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1. Introduction

Let S C R? be the space described in K.Sitnikov[6] satisfting the relation 1 = pdim S <
dim S = 2, where pudim (resp. dim) denotes the metric (resp. covering) dimension. As easily
seen, the space S has a remarkable property that udim (S N H) = udim S for every plane
H in R®. Motivated by this, we will be concerned with the problems whether there exists a
point set X in Euclidean n-space R" satisfying (A) or both of the following two conditions:

(A) pdim (X N H) = pdim X for every hyperplane H in R".
(B) dim (X N H) = dim X for every hyperplane H in R™.

Here by a hyperplane in R", we mean an (n — 1)-dimensional affine subspace of R".
The first result is the following which improves [2,Lemma 4]:

Theorem 1. For arbitrary integers m and n with 0 < m < n —1 > 1, there exists a point
set X' in R™ such that

i) pdim X = m and dim X = min{2m,n — 1}, and

i) udim (X2 N H) = m for every hyperplane H in R™.

Let us note that if a non-empty space X in R" satisfies the condition (A), then necessarily
n > 2 and dim X < n — 1. Moreover since dim X < 2udim X by a Katétov’s inequlity[4], the
space X in Theorem 1 is one which admits the maximal differece between dim and pdim
among those spaces X in R" satisfying ydim X = m and the condition (A).

In contrast with Theorem 1, it will be shown that there exists Y in R" with pdimY}" =
dimY;® = k satisfying the condition (A) (and also (B)) for arbitrary integers n and k with
0 <k<n-—12>1(Theorem 2).

Now suppose that a space X in R" satisfies both (A) and (B) with dimX = k and
pdim X = m. Then as above, it must be satisfied that n > 2 and m < k < min{2m,n — 1},
and also that either k <n —1or k =n—1=m; indeed, if dim X = n— 1, then X N H must
have non-empty interior in a hyperplane H by (B), which implies pdim X =n — 1.
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The following is the main result which extends [3,Theorem):

Main theorem. Let n,m and k be arbitrary integers such that 0 < m < n—-12>1 and
m < k < min{2m,n — 1}. Then there exists a point set X , in R* such that

i) pdim X7 , = m and dim X7} | =k,

i) pdim (X7 . N H) = m for every hyperplane H in R", and

iii) if either k <n —1 or k =n —1=m, then dim (X}, , N H) = k for every hyperplane H
in R™.

2. Preliminaries

By I we denote the closed interval [—1,1]. Also, N, Z and Q denote the sets of natural
numbers, integers and rationals, respectively. Thus F = {z + I" : z € Z"} is a collection of
congruent n-cubes whose interiors cover R™. Similarly, F; = {(1/i)z + [0,1/1]" : z € Z"},
1 € N, is a cover of R" by n-cubes whose interiors are pairwise disjoint and sides are of length

1/i. We set
F.L-(j) =U{rW) :7 € F;}, 0 <j <n, where 7() denotes the union of j-faces of 7.

Let o = {a;} be a sequence of points in R" and m,n integers with 0 < m < n — 1. Then we

define ’
7 () = R™ — Ufa; + F™™ D .5 ¢ N}

Fact 1(cf. [2, Lemma 4].) pdim S7(a) —m for every sequence a of points in R™.

Indeed, for every ¢, 57 («) admits a continuous map f onto the m-skeleton of the decomposi-
tion of R™ by n-cubes which is dual to F;, satisfying ||z — f(z)|| < v/n/2t for every z. This
implies udim S” (a) < m(cf. [7, Corollary 2]), and the opposite inequality is obvious because
5™ (a) contains a (rectilinear) m-simplex. The following is a special case of [8, Theorem 3].

Fact 2. If a sequence o = {a;} of points in R" satisfies the condition
dim ((a; + Fi(n_m_l)) N (a; + F]-(nﬁm_l))) < k whenever 1 # j,

then dim S7 (a) > n — k — 2.

For every finite set A of R" and every integer k£ with 0 < k S n — 1, we set
A¥ = {[vg, ..., v;] : vo,...,v; € A, j < k}

where [vg, ..., v;] denotes the plane(i.e., the affine subSpace) determined by points v, ..., v;.
Then we say that p € R"™ is in a general position (or g.p., for short) relative to A, if p ¢ UAIR1.
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We denote by 7, : R" — R, 1 < k < n, the projection of R" into the k-th factor.

Fact 3.(cf.[2, Lemma 4]) If a = {a;} in R" satisfies the condition that
(mi(a;) + (1/0)Z) N (7(aj) + (1/1)Z) = 0 whenever i # j,

for every k =1,...,n, then dim S” (o) = min{2m,n — 1}.

