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Abstract. Let $f$ : $Marrow N$ be a differentiable map of a closed m-
dimensional manifold into an $(m+k)$-dimensional manifold with $k>0$ . We
show, assuming that $f$ is generic in the sense of Ronga [R], that $f$ is an embed-

ding if and only if the $(m-k+1)$-th Betti numbers with respect to the \v{C}ech

homology of $M$ and $f(M)$ coincide, under a certain condition on the stable
normal bundle of $f$ . This result is proved by using Ronga’s formula for the ho-

mology class represented by the closure of the self-intersection set of such a map.
Our result generalizes the authors’ previous result for immersions with normal

crossings [BS1]. As a corollary, we obtain the converse of the Jordan-Brouwer
theorem for codimension-l generic maps, which is a generalization of the results
of [BR, BMSI, BMS2, Sael] for immersions with normal crossings.
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1. Introduction

Let $f$ : $Marrow N$ be a differentiable map of a closed $m$-dimensional manifold
into an $n$-dimensional manifold with $k=n-m>0$ . In [BS1], assuming that
$f$ is an immersion with normal crossings, the authors have shown that $f$ is a
differentiable embedding if and only if the $(m-k+1)$-th Betti numbers with
respect to the singular homology of $M$ and $f(M)$ coincide and a certain pair of

cohomology classes in $H^{k}(M;\mathrm{Z}_{2})$ determined by $f$ coincide. In the course of the

proof, we have essentially used a formula originally due to Whitney [Wh] (see

also [He] $)$ which describes the homology class represented by the self-intersection
set of $f$ .

The purpose of this paper is to generalize the above mentioned result to

generic differentiable maps in the sense of Ronga [R]. For a precise statement,
see \S 2 (Theorem 2.2). In fact, Ronga has given a formula for the homology class
represented by the closure of the self-intersection set of a generic map, and this

formula has enabled us to generalize the previous result. However, a straight-
forward generalization has not been easy, mainly because of bad topological
behaviors of the image $f(M)$ . When $f$ is an immersion with normal crossings,
the image $f(M)$ has a natural stratification into multiple point sets and, in par-
ticular, it is triangulable. However, generally speaking, the image $f(M)$ is not
even an ANR (absolute neighborhood retract), even if $f$ is generic in the sense
of Ronga. Thus, instead of the usual Betti numbers with respect to the singular
homology, we have used the Betti numbers with respect to the \v{C}ech homology.

As a corollary to our characterization of embeddings, we obtain a converse
of the Jordan-Brouwer theorem for codimension-l generic maps. In other words,

under a certain homological condition, we show that a generic differentiable map
$f$ : $Marrow N$ with $\dim N=\dim M+1$ is an embedding if and only if the image
$f(M)$ of $f$ separates $N$ into exactly two connected components (see Corollary
2.6 and Theorem 3.5). Since immersions with normal crossings are generic, this

generalizes the previous results in [BR, BMSI, BMS2, Sael].

The paper is organized as follows. In \S 2, we state the main theorems and

the corollaries in a precise manner. We give the proofs of these theorems and
corollaries in \S 3. We also mention a result (Remark 3.6) about the k-th Betti
number of the complement of the image of a generic map, which is related to a
result of Hirsch [Hi]. In \S 4, in order to convince the reader that a generic map
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can behave badly, we give an example of generic maps whose images are not

ANR’s.

Throughout the paper, the homology and cohomology groups have $\mathrm{Z}_{2}$ coef-

ficients unless otherwise indicated. All manifolds are of class $C^{\infty}$ , paracompact

and Hausdorff.

This work has been done during the second author’s stay in ICMSC-USP,

Instituto de Ci\^encias Matem\’aticas de $\mathrm{S}\tilde{\mathrm{a}}0$ Carlos, Universidade de $\mathrm{S}\tilde{\mathrm{a}}0$ Paulo,

Brazil. He would like to thank the people there for their hospitality and for

many stimulating discussions.

