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Cubic hyper-resolutions of analytic varieties
with hypersurface ordinary singularities
of dimension < 5

SHOII TSUBOI (3E##E—) ) '
Dept. of Math., College of Arts and Sciences, Kagoshima University

§1 Hypersurface ordinary singularities of dimension <5

Let (Y",0) C (C**!,0) be a pure-dimensinal hypersurface germ and let
v: (X" v~ (o)) — (Y 0) be the normalization map. We define f := tov :
(X", f~1(0)) — (C™*1,0), where ¢ : (Y™, 0) C (C*t1,0) is the inclusion map.

1.1 Definition. we say (Y",0) is an ordinary szngula.'rzty if

(1) (X™, f~Y(0)) is non-singular, and s

(ii) f :=vov : (X7, f1(0)) — (C"t,0) is szmultaneously stable, i.e., small
deformation of the multi- -germ f of a holomorphic map is trivial.

~ For an ordinary smgularlty (Y™, 0) C (C™1,0) Wlthf Lov ((X™, f71(0))
— (€™ 0) being the same as above, we put '

1(0) = {p1,p2-- , Pk},

R(f)Pl = 0)‘ »Pi /f M, - OXJ’:
(1 <2 <Lk, m, is the maximal ideal of Ocn+l o)y and

Ci:={ge€ X"IR(f)q ~ R(f);;} (contact class of f at p;).

1.2 Prop051t1011({8 Proposition 7.1], [5]). f:=tov: (X", f~(0)) —
(C**1)0)) is szmultaneously stable iff both of the following conditions are satis-
fied:

()fi = fipe 1 (X, pi) — (C™*1,0) is stable for any i (1 < i < k),

(”) (df)m(TCI 1 )’ HRE (le)Pk(TCk ,Pk) are in genaral Posjﬁ(m in TC"‘H,or
where Tc, p; denotes the tangent space of C; at p; and so on. .

1.3 Proposition([7]). Let f : (C*,0) — (C™,0) be a holomorphic map
germ Assume that (1) (n,m) € {nice range}(cf. [6]), (ii) n < m, and (iii)
n < 2m + 1. Then f is stable iff R(f), is isomorphic to one of the following
C-algebras: :

Ao :=Clz]/(z), Are=Clla)l/(z?), Ap:= C[[ﬂc]]/(w3)-

When n < m, the normal forms of holomorphic maps f with R(f), >~ A,
(0 £ £ < 2) are given as follows (cf. [4]):
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(1)In the case of R(f), =~ Ag :

, { yiof=2z; (1<i<n)
yiof=0(n+1<i<m),

(ii)In the case of R(f)o =~ A1:

yiof=z; (1<i:<n-1)

ynof=mfl
Yntiof =zizn, (1<i<m-n<n—1),

(iii)In the case of R(f)o =~ Aa:

yiof=z; (1<i<n-1)
yno f =23 + z12,
CYnti0 f = 22iTn+ T2i4122 (1<i<m—n, 2(m—-n)+1<n-1).

1.4 Remark. When m = n+ 1, (n, m) satisfies the conditions (i), (ii) and
(ii1) in Theorem 1.3 iff 1 < n < 5, and the case (iii) above occurs only when
n=4,5. '

Using these facts, we can calculate the defining equations of ordinary sin-
gularities of dimension< 5.

1.5 Proposition([8]). The defining equations of hypersurface ordinary
singularities of dimension n < 5 in C"*! are given as follows:

)n=1: in =2 uin = 3: .
a)1 y1=0 a)k _yy1-~-yk=0(15k§3) G)k Y1y =0(1<k<4)
a)z y1y2=0  b) y} —y3ys =0 b) yi —y3ys = 0

a)1 +0) ya(yf —y3ys) =0
wi)n =4:
a)k y1 Yk =0(1<k<5)
b) yi—y3ys =0
a)1+b) ya(yf —y3ys) =0
a)2 +b) yays(yf —y3ys) =0
) 2+ 2y1ysy? + (viv§ — 3y2ysva + v1v2)ys — {y3va + y2(y3 + v1y3)}ya =0
iv)n=>5: o
a)k Y1+ yx =0 (1 <k <6)
b) yi —y3ys =0
a)1+b) ya(yi —viys) =0
a)s +b) yays(vi —y3ys) =0
a)s+b) yaysys(yi — y3ys) =0
b) +b) (v — y3ys)(vi — v3ys) =0



