexo}- If F is a (P — K) — versal deformation
of f, then F ist — (P — K) — equivalent to one of the following function germs:

OAp: x

OA; : 22 4+ 4,

0Az: 2® +zys + 1
1A;:x3+my%+tw+y1
1A5::c3-—:cy§+tx+y1
LAz : x* + zyg + tz? + y1.

We denote the shadow of pAEj:) by pchi)_ Then by Theorem 2.3 we also have
the following corollary.

Corollary 2.5. Let F: (R x R? x R,0) — (R,0) be a function germ with (P —
K)e — cod(f) < 1, where f = Flrxrzx{o}- If F is a (P — K) — versal deformation
of f, then TI(F~1(0)) is t—diffeomorphism to one of the set germs in the above list
PG\E) (See the following table).



PGy normal forms of set germs of the shadows
°Go {(y1,92,t) € R* x Ry; € R}

°G, {(y1,92,t) € R? x Ry; < 0}

°G, {(y1,92,t) € R? x Ry; € R}

'GT {(y1,92,t) € R* x Rly; € R}

'Gy {(y1,v2,t) € RZ x Ry; € R}

IGs (G, v2,1) € B2 x R27y% — 2567 — 144y1y30

+4y2t3 — 16y,t* + 128y%t2? < 0}

Remark. When p =1 and k = 3, we observe that z* +tx% + zys +y1 ist — (P —
K) — equivalent to z* — tz? + zy2 + y1.

In order to study the generic properties of e € P which respect to the local
equation F' at e(po, to) we need some preparations.

Let g : (R%,0) — (R?,0) be a C* germ. In [ 2 ], two types of codimensions of g

are defined as follows:

(A) = cod(g) = dimgz x M / T(A)(9)

- and
(A)e — cod(g) = dimg€s x &2 / Te(A)(g),
where 8 5
_ g g *
T(A)(g) = M <8331 o 2)52 + g*My X g* My
and 5 5
To(A)9) = (g go)es +9°E2 X "6x

Remark. T'(A)(g) and T(A).(g) do not depend on the choice of the local coordi-
nates on the source and the target.

n ([ 1],] 8]), versality of deformations is defined as follows.
Let G : (R?2 x R,0) — (R?,0) be a C®°— map germ and g = G|r2x {0} : (R?,0) —
(R2,0). We say that G is an A — versal deformation of g if
oG
(5 le=o0

We now consider a map germ

jtG : (R? x R,0) — J*(R?,R?) = R? x R? x J4(2,2)

‘g + T(A)e(g) = & x Es.

J1G(,t) = §*Gu(x).
£9(0) and L%(2) x L*(2)(z) be the A— orbit through z in J%(2,2) (See
). We can prove the following lemma.
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Lemma 2.6. Suppose that g = G|i=o is A—finitely determined (i.e. (A)e — cod(g)
< 400). Under the above notations, for sufficiently large £, the following conditions
are equivalent.

(1) 7o jiG  (L5(2) x LY(2))(2).
(1) G is an A — versal deformation of g,
where, 7 : R? x R? x J(2,2) — J(2,2) is the canonical projection.

Let F: (R x R? x R,0) — (R, 0) be a function germ such that f = F|gxrzx {0}
(R x R? x {0},0) — (R, 0) is a submersion germ. We consider the local projection
IF = O|p-1(0) : (F7(0),0) — (R? x R,0). and 75 = ;-1 (0)x {0} : (f71(0),0) —
(R? x {0},0). '

By the above remark, T'(A)(n;) and T(A).(ny) are well-defined. Therefore
A—versality of deformation Il of 7y is also well-defined.

Under the above notations, we have the following proposition.

Proposition 2.7. The following conditions are equivalent.
(i) F is a (P — K) — versal deformation of f.
(ii) me oIlp is an A — versal deformation of my.

Here 2 (R? x R,0) — (R?,0) is the canonical projection.

Proof Since f is a submersion, we may suppose that g—?i # 0 (for the case % #0

or £— y E £ 0 are similar), then we may suppose that F' has the form F(z,y;,y2,1) =
y1 — h(z,ya,t), for some function h : (R x R x R,0) — (R,0) and f(z,y1,y2) =
F(z,y1,92,0) = y1 — ho(z,y2), where ho(z,y2) = h(z,y2,0). Define Gp : (R? x
R,0) — (R?0) by Gp(z,y2,t) = (h(z,y2,t),92) and g,(z,y2) = (ho(x,y2), y2)-
Then Gp = myollp and g, = ;. We consider the map germ I, : (R?,0) — (R?,0)
defined by

I, (z,y2) = (x, ho(Z, ¥2),y2)

and we also consider the pull—back homomorphism

Tho t E@yrws) = E@vn):
Then kerl; = (y1 — ho(ﬂf,w))g(m,yl,yz) and
. oh Oh
(4) Lo (T(P = K)e(£)) = (5~ =)y T (L ayz)fhos(yl v2)

We now verify the following equality

6)  Eeam X O} N T(Ale,) = (G2 Ohece iy +((1,0) (5,2 O

By the definition of T'(A)c(g,) and the equality (4), we may assume that any
(€,0) € E(g,y,) X {0} NT(A)e(g,) has the form

