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The Kuo condition, Thom’s type mequahty and
(c)-regularity

Karim Bekka and Satoshi Koike (/N1 E])

1 Introduction

Given a C* mapping f : R® — R? with f(0) = 0, let. us.consider. the behavior of f or the
form of the zero set f~1(0). Even locally, they are very complicated in general. Therefore
it is natural to ask when we can truncate f so that the behavior or the form of the zero-set
of the truncation is similar to that of f. This problem concerns the property of sufficiency
of jets. Roughly speaking, sufficiency of jets is the property that all mappings with the
same truncation have the same structure.

We review some results on sufficiency of jets. Let Ej(n; p) denote the set of C* map-
germs : (R*,0) — (R?,0), let 57f(0) denote the r-jet of f at .0 € R™ for f € &(n,p),
and let J"(n,p) denote the set of r-jets in & (n,p) (s > r). We say f,g € &) (m, p)
are C%equivalent, if there is a local homeomorphism o : (R* 0) — (R",0) such that
f = goo. We further say f,g € & (n, p) are V-equivalent (resp. SV-equivalent), if f~ 1(0)
is homeomorphlc to g~1(0) as germs at 0 € R™ (resp. there is a local homeomorphism

: (R™,0) — (R™,0) such that o(f~1(0)) = g7!(0)). We call an r-jet w € J"(n,p)
Co-sufﬁcient (resp. V-sufficient, SV-sufficient) in &(n,p) (s > r), if any two maps
f,9 € &Eu(n,p) with j7f(0) = j7g(0) = w are (CPequivalent (resp.’ V-equivalent, SV
equivalent). Concerning C?-sufficiency of jets in the function case (i.e. p=1), we have

Theorem 1.1 (N.Kuiper [Kui], T.C Kuo [Kul], J.Bochnak-S.Lojasiewicz [BoLo])
For f € Epy(n, 1), the following conditions are equivalent.

(1) w=j"f(0) is Co—suﬂiczent in Eyy(n, 1). | |
(2) (The Kuiper-Kuo condition.) There are positive numbers C,a > 0 such that

|grad f(z)| > C’ler_l for |z|] <.
Remark 1.2 The similar criterion for C°-sufficiency of r-jets in Epy1)(n, 1) to Theorem
1.1 is given in [Kul], [BoLo|. This condition has r — 1 replaced by r — 6, with § > 0, in
Theorem 1.1. '

At almost the same time as Kuiper and Kuo, R.Thom gave the following



42

Theorem 1.3 (R.Thom [T))
Let f € Eyy(n,1). If (the Thom condition.) there are positive numbers K, 3 > 0 such
that

Sl — 5,2 ey @) > Klal for ol <8

i<y j
then w = j7f(0) is CO-sufficient in Eyy(n,1).

On the other hand, concerning V-sufficiency of jets, we have

Theorem 1.4 (T.C.Kuo [Ku2))
For f € Epy(n,p) (n > p), the following conditions are equivalent.

(1) w = j"f(0) is V-sufficient in Eyy(n,p).
(2) (The Kuo condition.) There are positive numbers C, o, w such that
d(grad fi(x),. .., grad fo(z)) > Clz|"*
in H,(f;@) N {J2] < a}.
In Theorem 1.4, H,(f;w) denotes the horn-neighbourhood of f -1(0),
Hy(f;w) = {z e R": |f(z)| < wlz|"},

and
d(v,...,vp) = mlin{distance of vitoV;}

where V is the span of the v;’s, j # 1.

Remark 1.5 The similar criterion for V—suﬁicienby of r-jJets in Ep1)(n, p) is also given
in [Ku2].

Throughout this note, we denote by p : R®* — R the function defined by
plx)=x2+.. . + 22

R.Thom [T] introduced the following condition for f € & (n,p) (n > p) which gener-
alizes the Thom condition in Theorem 1.3 :
There are positive numbers K, 3,a > 0 such that

Z | D(f1,..., fp;P) ($)|2+ifz2<x) > Klz|* for |x| <p.

1<61 <. <ipyp1<n D(xzi,, . .. ,xi,,+1)~

We call this kind of inequality Thom’s type inequality. He announced that a condi-
tion on Thom’s type inequality implies SV-sufficiency of jets ([T]). In the mapping case
(i.e p > 2), this condition is not necessarily economical, comparing to the Kuo condi-

tion in Theorem 1.4. Recently, D.J.A.Trotman and L.C.Wilson [TrWi] (see [Wi2] also)
proved that V-sufficiency and SV-sufficiency are equivalent, using (t")-regularity in the
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stratification theory. Therefore, the Kuo condition is also equivalent to SV-sufficiency of
jets.