2. Statement of the main results

Let $f$ : $Marrow N$ be a continuous map of an $m$-dimensional manifold $M$

$\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{o}_{\vee}$ an $n$-dimensional manifold $N$ . We suppose that $k=n-m>0$ and that

the map $f$ is proper. For the moment, we assume no differentiability of $f$ . Let

the stable normal bundle. $f^{*}\tau N\oplus l\text{ノ_{}M}$ of $f$ be denoted by $\nu_{f},$
$\mathrm{w}$,here $\nu_{M}$ is the

stable normal bundle of the manifold $M$ . Then we denote by $w_{k}(f)(\in H^{k}(M))$

the k-th Stiefel–Whitney $\mathrm{c}\mathrm{l}\mathrm{a}\mathrm{S},\mathrm{S}$ of the stable vec.tor bundle $\nu_{f}$ . Furthermore, we
define $v(f)\in H^{k}(M)$ to be the image of the fundamental class $[M]\in H_{m}^{c}(M)$

by the composite

$H_{m}^{C}(M)arrow f\star H_{m}^{C}(N)^{D^{-1}}arrow NHk(N)-f^{*}Hk(M)$ ,

where $H_{*}^{c}$ denotes the (singular) homology of the compatible family with re-
spect to the compact subsets ([Sp, Chapter 6, Section 3]), and $D_{N}$ denotes the

Poincar\’e duality isomorphism.

We note that when $f$ is a differentiable immersion, the above definitions

of $w_{k}(f)$ and $v(f)$ coincide with those of $w_{k}(\nu_{f})$ and $v_{k}(f)$ respectively given
in [BS1]. See also [LS] and [He, Proposition 4.1]. We also note that, if $f$ is a
differentiable embedding, then $w_{k}(f)=v(f)$ , as has been seen in [BS1] (see also

[He] and [$\mathrm{M}\mathrm{S}$ , Corollary 11.4] $)$ 1. As to the homotopy or bordism invariance of
$w_{k}(f)$ and $v(f)$ , see [BS2, $\mathrm{B}\mathrm{S}3$].

Next we define the class of differentiable maps which we are going to treat
in this paper.

1In fact, if $f$ is a topological embedding, then we have $w_{k}(f)=v(f)$ . For details, see [BS2].
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DEFINITION 2.1. Let $f$ : $Marrow N$ be a proper map of class $C^{2}$ with $\dim M<$

$\dim N$ . We say that $f$ is gene$7^{\cdot}ic$ for the double points, if it is so in the sense of

Ronga [$\mathrm{R}$ , De’finition (p.228)]; in other words, if the 1-jet extension $j^{1}f$ : $Marrow$

$J^{1}(M, N)$ of $f$ is transverse to the submanifolds $\Sigma^{i}=\{\alpha\in J^{1}(M, N)|\dim \mathrm{k}\mathrm{e}\mathrm{r}\alpha$

$=i\}$ for all $i$ (i.e., $f$ is one generic in the sense of $[\mathrm{G}\mathrm{G}$ , p.144]) and if the l-

fold product map $f^{l}$ : $M^{l}arrow N^{l}$ is transverse to the diagonal $\delta_{N}^{l}$ of $N^{l}$ off the

super diagonal $\triangle_{M}^{l}=$ { $(x_{1},$
$\cdots,$

$x_{l})\in M^{l}|x_{i}=x_{j}$ for some $i\neq j$ } of $M^{l}$ for all

$l=2,3,4,$ $\cdots$ .

Note that the set of the proper maps of class $C^{r}(2\leq r\leq\infty)$ which are

generic for the double points is dense in the space $C_{\mathrm{p}\mathrm{r}}^{r}(M, N)$ of all proper maps

of class $C^{r}$ of $M$ into $N$ with the Whitney $C^{r}$-topology.

In the following, $\check{H}^{*}$ and $\check{H}_{*}$ will denote the \v{C}ech (or Alexander-\v{C}ech)
cohomology and homology respectively (see [ES, Sp, Wa, Gr], for example).

For a topological space $X,\check{\beta}i(X)$ will denote the dimension of the vector space
$\check{H}_{i}(X)$ over $\mathrm{Z}_{2}$ . Here we note that $\check{H}_{*}$ and $\check{H}^{*}$ are naturally isomorphic to

the singular homology and cohomology respectively for an ANR. In particular,

this is valid for manifolds. We denote by $\beta_{i}(X)$ the dimension of the singular
homology $H_{i}(X)$ and by $\tilde{\beta}_{i}(X)$ the dimension of the reduced singular homology
$\tilde{H}_{i}(X)$ .