¢) y2+ 2y1vay? + (viy? — 3yoyaya + vivd)ys — {v3vs +v2(v3 +v193)}ya =0
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a)1 + ¢) ys[yd + 2v1ysy? + (viy2 — 3yaysys + v1v3)ys — {v3va + v2(¥3 + v1y¥)}ya] =0

PROOF: For example, we shall show how the equation iii) c) follows. In the case
of n=4, the normal form of a holomorphic map f with R(f), ~ A, is given by

(1.1) yg 0 f=2a3+az4

ys 0 f = Tozy + T322.

Substituting £1 = y1, 72 = y2,z3 = y3 into the last two equations, we have

{ zi+y12e —ya=0
Y3z2 + y2z4 —ys = 0.

We regard this as a simultaneous equation for z, with coefficients in the poly-
nomial ring Cly;,- -+ ,ys). To eliminate z4, we calculate the resultant

1 0 y1 -y O
0 1 0 Y1 —Y4
ys y2 —-ys O 0
0 w3 y2 -ys O
0 0 y3 y2 -ys

of the equation(cf. [12, Chapter 11]). Then we get the equation iii) c) in the
proposition. For more details, see [8].

Q.E.D.

§2 Cubic hyper-resolutions of hypersurface ordinary singularities
of dimension < 5
We denote by Z the integer ring.

2.1 Definition. For n € Z with n > 0 the augmented n-cubic category,
denoted by O}, is defined to be a category whose objects Ob([J}) and the set
of homomorphisms Hoth(a” /H) (O{ = (CY(), Qy," ", an)) ﬂ = (:80’ ﬂl) e 7ﬂn) €
Ob(O})) are given as follows:

Ob(Dj{) = {a = (ag,a1, -+ ,a,) € Z"1 |0 < @; <1 for 0<i <n},

a — f (an arrow from a to ) fa; < Pifor0<i<n

0 otherwise.

Homp+ (a,B) := {



For n = —1 we understand (¥, to be the punctual category {*}, i.e., the
category consisting of a single point.

Notice that Ob([J}) can be considered as a finite ordered set whose order
is defined by a < 8 <= a — B for a, 8 € Ob(O}).

2.2 Definition. A O}-analytic variety is defined to be a contravariant
functor X. from OF to the category of complex analytic varieties (An/C). It is
also called an augmented n-cubic analytic variety.

2.3 Definition. Let X.,Y. be O -analytic varieties. We define a morphism
®.: X. — Y. to be a natural transformation from the functor X. to the one Y.
over the identity functor id : O} — O7F.

2.4 Definition. For a 007 -analytic variety X., a contravariant functor Y.
from O7F to the category of O} -analytic varieties is called a 2-resolution of X.
if Y. is defined by a cartesian square of morphisms of [0} -analytic varieties

Y1, — Yo

(2.1) | |1

g s
Yi0. — Yoo,

which satisfies the following conditions:
(i) Yoo. = X,
(i) Yo, is a smooth OO} -analytic variety, i.e., a contravariant functor
from [J; to the category of smooth analytic varieties,

(iii) the horizontal arrows are closed immersion of (0} -analytic varieties
(iv) f is a proper morphism between O} -analyitc varieties, and

(v) f induces an isomorphism from Yy 5 — Y118 to Yoop — Y10p for any

B € Ob(OF). ‘

We think of the cartesian square in (2.1) as a morphism from the O}, ;-
complex analytic variety Y7.. to the one Yp.. and write it as Y3.. — Yp... For a
2-resolution Z. of Y;.., we define the OO} ;-analytic variety rd(Y., Z.) by

Zy. — Zor.
rd(Y., 2.) == l l
Z](). —_— Y()

and call it the reduction of {Y., Z.}.