In [B1] the first author introduced the notion of (c)-regularity which is weaker than
Whitney (b)-regularity, and he showed that the (c)-regularity condition implies topological
triviality. In this note, we give a characterization of (c)-regularity (Theorem 2.4). By using
it, we can show that the Kuo condition in Theorem 1.4. implies the (c)-regularity condition
(Theorems 2.7, 2.8). As a result, we get a different proof of the Trotman-Wilson’s result
(Corollary 2.9). In the proof of the result, Thom’s type inequality takes a very important
role. Apart from this, some condition on Thom’s type inequality is equivalent to a similar
condition on other type inequality (Theorem 2.14). By this result, we can see that the
Thom condition in Theorem 1.3 is equivalent to the Kuiper-Kuo condition in the function
case (Corollary 2.16). In other words, we can understand that Thom also has given the
same result as the Kuiper-Kuo theorem. As another corollary of this, we get a result on
Fukuda’s ideal ([Fu]).

This work was done during the time the second author was visiting Rennes. He would
like to thank ’Université de Rennes 1 for its support and hospitality. The authors would
like to thank Tzee-Char Kuo for useful communications.

Here we describe only the results. Details will appear elsewhere.

2 Main results

Let M be a smooth manifold, and let X, Y be smooth submanifolds of M such that
Y CX.
Definition 2. 1
(i) (Whitney (a)-regularity):
(X,Y) is (a)-reqular at yo € Y if :
for each sequence of points {x;} which tends to yo such that the sequence of tangent spaces

{T:, X} tends in the Grassmann space of dim X -planes to some plane 7, then T),\)Y C .
We say (X,Y) is (a)-regular if it is (a)-regular at any point yo € Y.

(i1) ((c)-regularity):
Let p be a smooth non-negative function such that p~'(0) =Y. (X,Y) is (c)-regular at

yo € Y for the control function p if :

for each sequence of points {x;} which tends to yo such that the sequence of planes
{Kerdp(z;) N Ty, X} tends in the Grassmann space of (dim X — 1)-planes to some plane
T, then Ty, Y C 7. '

We say (X,Y) is (c)-regular for the control function p if it is (c)-regular at any point
yo €Y for the control function p.

Remark 2.2 If (X,Y) is (c)-regular at yo € Y for some control function p then it is
(a)-regular at yo € Y. '

We suppose now that M is endowed with a riemannian metric .



44

Let (Ty,n,p) be a smooth tubular neighbourhood for Y together with the associ-
ated projection and a smooth non-negative control function such that p~1(0) = Y and
grad p(z) € KG’I‘d’IT(:L”) ’

Deﬁmtlon 2.3 We say (X,Y) satisfies condition (m), if there exists some positive num-
ber € > 0 such that (m,p)|xnrs : X NTy, — Y x R is a submersion, where Ty, = {z €

Ty| p(x) <e}.
Then we can charactemze (c)- regularlty as follows

Theorem 2.4 - The pair (X Y) is (¢)-regular at yo € Y for the function p if and only if
(X,Y) is (a)-regular at yo € Y and satisfies condition (m).

Remark 2.5 In [B2) @e have another characterization of (. c)—regularity in terms of vec-
tor fields.

This theorem is a useful criterion for (c)-regularity.

Example 2.6 Let f; : (R®,0) — (R?,0) (|t| < ¢) be a deformatz’on‘ofva C™ mapping
f = fo with j"f;(0) = j"£(0). Assume that there are positive numbers ¢, > O such that

e Z T

1<i1<...<ipy1<n

P

(@) + D fi () = claf
=1 o

for |z| < a. Then there is 3 > 0 such that

22 > ipelelep. s ) > far

1<i1<...<ipp15n D(xiu s axzp+1)

for|z| < B and |t <e

We define F : (R” x (—¢,¢), {0} X (—¢,€)) — (RP,0) by F(z,t) = fi(x). Set X =
F~1(0) — {0} X (—e¢, e) and Y = {0} x (—¢,€). The following conditions follow from
condition (2.2) : ‘ . :

(2.3) lgradsFi| > Sla™ on X n{|| < B} (1 <i <p)
: : D(Fl_a"'aFP’ﬁ)
R

1<i1<...<ipp1<n

(z, 1) # 0 on X N {lz| < B}.
'x":p+1)
Then (2.3) implies (X,Y) is ( a)-reqular and (2.4) implies (X ,Y') satisfies condition (m).
Therefore it follows from Theorem 2.4 that (X,Y) is (c)-regular.