The main result of this paper is the following.

THEOREM 2.2. Let $f$ : $Marrow N$ be a map of class $C^{2}$ which is generic for the

double points, where $M$ is a clos$edm$-dimensional manifold and $N$ is an n-
dimensional manifold with $k=n-m>0$ . Then $f$ is a differentiable $emb$edding
if and only if $w_{k}(f)=v(f)$ and $\check{\beta}m-k+1(M)=\check{\beta}m-k+1(f(M))$ .

The following is a direct consequence of Theorem 2.2 and the definition of
$v(f)$ .

COROLLARY 2.3. Let $f$ : $Marrow N$ be a map of class $C^{2}$ which is generic for

th$e$ double poin$\mathrm{t}s$ , where $M$ is a closed $m$-dimensional manifold and $N$ is an
$n$-dimensional manifold with $k=n-m>0$ . Suppose that either $f^{*}:$ $Hk(N)arrow$

$H^{k}(M)$ or $f_{*}$ : $H_{m}(M)arrow H_{m}(N)$ is th$e$ zero map. Then $f$ is a differentia $\mathrm{b}le$

$e\mathrm{m}\mathrm{b}$ edding if and only if $w_{k}(f)=0$ and $\check{\beta}_{m-k+}1(M)=\check{\beta}_{m-}k+1(f(M))$ .

As to the Betti number of the complement of the image of a map which is
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generic for the double points, we have the following.

COROLLARY 2.4. Let $f$ : $Marrow N$ be a $m\mathrm{a}p$ of class $C^{2}$ which is generic for
the doubl$\mathrm{e}$ points, where $M$ is a closed $m$-dimensional manifold and $N$ is an n-
dimensional manifold $\iota\nu\dot{I}\mathrm{t}hk=n-m>0$. Suppose that $\beta_{k}(N)=\beta_{2k-1}(N)=$

$\tilde{\beta}_{2k-2}(N)=0$ . Then $f$ is a differentiable $emb$edding if and only if $w_{k}(f)=0$

and $\tilde{\beta}_{2k-2}(N-f(M))=\beta_{k}-1(M)$ .

REMARK 2.5. When $N=\mathrm{R}^{n}-$ , we have the following: a map $f$ : $Marrow \mathrm{R}^{n}$

of class $C^{2}$ which is generic for the double points of a closed m-dimensional
manifold $M$ with vanishing k-th dual Stiefel-Whitney class $\overline{w}_{k}(M)(\in H^{k}(M))$

is an embedding if and only if $\tilde{\beta}_{2k-2}(\mathrm{R}n-f(M))=\beta_{k-1}(M)$ .

In the codimension-l case (i.e., the case with $k=1$), we have the following
converse of the Jordan-Brouwer theorem for maps which are generic for the
double points, which generalizes the results of [BR, BMSI, BMS2, Sael].

COROLLARY 2.6. Let $f$ : $Marrow N$ be a $m\mathrm{a}p$ of class $C^{2}$ which is generic for
the double points, where $M$ is a closed orientable $m$-dimensional manifold and
$N$ is a connected $(m+1)$-dimensional manifold with $H_{1}(N)=0$ . Then $f$ is a
differentiable embedding if and only if $\beta_{0}(N-f(M))=\beta_{0}(M)+1$ .

Note that, in the above corollary, $w_{1}(f)$ always vanishes, since $M$ and $N$

are orientable. Compare Corollary 2.6 with [Sae2]. See also Theorem 3.5 of the
present paper.