Ohg Oho

(€,0) = (€5,0) + (/\8—2 s A) + (T m, Iig o)
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for some 71,1 € £y, y,) and €, € £y y,). Hence ((,0) = (6% — (I} )g;g +
(It,m)1,0) € (52,0))e,,.,,, +((85,0),(1,0)): Eyy.0m - that is (¢,0) e the right
hand side of (5). The converse can be verified 31m11arly, so we omit its proof.
By (4) and (5), we have , »
‘ ~. ,,0h . 8h
g(m:yz) X {0} N T( )e(gf()_: ((_é);o’,ong(myz) + <(1 0) (ay;)’o))I;og(yl,yz)
=I5, (T(P — K)e(f) x {0}
Then . : . .
I, T(P = K)e(f) & I, T(P = K)e(f) x {0} = E(zy,) X {0} NT(A)e(g,),
and [} induces an R-isomorphism: .
g(iJc Y1,Y2) / T(P ’C) (f) f,’ (z,y2) ¥ {0} / g(m y2) X {0} ﬂT( ) ( )
On the other hand, since g,(z,y2) = (ho(z,y2),¥2), it is clear that
g(m,yz) X 8(377?}2) = 5(117,92) X {0} + T(A)‘é(gf)'
Then '
g(w:ylyyz) / T(P - /C)e'(f)
= E(a,y,) X {0}/ T(A)e(g,) N Eayy,) x {0},
= g('w,yz)r X {O} + T(A)@(gf) / .T(A)e(gf)
= Eays) X Ezyn) / T(A)elgy)-

If Ezyyp2) = T(P — K)e(f), by the above equality we have £ y,) X (5 y,) =
T(A)c(g,)- Hence (i) holds if and only if (ii ) holds. On the other hand, since

OGFp oh
W ]t=0 (3t [t 05 ) € S(z y2) X g(z,yz)

and '
oF 3
8t lt.—O |t=0e g(m,yg)a

the condition
ding(;ﬂ’yhyz) / T(P — ]C)e(f) =1
is equivalent to

dimRE(m y2) X E(w,yg) / T( ) ( ): 1.

In this case, F' is a (P — K)—versal deformation of f if and only if 8& |t o
T(P — K)c(f). Moreover
oOF —0h —0h —0Gp

Iy (= li=0) = I, (5 lt=0) = (— l¢=0,0) = |t=0
ot ot ot ot

so that
8

F - le=of T(P ~ K)e(f) if and only if _‘ZGF le=o T(A)e(g,)-

The last condltlon is equivalent to G'p is an A—versal deformation of g,.
For the other case(g—:; # 0 or % # 0 ), the proof is similar. O



3. GENERIC PROPERTY OF SHADOWS OF THE MOVING SURFACE

In this section we use Thom’s k-transversal theorem to show generic property of
shadows of the moving surface, that is, we shall prove the following Theorem.

Theorem 3.1. There exists a dense subset @ C P such that for any e € Q and
(po,to) € H x I, the set germ of the shadow of e(H x I) at II o e(po,to) is t-

diffeomorphic to one of the following normal forms ”ch):

k—1
PG = {(y1,¥2,1) € (R? X R,0)[z*! + > " gix®™" + pe*~ (¢ £ 47)
=1
+(1 — p)ysz®! = 0, for some z € (R,0)}
where p=0,1, and 2p < k < p+ 2.

Proof. Take £ to be sufficiently large. Let S'j,j = 0,1,2 or 3, be the set of jets
z = JY(h)(0,0) of J%(2,2) with (A) — cod(h) = j. Let ¥ be the compliment of
U3_oS; in J(2,2)( That is, ¥ is the union of jets 3%(h) with (A) — cod(h) > 4).
Then we have R A X A

J4(2,2) = SouS;US,USzUE.

Now we consider the subsets S; = H? x R? x S’j in J¢(H,R?). For any e € P, we
define the ¢ — jet — extension map jbe : H x I — J*(H,R3) given by

jie(p,t) = §°(ie(p)),

where i = e|gx(1}-
We also consider the projection *x : J¢(H,R3) — J*(H,R?) defined by

tn(5h(z)) = j*(IL o h(z))

for h : (H,po) — (R3, h(po)) and I : R x R? — R2.
Since ‘m is a submersion and S;(j = 0,1,2,3) are submanifolds of J*(H,R?),
¢x=1(S;) are submanifolds in J*(H,R®) and

codim of S; = codim of *zx71(S;) (1 =0,1,2,3).
Moreover, we can show that
jé(e) M fx~1(S;) if and only if ji(IToe) M S;.

Set
O, = {e € P| jie) B fw'(5;)}, (1=0,1,2,3).

and

Qs i={e € Pljii(e) n‘n 7! (Z) = ¢},
By [ 13 ], QO is an algebraic subset of J¢(2,2) of codimension > 4.
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Tt follows from Thom’s k— transversal Theorem( See [ 3 ],[ 11 ]) that Q; are
residual subsets of P.
Finally we set

Q= (N3_,Q;)N Qs C P,

then Q is a residual subset in P.

For any e € Q and (po,to) € H X I, there exists a neighbourhood U of e(po, to)
and a local equation F : (U, e(po,t0)) — (R,0) of e at e(po,to), so that F~1(0) =
U Ne(H x I). Without the loss of generality, e(po, o) is assumed to be the origin,
so that we consider a submersion germ F : (R x R? x R,0) — (R,0). Under the
above notation, we may have the following identification:

jilloe = jimy o llp.

Since e € Q, jimy o Ilp is transversal to S;. It follows from lemma 2.6, that
7o o Il is an A— wversal deformation of f. Moreover, by the Proposition 2.7 F is
P — K—versal deformation of f = F |R><R2x{t0} Hence we may apply Corollary 2.5
to get the result. O
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