Using Theorem 2.4 we can further show that Kuo condition implies (c)-regularity. Let
f: (R*0) — (RP,0) (n > p) be a C" (resp. C"™') mapping, and let J be a bounded
open interval containing [0, 1]. For arbitrary g € Ey(n, p) (resp. Ep41(n, p)) with j7f(0) =
j7g(0), define a C" (resp. C™*!) mapping F' : (R™ x J,{0} x J) — (R?,0) by F(z,t) =
f(z)+t(g(z)—f(x)). We remark that the Kuo condition guarantees that F~1(0)—{0} x J is
smooth around {0} x J. Therefore L(R*Xx J) = {R"XJ—F"~ l(0) F1(0)—{0}xJ,{0}xJ}
gives a stratification of R™ x J around {0} x J.

Then we have
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Theorem 2.7 If there are positive numbers C, o, w > 0 such that
d(glradfl(x)’ s ,gradfp(a:)) > Clxlr_l
in H,(f; @) N {|z| < a}, then the stratification L(R"™ x J) is (c)-regular. .

Theorem 2. 8 If, for any polynomial mapping h of degree v + 1 realizing j” f (0), there
are positive numbers C, a, w,8 > 0 such that

d(grad fi(z),. .., grad f,(z)) > Clz|""?
in Hep1(h; @) N {|z] < o}, then the stratification L(R™ x J) is (c)-regular.
As a corollary we get the Trotman-Wilson’s Theorem ([TrWi], [Wi2]):

Corollary 2.9 For a given jet z € J"(n,p) the following conditions are equivalent.
(A) z is V-sufficient in Ep(n,p) (resp. Epyy(n,p))-
(B) z is SV-sufficient in Eyy(n,p) (resp. Epyy(n,p)).

Remark 2.10 T.C.Kuo [Ku2] proves that in the analytic case the condition in Theorem
2.8 implies, the stratification X(R™ x J) ts Whitney (b)- regular

We must introduce some notion for C" map germ
f: (R™0)— (RP,0). Given a map g € &(n,p) with j7g(0) = j’"f(O) let f; : (R*,0) —
(R?,0) denote the C™ mapping defined by f;(z) = f(z) + t(g9(z) — f(z)) for t € [0, 1].

Definition 2. 11 A condition (*) on a C™ map f is r—compatible in the direction g, if
f: satisfies condition (x) for any t € [0,1].

If condition (x) is r—compatible in any direction g € &y(n, p) with j7g(0) = J’” 7(0),
we simply say condition (%) is r—compatible.

Remark 2. 12 Let conditions (x) and (xx) be r—compatible (or uniformly r—compatible
in the sense of Example 2.13).

If (x) and (xx) are equivalent in the C* category then they are equivalent in the C”
category.

Example 2.13 (1) The Kuiper-Kuo condition in Theorem 1.1, the Thom condition in
Theorem 1.3 and the Kuo condition in Theorem 1.4 (2.7) are r—compatible . Moreover,
if f satisfies the Kuiper-Kuo condition (resp. the Thom condition, the Kuo condition),
then we can take uniform (c;, oq) (resp. (Ki,Bt), (Ci, 04, @ )) independently from the
parameter t. In this case we say condition (x) is uniformly r—compatible.
(2) The following condition for C™ map f : (R",0) — (RP,0) is not r—compatible:
There are positive numbers C,a > 0 such that

Z [ D(fl,.. -,fp) (x)]2 —{—zp:ff(x) > C'I.’L"zp(r_l)

1<i1<...<ip<n- D(x,-l, s "T’ip) i=1

for |z| < a.

In fact, take f(z,y) = (z8—y%, zy) then [%{ﬁ%l(x,y)] = 8(2®+48). So then f satisfies
the condition with r = 5. ,

Now take g(z,y) = (0,zy) then j5f(0) = j°g(0), but fi = g does not satisfy this
condition.
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About Thom’s type inequality (2.1), we have an equivalent condition on an other type
of inequality.

Theorem 2. 14 Let r be a positive integer.
For a C™ mapping f : (R™,0) — (R?,0) (n > p), the following conditions are equiva-
lent. ‘

(1) There are positive numbers C,a > 0 such that

o S (R d) ey S ) > e

1<i1<...<ip<n D(@iy, ..., i) i=1

for |z| < a.

(2) There are positive numbers K, 3 > 0 such that

DR LTI VL o e

1<i1<...<ipg15n D(x’ila ceey ip+1)
for |z| < B.
Remark 2. 15 Conditions (1) and (2) in Theorem 2.12 are uniformly r—compatible.

Corollary 2.16 Let r be a positive integer.
For a C" function f: (R™,0) — (R,0), the following conditions are equivalent.

(1) (The Kuiper-Kuo condition.) There are positive numbers C, o > 0 such that

lgrad f (z)| > Clz|™? for |z|<a.