3. Proof of the main theorem

Proof of Theorem 2.2. Let $f$ : $Marrow N$ be a map of class $C^{2}$ which is
generic for the double points. Set $M(f)=\{x\in M|f^{-1}(f(x))\neq\{x\}\}$ and
$\Sigma(f)=\{x\in M|\dim \mathrm{k}\mathrm{e}\mathrm{r}dfx\geq 1\}$ , which are called the $\mathit{8}elf$-intersection $\mathit{8}et$ and
the singular set of $f$ respectively. Then, by Ronga [$\mathrm{R}$ , Th\’eor\‘eme 2.5], the closure
$A=\overline{M(f)}$ of $M(f)$ coincides with $M(f)\cup\Sigma(f)$ . (Here we note that, in [R],
maps are assumed to be of class $C^{\infty}$ . However, the same argument works also
for maps of class $C^{2}.$ )

First we suppose that $f$ is not a differentiable embedding. Then $A$ is not
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empty. Consider the following commutative diagram:
$\ldotsarrow\check{H}_{i+1}(A)$ $arrow$ $\check{H}_{i+1}(M)$ $rightarrow$ $\check{H}_{i+1}(M, A)$ $arrow$

$(f|A)_{*}\downarrow$ $f*\downarrow$ $f*\downarrow$

$...arrow\check{H}_{i+1}(B)$ $arrow\check{H}_{i+1}(f(M))arrow\check{H}_{i+1}(f(M), B)arrow$

$\check{H}_{i}(A)arrow$ $\check{H}_{i}(M)$ $arrow$ . . .
$(f|A)_{*}\downarrow$ $f*\downarrow$

$\check{H}_{i}(B)arrow\check{H}_{i}(f(M))arrow\cdots$ ,

where $B=f(A)$ . Note that each row is exact, since $(M, A)$ and $(f(M), B)$ are
compact pairs (see $[\mathrm{K}$ , ES]). Furthermore, since $f|M-A:M-Aarrow f(M)-B$ is

a homeomorphism, we see that $f_{*}$ : $\check{H}_{i}(M, A)arrow\check{H}_{i}(f(M), B)$ is an isomorphism

for each $i$ (see [ES, Chapter X, \S 5]). Hence, by a standard argument, we have

the following exact sequence:

$\check{H}_{m-k+1}(A)arrow\check{H}_{m-k+1}(B)\oplus\check{H}_{m-k+1}(M)arrow\check{H}_{m-k+1}(f(M))$

$arrow\check{H}_{m-k}(A)arrow\check{H}\alpha m-k(B)\oplus\check{H}_{m-k}(M)$ ,

where $\alpha=(f|A)_{*}\oplus j_{*}$ and $j$ : $Aarrow M$ is the inclusion map (for example, see
$[\mathrm{D}, \mathrm{p}.2])$ . Since $A$ is the image of a closed $(m-k)$-dimensional manifold by a
differentiable map $([\mathrm{R}])$ , we see that the topological dimension (for a definition,

see [HW] $)$ of $A$ is at most $m-k$ (see [Sar, Theorem 2 (p.173)] or [ $\mathrm{C}$ , Proposition

4]). Hence we have $\check{H}_{m-k+1}(A)=0$ (see $[\mathrm{H}\mathrm{W}$ , Theorem VIII 4 (p.152)]). We
also have $\check{H}_{m-k+1}(B)=0$ , since $B$ is the image of a closed $(m-k)$-dimensional

manifold by a composite of two differentiable maps. Thus we have the exact
sequence

$0arrow\check{H}_{m-k+1}(M)arrow\check{H}_{m-k+1(f}(M))$

$arrow\check{H}_{m-k}(A)-^{\alpha}\check{H}_{m-k()}B\oplus\check{H}_{m-k}(M)$ .

By [R], there exists a non-zero fundamental class $[A]\in H_{m-k}(A)$ in the

singular homology such that there exists an open dense subset $U$ of $A$ which is a
manifold of dimension $m-k$ and that the image of $[A]$ in $H_{m-k}(A, A-X)\cong \mathrm{z}_{2}$

is the generator for all $x\in U$ . Now consider the following comrnutative diagram:

$H_{m-k(A)}$ $rightarrow$ $\check{H}_{m-k(A)}$

$\downarrow$ $\downarrow$

$H_{m-k}(A, A-x)$ —- $\check{H}_{m-k}(A, A-x)$ ,
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where the horizontal homomorphisms are the natural ones and the vertical ones
are induced by the inclusions. Then we see that the lower horizontal homo-
morphism is an isomorphism by excision and hence that $[A]$ is non-zero also in
$\check{H}_{m-k(A)}$ .