2.5 Definition. Let X be an analytic variety and let {X.1, X.2,--. | X."}
be a sequence of (J; -analytic varieties X7 (1 < r < n) such that
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(i) X! is a 2-resolution of X,
(i) X+ is a 2-resolution of X{ for 1< r <n-1
Then, by induction on n, we define
C Zo=rdXL X2 X )= rd(rd(X X2 XN, XU,

With this notation, if Z, are smooth for all « € [J,, we call Z. an augmented
nhcub»ici'hyper-resolutio'n of X. \

N 2 6 Definition. We call the cartesian square in (2. 1) ‘the 2-resolution of
X. by normalization if it satisfies that (i) f : Yo1. — Yoo is the normahzatlon,
(ii) Yio. is the discriminant of f (i.e., the smallest, closed D"'— ana,lytlc variety
of Yoo with Yo] - I(Yw ) ~ 1’0 - Y; 10- ), and (lll)) 11. = f (Ylo )

2.7 Deﬂmtlon Let A be an analytic vanety If there exists an augmented

n-cublc hyper-resolution Z. := = rd(X.1, X2, ") of X such that X."*! is
the 2-resolution of XJ. by normahzat:on for every rwith0 <r<n- 1 (we
understand X{ = X), then we say that an augmented cubic hyper—resolutlon of
X is obtained by swuccessive normalzzatw'ns ,

2.8 Example. Let (Y,0) C (C5,0) be the hypersurface ordinary singularity
defined by the equation iii) c¢) in Proposition 1.5. We shall show that an aug-
mented cubic hyper-resolution of Y is:.obtained by successive normalizations.
The map f := tov.: (C*,0) — (C®, 0), the composite of the normalization
v :(C%,0) — (Y, 0) and the inclusion ¢ : (Y,0) C (C5, 0),’is given by (1.1). Let
’ Di(f)={z e C {f~ (f(l‘))>l} (1=2,3)
denote the i-ple pomt locus of f and let k . N

Di(Y):={y €Y| py(Y) 21}, (:=2,3)
denote that of Y, where p,(Y") is the multiplicity of Y at y € Y. By calculation,
we can see that each of these loci is defined by the following equation:
(2.2) Dy(f): 23 (T3T4)I?+$§($Z+.’El)_0
(this equation follows from that a point p € C* belongs to D')( f) iff the equatlon
f(p) = f(z) has other roots than p), .

| , . Dg(f) D X =23 = 0,
(2.3) ~ Da(Y): yays +y3 +yiyi =vyays +yiya =0
(since Dy(Y) = ‘f(Dg(f)), we obtain this by eliminating z;,--- , 24 from the
equation of D,(f) in (2.2) and the equation in (1.1)),
D3(Y): ya=y3=ys =0.
Note that Sing(Dy(f)) = Ds(f) and Sing(Dy(Y)) = D3(Y'), where Sing(Z)

denotes the singular locus of Z = Dy(f), D2(Y). We definea O; -analytic variety
X! to be
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X}y o= Da(f) 5 €* =t X
(2.4) #x=="uozml 1:4
Xy = Da(Y) — Y = Xjy,
i

 where v; := v, the normalization of Y, and the horizontal arrows are inclusions.
This diagram is nothing but the 2-resolution of Y by normalization. We regard
the map p : Dao(f) — D(Y) as a Of -analytic variety. We are now going to
show that a 2-resolution of the [(Jf-analytic variety u; : Da2(f) — Do(Y) is also
obtained by normalization.