(2) (The Thom condition.) There are positive numbers K, 3 > 0 such that

| 9 9
S lnigl — a9l 4+ 1 @)f 2 Klaf*" for ol <5,

i<j J

Remark 2. 17 Corollary 2.16 in the two variables case has been also obtained by T.C.Kuo,
using his technique, Newton polygon with respect to a given arc.

Let g : (R*0) — (R,0) be a C" function such that j7g(0) = j"f(0). Define f; :
(R*,0) — (R,0) by fi(z) = f(z) + t(g(z) — f(x)) for ¢ € [0,1].

The Kuiper-Kuo condition implies no coalescing of critical points of { f;}o<¢<1 in the
sense of H.King [Ki] for any C" realization g of j7f(0). On the other hand, the Thom
" condition implies that the Milnor radii of {f;*(0)}o<t<1 are uniformly positive for any
C" realization g of j”f(0). Therefore it seems that the Thom condition is stronger than
the Kuiper-Kuo condition on the surface. But it follows from Corollary 2.16 that Thom’s
result is equivalent to the Kuiper-Kuo Theorem.
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3 Fukuda’s ideal and finite determinacy.

Let f: (R™0) — (R?,0) (n > p) be a C*™ mapping. We say f is finitely SV-determined
(resp. finitely V-determined) if there is a positive integer k such that j* f(0) is SV-sufficient
(resp. V-sufficient) in £jo)(n, p). About finite SV-determinacy or finite V-determinacy, lots
of characterizations have been obtained by J.Bochnak-T.C.Kuo [BoKu|, H.Brodersen [Br]
and L.C. Wilson [Wil] (see C.T.C. Wall [W] also). Here we describe a part of them. Let
& denote the ring of C* function germs : (R*,0) — R, and let M,, denote the maximal
ideal of £. Let M, = N2, M,

For a given f € £ (n,p), let J(f) denote the ideal of £ generated by fi,..., f, and
the Jacobian determinants

D(fl)""f)
D(.’L’il,... ,.’B:P) (CU)

(13’1;1<...<1:p§n).

Then we have

Theorem 3.1 ([BoKu], [Br], [Wil])
For f € &)(m,p), the following conditions are equivalent.

(1) f is finitely SV-determined (or finitely V-determined).
(2) M= C J(f).
Next, for a given f € Ej(n, p), let I(f) denote the ideal of £ generated by fi,. .., f, and
D(flv Ses 7.fp)p) (1‘)

D(ziy, .., ®iyp,) |

We call I(f) the Fukuda’s ideal. In the paper [Fu], T.Fukuda introduced this ideal in

the analytic category and discussed topological triviality under some conditions on this
ideal. By definition, we have '

(1_<_7;1<...<ip+1 _<_n)

Remark 3.2 I(f) C J(J).

Therefore we want to know how large Fukuda’s ideal is. As a corollary of Theorem
2.14, we have

Corollary 3.3 For f € £)(n,p) (n > p), the following conditions are equivalent.
(1) f is finitely SV-determined (or finitely V-determined).
(2) M C I(f).

We describe the proof of this corollary. By Theorem 3.1 it suffices to show the following
conditions are equivalent.

(a) My C J(f)
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(b) M.® C I(f).

The implication (b)) = (a) follows immediately from Remark 3.2. Therefore we
show the implication (a) == (b). Assume M,> C J(f). Then, by the Merrien-Tougeron
Theorem [MTo] (see [BoKu] also), there are positive numbers C, s,y > 0 such that

[D(fl,...,fi,)

{ . .
1<iy <. <ip<n \Figy« - ,xzp)

@)P + iff(x) > Clal?

for |z| < «v. Let r be a positive integer such that 2r > s. Then

‘.le Z [ D(fl, BN ,fP) (1‘)]2 + Xp:ff(x) > C|$|2(T+l)

1<i;<..<ip<n D(zyy, ..., ﬂ?ip)

for |z| < < 1. By Theorem 2.14, there are K, > 0 such that

i=1

Z [ D(fl, ey fp’ p) (x)]2 + iff(x) > KIxtQ(r-H)

1<i1<...<ipyp1<n D(x’ila v ’x’ip+1) i=1

for |z| < B. Using the Merrien-Tougeron Theorem again, we get M, C I(f).
Finally, we make one remark on Thom’s type inequality.

Remark 3.4 When we consider triviality of a family of zero-sets or mappings, it often
becomes important how we choose a neighbourhood whose boundary is transverse to zero-
sets. In that case, Thom’s type inequality in Theorem 2.14(2) is an effective tool to
construct such neighbourhood. In fact, T.Fukui, the second author and M.Shiota [FKS]
showed a modified Nash triviality theorem by using this inequality.
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