LEMMA 3.1. We $h\mathrm{a}1^{\gamma}e(f|A)_{*}[A]=0$ in $\check{H}_{m-k}(B)$ .

Proof. Set $M_{2}(f)=\{x\in M|f^{-1}(f(x))=\{x, y\}$ with $x\neq y$ and $df_{x},$ $df_{y}$

are injective}. Note that $M_{2}(f)$ is nothing but the open dense subset $U$ of $A$

described above $([\mathrm{R}])$ . Set $A’=A-M_{2}(f)$ . Then we see that $A’=\Sigma(f)\cup$

$M_{3}(f)$ , where $M_{3}(f)=$ {$x\in M|f^{-1}(f(x))$ contains at least 3 elements}. Set-
ting $S(f)–f-1(f(\Sigma(f)))$ , we see that $f(A’)=f(\Sigma(f))\cup f(M3(f)-s(f))$ . Since
$j^{1}f$ is transverse to $\Sigma^{i}$ , we see that $\Sigma(f)$ is a finite disjoint union of differentiable
submanifolds of dimensions at most $m-k-1$ . Furthermore, since $f|(M-^{s(}f))$ is
a proper immersion with normal crossings, $M_{3}(f)-s(f)=M_{3}(f|(M-S(f)))$

is a disjoint union of countable number of manifolds of dimensions at most
$m-2k\leq m-k-1$ . Thus, using [HW, Theorem III 2], we see that the topolog-
ical dimension of $f(A’)$ is at most $m-k-1$ . This implies that $\check{H}_{m-k}(f(A’))=0$ .

Now consider the following commutative diagram with exact rows:

$\check{H}_{m-k}(A/)$ $arrow\check{H}_{m-k(A)}arrow i_{3}$ $\check{H}_{m-k}(A, A’)$

$(f|A’)*1$ $(f|A)_{*}\downarrow$ $(f|A)_{*}\downarrow$

$\check{H}_{m-k}(f(A’))arrow\check{H}_{m-k(B)}arrow i_{4}\check{H}_{m-k(}B,$ $f(A’))$ .

Since $i_{4}$ is injective, in order to show that $(f|A)_{*}[A]=0$ in $\check{H}_{m-k}(B)$ , we have
only to show that $(f|A)_{*3}\mathrm{o}i([A])=0$ in $\check{H}_{m-k}(B, f(A’))$ .

LEMMA 3.2. Let (X, $Y$ ) be a relative manifold; i.e., $X$ is compact and Hausdorff,
$Y$ is closed in $X$ and $X-Y$ is a (topological) manifold. Then we have a canonical
isomorphism $\check{H}_{i}(X, Y)\cong H_{i^{C}}(X-Y)$ .

Proof. Since $X-Y$ is a manifold, there exists a sequence of compact
codimension-O submanifolds $K_{0}\subset K_{1}\subset K_{2}\subset\cdots$ such that $K_{j}\subset \mathrm{I}\mathrm{n}\mathrm{t}K_{j+1}$ and
that $\bigcup_{j}K_{j}=x-Y$ . Then we have the isomorphism $\check{H}_{i}(X, Y)\cong\lim_{arrow}\check{H}_{i}(x,$ $X-$

$\mathrm{I}\mathrm{n}\mathrm{t}K_{j})$ by the continuity of the \v{C}ech homology theory (see [ES, p.261], for
example). The right hand side is isomorphic to $\lim_{arrow}\check{H}_{i}(X, x-Kj)$ , which is
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nothing but $\check{H}_{i^{\mathrm{C}}}(X-Y)$ by the definition, where $\check{H}_{*}^{c}$ denotes the \v{C}ech homology
with compact carriers. Since $X-Y$ is a manifold, which is an ANR, we have

the canonical isomorphism $\check{H}_{i^{\mathrm{C}}}(X-Y)\cong H_{i}c(X-Y)$ . This completes the proof.
$11$

Now since $(A, A’)$ and $(B, f(A’))$ are relative manifolds by [R], we have the

following commutative diagram, where the horizontal maps are isomorphisms by

Lemma 3.2:
$\check{H}_{m-k}(\mathrm{A}, A’)$

$arrow\theta_{1}$

$H_{m-}^{c}(kA-A’)$

$(f|A)_{*}\downarrow$ $\downarrow(f|(A-A’))_{\star}$

$\check{H}_{m-k(}B,$ $f(A’))arrow\theta_{2}H_{m-k}^{C}(B-f(\mathrm{A}’))$ .