Step(1) First, we shall show that the strict transform D2 (Y)* of D2(Y) by

the blowing-up o : €5 — C® of C5 with non-singualr center D3(Y) becomes
non-singular, and that the restriction map vy := o|p,(v)s : D2(Y)* — Dq(Y)
is the normalization. We put

g1 := Yays + y2 + n1y?,
g2 ‘= Yays + y§y4

(cf. (2.3)) and let Ip,(y) denote the ideal sheaf of D2(Y) in Og¢s, which is
generated by g; and g, as a O¢s-module. Here we should note that Buchberger’s
algorithm to compute the (reduced) Groebner busis of an ideal of the polynomial
ring (cf. [2, Chapter 2, §7]) works as well for computing the standard basis
(cf. [1, Corollary 4.2.1]) of an ideal of the convergent power series ring. Hence,
applying this algorithm to {g1,92}. := Ip,(v),0 the stalk of Zp,(y) at the origin
o € C3, we can find that g;, g, and

93 = Y3 — Y3ys +y1y2y3

constitute the standard basis of Ip,(y),0- Since pp,(y),o(9i) = Ho(9i),t =1,2,3,
where 4 p,(y) 0(g:) denotes the multiplicity of g; along D3(Y") at the origin 0 €
C®, which is defined to be the largest u such that the germ of g; at o belongs
to (Zpy(y),0)", the stalk Ip,(y)- . of the ideal sheaf Zp,(y)- at ¢ € 07'(0) is
generated by the strict transforms ¢} of g;,1=1,2,3,by o asa Oés’o—module ({1,
Lemma 7.1]). In fact, calculating in terms of local coordinates, we can see that
Ip,(y)* 2 € € 07 (0), is generated by ¢}, g3 since g3 = y291—y392. The blowing-
up o : C5 — C® of C5 with non-singular center D3(Y) : yo = ys = ys = 0 is
explicitly described as follows:

65 = {(yla 7y5) X (62 : 63 : 65) € C5 X P2| y1£J —y]é.l = Oviyj =27375}7

o= Prcslc*s :C5 — Cs,the restriction of the projection Pl‘c5 : Cs X P2 — C5 to C5.
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Let Ui, i = 2,3,5, denote the open subset of C5 defined by & # 0. On Us, we
can take (y1,ys, Y1, 2, us) as a local coordinate system, where u; = %,i = 2,5,
and o is written as

g: (yl,y3,y4,1£2,11~5) - (ylay3u27y3)y4ay3u5) = (yl’y2a Y3, Y4, y5)

in term of this local coordinate system. Hence the strict transforms g7,g3 of
91,92 by o is given by

9i = y32 (07 (g1)) = us +u3 +y1,
(2.5)

93 = y3 (07 (g92)) = vs + uzus.
Since the rank of the Jacobian matrix 9(g7,¢3)/0(y1,ys, Y4, u2,us) is maximal
throughout D,(Y)* N U;, we conclude that Do(Y)* is non-singular in U;. By
(2.5), the map vqqip,(v)ynus * D2(Y)* N U; — D2(Y) N o(Us) is obviously

a finite map. Therefore, vagp,(vyrnu, @ DY )* N Uz — Do(Y) N o(Us) is
nothing but the normalization, since 159 gives rise to an isomorphism between

D;(Y)*NU; — o~ }(D3(Y)) and Do(Y) N o(Us) — D3(Y). On other U;,i = 2,5, .

we can also check that D»(Y)* N U; is non-singular and the map vy p,(yye nu; :
D,(Y)Y*NU; — DyY)nN o(U;) is the normalization. Hence the map vy :
Dy(Y')* — D»(Y') is the non-singular normalization of D,(Y").