Since $f|(A-A’)$ is a double covering, we see easily that $(f|(A-A/))_{*}\circ\theta_{1^{\circ}}i3([A])=$

$0$ in $H_{m-k}^{C}(B-f(A’))$ . Thus we have $(f|A)*^{\circ}i3([A])=0$ . This completes the

proof of Lemma 3.1. $||$

Now we consider $j_{*}[A]\in\check{H}_{m-k}(M)$ . Since $M$ is a manifold, which is an
ANR, we have the canonical isomorphism $\check{H}_{m-k}(M)\cong H_{m-k}(M)$ . Then, by

the commutative diagram

$\check{H}_{m_{\dagger^{k}}}-(A)arrow J"*\check{H}_{m-k}(M)\uparrow$

$H_{m-k(A)}rightarrow j_{*}H_{m-k}(M)$ ,

where the vertical homomorphisms are the natural ones, we see that $j_{*}[A]\in$

$\check{H}_{m-k}(M)$ with $[A]\in\check{H}_{m-k}(A)$ is identified naturally with $j_{*}[A]\in H_{m-k}(M)$

with $[A]\in H_{m-k}(A)$ . Then by [R], we see that $j_{*}[\mathrm{A}]=D_{M}(w_{k}(f)-v(f))$ ,

where $D_{M}$ : $H^{k}(M)arrow H_{m-k}(M)$ is the Poincar\’e duality isomorphism.

Now suppose that $w_{k}(f)=v(f)$ . Then we see that $[A]$ is a non-zero element

in $\mathrm{k}\mathrm{e}\mathrm{r}\alpha$ , which implies that

$\dim\check{H}_{m-}k+1(M)<\dim\check{H}_{m}-k+1(f(M))$ .

Hence we have proved that if $f$ is not a differentiable embedding, then either
$w_{k}(f)\neq v(f)$ or $\check{\beta}_{m-}k+1(M)\neq\check{\beta}m-k+1(f(M))$.

If $f$ is a differentiable embedding, then we know that $w_{k}(f)=v(f)$ and

we trivially have $\check{\beta}_{m-k+1}(M)=\check{\beta}_{m-k+1}(f(M))$ . This completes the proof of

Theorem 2.2. $||$
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REMARK 3.3. We do not know if Theorem 2.2 holds even if we replace $\check{\beta}_{m-k+1}$

by the usual $(m-k+1)$-th Betti number with respect to the singular homology.
This is true, if $f(M)$ is an ANR. For example, if $f$ is generic in the sense of
[GWPL], then $f(M)$ is triangulable and is an ANR. For details, see [BS2].

Furthermore, we do not know if Theorem 2.2 holds when $M$ is noncompact
and $f$ is proper. Note that in the proof above, we have essentially used the

compactness of $M$ in order to guarantee that the \v{C}ech homology sequences for
$(M, A)$ and $(f(M), B)$ are exact. Note also that the corresponding result for

generic maps in the sense of [GWPL] does hold (see $[\mathrm{B}\mathrm{S}2,$ \S 4]).

REMARK 3.4. In $[\mathrm{N}, \S 3]$ , $\mathrm{N}\mathrm{u}\tilde{\mathrm{n}}\mathrm{O}$ Ballesteros considers a class of $C^{\infty}$ proper maps
for which the topological dimension of $f(A)$ is smaller than or equal to $m-1$ ,

where he considers the case $k=1$ . Although his class is residual in $C_{\mathrm{p}\mathrm{r}}^{\infty}(M, N)$ ,
maps of this class should satisfy strong transversality conditions, and our class

of the maps which are generic for the double points is much richer. See the

example in \S 4, for example.

Proof of Corollary 2.4. First note that, since $H_{k}(N)=0$ , the hypotheses
of Corollary 2.3 are satisfied for $f$ . Now consider the following exact sequence
of singular cohomology:

$\tilde{H}^{2k-2}(N)arrow\tilde{H}^{2k-2}(N-f(M))arrow H^{2k-1}(N, N-f(M))arrow\tilde{H}^{2k-1}(N)$ .

Note that $\tilde{H}^{2k-2}(N)=0$ and $\tilde{H}^{2k-1}(N)=0$ by our assumptions and the

universal coefficient theorem. Furthermore, we have a canonical isomorphism
$H^{2k-1}(N, N-f(M))\cong\check{H}_{m-k+1}(f(M))$ (see [Gr, p.179]). Thus we have
$\tilde{\beta}_{2k-2}(N-f(M))=\check{\beta}_{m-k+1}(f(M))$ . Note ako that $\check{\beta}m-k+1(M)=\beta_{m}-k+1(M)$

$=\beta_{k-1}(M)$ by Poincare’ duality. Then, combining this with Corollary 2.3, we
obtain the conclusion. This completes the proof of Corollary 2.4. $||$

In the codimension-l case, using a result of [Sael], we obtain the following,
which is slightly stronger than Corollary 2.6.

THEOREM 3.5. Let $f$ : $Marrow N$ be a proper map of class $C^{2}$ which is generic
for the $dou\mathrm{b}le$ points, where $M$ and $N$ are connect$ed$ orientable manifolds of
dimensions $m$ and $m+1$ respectively. We suppose that $H_{1}(N;^{\mathrm{z}})$ is a torsion
group ($i.\mathrm{e}.$ , every element has finite order) or that $f_{*}[M]$ is a $\mathrm{t}$orsion element in
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$H_{m}^{c}(N;\mathrm{z})$ , where $[M]\in H_{m}^{c}(M;\mathrm{z})$ is a fundamental class of M. Then $f$ is a
differentiable embedding if and only if $\beta_{0}(N-f(M))=2$ .

Proof. First suppose that $f$ is not a differentiable embedding. Then we have
$M(f)\cup\Sigma(f)\neq\emptyset$ . On the other hand, by [R], we have $M(f)\cup\Sigma(f)=\overline{M_{2}(f)}$ .
Thus $M_{2}(f)\neq\emptyset$ . which implies that $f$ has a normal crossing point of multiplicity
2. Then by [Sael] together with our hypotheses, we have $\beta_{0}(N-f(M))\geq 2+1=$

$3$ .

If $f$ is a differentiable embedding, we see easily that $\beta_{0}(N-f(M))\leq 2$

and we also have $\beta_{0}(N-f(M))\geq 2$ by [Sael]. This completes the proof. $||$

REMARK 3.6. In [Hi], Hirsch has shown that, if $f$ : $Marrow N$ is a codimension-k
proper $C^{2}$-immersion and $H_{k}(N)=0$ , then $H_{k-1}(N-f(M))$ is non-trivial. This
is valid also for maps of class $C^{2}$ which are generic for the double points. More
precisely, let $f$ : $Marrow N$ be a map of class $C^{2}$ which is generic for the double
points, where $M$ is a closed $m$-dimensional manifold, $N$ is an n-dimensional
manifold with $k=n-m>0,$ $\dim H_{k-1}(N)$ is finite, and $H_{k}(N)=0$ . Then we
have the following.
(1) We always have

$\beta_{k-1}(N-f(M))(=\beta k-1(N)+\check{\beta}_{m}(f(M)))$

$\geq\beta_{k-1}(N)+\beta_{0}(M)$ .

(2) When $k=1$ and $M$ is orientable, the equality holds in (1) if and only if $f$ is
a differentiable embedding.
(3) When $k\geq 2$ , the equality in (1) always holds.
We can prove the above facts using the techniques developed in this section and
we omit the proof.

4. Example

In this section we give an example of a map which is generic for the double
points and whose image is not an ANR. In particular, this is an example of
a map which is generic for the double points but not generic in the sense of
[GWPL, $\mathrm{B}\mathrm{S}2$ ].