Step(2) Secondly, we shall show that the normalization of D(f) is non-
singular. The defining equation of Dy(f) in (2.2) is transformed as follows:

o3 + (z3v4)rz + 23(2f + 21)

= {z2+ %333554 +4/—T1 — %12 -z3H{ze + ';1_;3331734 — 4/ —Z1 - %xf -3}
= (2 + Vay)(z — Vay) = 2* — 2y,

where z = —x; — 3z}, y := T3, z := T3 + 3z374. Note that Ds(f) is
given by y = z = 0. The map vy; : Do(f)* := C* — Dy(f) C C* defined by
(u,v,24) — (u?,v,uv,24) = (2,y, 2,24) is the normalization of D2(f), since vq;
gives rise to an isomorphism between Dy(f)* — {v = o} and Dy(f) — D3(f).
Therefore the normalization of Dy(f ) is non-singular

Step(3) We consider the following diagram:

I

Do(Y)* ———— Dy(f)*

a0 l l Va1

Dy(Y) —— Dalf),

where /i is the lifting of 1;. This gives the normalization of (Jf -analytic variety
p1 2 Da(f) — Dy(Y) and, further, gives rise to the following 2-resolution of it:
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(2.6)

where 24, J2a, @ = 0, 1, are inclusion maps, and A; :=

Since all of Do(Y)*

non-singular, replacing 1,

16

an‘ = ”21 (D3(f)) D2(f) ; =1 Xgli
/\~1 a1 1
Ano = ¥y (DB(Y)) D, (Y)* =: Xglo
K20 121 V20 \V21
X1201 D:'-(f) “>D2(f) = 001 = Xu
A H1
Xfoo = D3(Y) —————— DoY) =: Xgo = X1,

t20

y D2(f

/11|D

C* —

o) A1 = g, 2 (Ds()

. Da(Y), Da(f), v (Ds(Y)) and vy} (Da(f)) are
" Dy(f) — Da(¥) by 1y :

Y (this means to form

the reduction of (2.4) and (2. 6)) we obtain the following cubic hyper-resolution

of Y:

v (Ds(f)) —2—— Du(f)?

A K21

vao (Ds(Y)

Nt

H20

Ds(f)

Ay

Y

~

H1

J20

—————— Dy(Y')*

il O Voo

i1 9

Dy(Y)

i] Oizo

J1 0V

-t

151

Therefore we conclude that an augmened hyper-resolution of Y is obtained
by successive normalizations.



. 2.9 Remark. The various singular point loci of the map f in Example 2.8
are described as follows: , . S o ‘ -

Do (1) -Dsm: X,= X3 =0 .

‘pl

~ Z'°nDy(y)

I = -3z

(‘)p] P2 are together pushed down 1o ¢
© the singulrity w(zy"' - z:')- =0.C3-
'

Cai={c€C | R(f). ~ A} (i=0,1,2),
Li={zeC|dimKerdf, =i} (i = 0,1),
Shii={z €T | dimKerd(fim). =i } (i =0,1),
L0 = {2z e BI | dim Kerd(fizs11). =0 }.

2.10 Theorem. Let X be an analytic variety with hypersurféqe ordinary
singularities of dimension < 5, then a cubic hyper-resolution of X is obtained
by successive normalizations.

PROOF: In the similar manner to prove Proposition 2.15 in [10, I], we can prove
this, using the calculation in Example 2.8 above.

Q.E.D.

As a by-product, we obtain the following.

2.11 Corollary([10),[11]). Let 7 : X — M be a locally trivial family of
compact complex projective varieties with hypersurface ordinary singularities of
dimension < 5, parametrized by a complex manifold M. We define Ri(7) ==
R'z,Zx (modulo torsion) (0 < £ < 2(dimX-dimM)), R&(ﬂ’) = RY(7) ®z1 Q
and RE(7) := Rln, (nOp) ~ Rew*(DRk/M), where 7Oy is the topological
inverse of the structure sheaf of M by the map = : X — M and DR'x/M the
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cohomological relative de Rham complex of the family 7 : X — M. Then
there exist a family of increasing sub-local systems W (weight filteration) on
R&(w and a family of decreasing holomorphic subbundles F (Hodge filteration)

on Ry, (m) such that {R%(ﬂ’),(waz),W[L’]),(Rﬁ,(w),W[E],F)} is a variation of

mixed Hodge structure , where

| denotes the shift of the filteration degree

to the right by ¢, i.e., W[{], := W _,.

10.

11

12.
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