We will construct a smooth map $f$ : $(S^{2}\cross S^{1})\#(S2\cross S^{1})arrow S^{3}\cross S^{1}$ with
the desired property. Let $\varphi$ : $S^{2}arrow S^{3}$ be the stable map whose image is as

156



Figure 1

$t>0$ $t=0$
$t<0$

$\psi_{t}(S^{2})$

Figure 2

in Figure 1. Note that $\varphi$ has exactly two singular points, which are cross cap
points. Now consider a smooth family of embeddings $\psi_{t}$ : $S^{2}arrow S^{3}(t\in \mathrm{R})$

whose images intersect $\varphi(S^{2})$ as in Figure 2. Note that, for every $t$ , the map
$\varphi\cup\psi_{t}$ : $S^{2}\cup S^{2}arrow S^{3}$ is generic for the double points. Now choose an arbitrary
smooth function $\alpha$ : $S^{1}arrow \mathrm{R}$ and consider the smooth map

$F=(\varphi\cross \mathrm{i}\mathrm{d})\cup\Psi$ : $(S^{2}\cross S^{1})\cup(S^{2}\mathrm{x}S^{1})arrow S^{3}\cross S^{1}$ ,

where $\Psi$ : $S^{2}\cross S^{1}arrow S^{3}\cross S^{1}$ is the smooth map defined by $\Psi(x, y)=$

$(\psi_{\alpha(y})(x),$ $y)$ . Finally we perform the connected sum operation to $F$ so that
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$A_{y}$

$\alpha(_{\mathrm{t}})>0$

$\alpha(y)=0$
$\alpha(y)<0$

$\sigma_{1}$

$\sigma_{?}$

$B_{y}$

$\sigma_{2}$

$\sigma_{4}$

$o_{6}$

Figure 3

it creates no new multiple points nor $\sin_{b}\sigma \mathrm{u}\mathrm{l}\mathrm{a}\mathrm{r}$ points. The resulting map is de-

noted by $f$ : $(S^{2}\cross S^{1})\#(S^{2}\cross S^{1})arrow S^{3}\mathrm{x}S^{1}$ . Note that $f$ is always $\circ\sigma \mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{C}$

for the double points. However, $f$ is not generic in the sense of [GWPL] if
$\alpha(S^{1})$ contains $0$ . Furthermore, the closure $A=\overline{M(f)}$ of the self-intersection
set of $f$ consists of “two parts”, each of which is a 1-parameter family of 1-
dimensional objects parametrized by $S^{1}$ . More precisely $A= \bigcup_{y\in S^{1}}(A_{y}\cup B_{y})$ ,

where $A_{y}$ and $B_{y}$ are as in Figure 3. Note that $\sigma_{i}\in\Sigma(f)(i=1,2, \cdots, 6)$ ,

$f(s_{1})=f(\sigma_{3}),$ $f(s_{2})=f(\sigma_{4}),$ $f(t_{1})=f(t_{3})=f(t_{5})$ , and $f(t_{2})=f(t_{4})=f(t_{6})$ .

For example, if we take a smooth function $\alpha$ : $S^{1}arrow \mathrm{R}$ such that $\alpha^{-1}((-\infty, 0))$

has infinitely many components, then $H_{*}(A)$ is not finitely generated, and con-
sequently $A$ is not an ANR. In this case, the image $f((S^{2}\cross S^{1})\#(S^{2}\cross S^{1}))$ is not

an ANR, either. If we take a smooth function $\alpha$ : $S^{1}arrow \mathrm{R}$ such that $\alpha(y)\geq 0$ for

all $y\in S^{1}$ and $\alpha^{-1}(0)$ is a Cantor set, we see that $A-\mathit{1}\mathrm{w}_{2}(f)$ has uncountably

many connected components.
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More generally, usin$g$ a smooth function $\beta$ : $Marrow \mathrm{R}$ of a smooth closed
manifold $M$ , we can construct a smooth map $(S^{2}\mathrm{x}M)\#(s^{2}\mathrm{x}M)arrow S^{3}\mathrm{x}M$

which is generic for the double points but which is not generic in the sense of
[GWPL].
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