This follows from Fact 2 and the fact that if « satisfies the condition in Fact 3, then
dim ((a; + F™" V)0 (g + FJ-(n_m_l))) = max{n — 2m — 2, —1}.

Sitnikov’s space S cited above is of type Si(a) with « satisfying the condition in Fact 3 for
(m,n) = (1,3). Also the space X: with m > 0, which will be given in the proof of Theorem
1, is of form S7 ().

3. Point sets X7 and Y

For a sequence a = {a;} of points in R", we consider the condition:
(C;) FEvery point p € (a; + ﬂ(o)) NI" is g.p.relative to U{(a; + FJ»(O)) NI": g <},
‘Lemma 1. There exists a sequence o = {a;} of points in Q" satisfying (C;) for all v > 2.
Let us note that (C;) implies

(1) (mx(a;) + (1/D)Z) N (wi(a;) + (1/5)Z) = O for every j <iand k=1,...,n.

F" ™Y can be expressed as the countable union of (n — m — 1)-planes, there

Since each F;

exist (n —m — 1)-planes B';™! such that

(2) @+ F"™ ) = y{Br™ s e N}, i€ N

1,8

Lemma 2. Suppose a sequence o = {a;} of points in R"(n > 2) satisfies (C;) for every
i > 2. Then for every hyperplane H in R"™ with H N Int 1" # (,

A={i e N:B;"'nI*#0, B);"' C H for some s € N}

consists of at most n elements.

Lemma 3. Let m and n be integers with 0 < m <n—12>1 and o a sequence of points in
R™ satisfying (C;) for everyi > 2. Then we have
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1) pdim S” (o) = m and dim S} () = min{2m,n — 1}.
ii) pdim (S™ (a) N H) = m for every hyperplane H in R™ in case m > 0.

Proof of Theorem 1. Let o be an arbitrary sequence of points in R™ which satisfies (C;)
for all ¢ > 2. We choose a point ¢;, from each hyperplane Bf;! so that Q = {¢;,s : 3,5 € N}
is discrete in R"™. Then we define

n ) Sh(a) O<m<n—1)
Xm_{SS(a)UQ (m = 0)

Obviously we have dim X = 0 because dim S (o) = dim @ = 0 and @ is closed. Then it is
evident that X satisfies all of the required conditions in view of Lemma 3. O

Let N} be the space of those points in R" at most & of whose coordinates are rationals.
It is known that dim N} = k(cf.[1]) and pdim N} = k because N contains a k-simplex.
Moreover for every hyperplane H in R", we have

(3) k—1<pudim(NINH)<dm(NgNH)<Ek, 0<k<n.

Also it is obvious that Ny, C Sy (a) for every sequence a of points in Q". Let A™*=1 he the
(n — k — 1)-planes such that

(4) Np =R"—U{A? " 1:ieN},0<k<n-—1.

We denote by Hp = {H "+ 4 € N} the family of all hyperplanes in R™ which are determined by
points in Q™. Moreover we set A} *71 = {A?7F=1 . AP=*=1 = I} for arbitrary hyperplanes
H in R". Since every non-empty open set in A?’_k_l contains points in Q" densely, we have

Lemma 4. IfU is a non—erﬁpty open set in a hyperplane H in R"™ such that U N (UAnH_k_l)
is dense in U for some k with 0 < k <n —1, then H € H,. : :

Theorem 2. Let n and k be integers such that 0 < k <n — 1 > 1. Then there exists a space
Y.® in R"™ such that :

i) Nf CY? C Ny,

i) pdim Y = dimY;* =k, and

i) udlm(Yk N H) = dim (Yk N H) =k for every hyperplcme H in ]R"

Proof. First we choose a sequence {zz} of points in Z" such that H; N Int(zi +1I") # 0 and
{zi+TI" : 7 € N} is discrete in R". Then we can take a k-simplex of C N, N (z+1")N H; for
every i. We set Y, = NI UU{of : 1 € N}. Then obviousely i) and ii) are satisfied. To prove
iii), let H be an arbitrary hyperplane with H & H,. Then by Lemma 4, UA7 "~ is not dense
in H. Hence there exists a non-empty open set U in H such that U N (UA?I_k_l) = (. Then
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it is clear that N N U contains a k-simplex and hence pdim (YN H) = dim (Y, N H) = k.0
In the above proof, it has been proved that

(5) pdim (NN H) =dim (NN H)

holds if H € Hy; however, as shown in the following, the condition H ¢ H, can be dropped.

Theorem 3. For every hyperplane H in R", pdim (NFNH) = dim (N NH), 0 <k <n-1.

Proof. Let H be the hyperplane defined by Zaixi =b. Weset A = {1 : a; # 0}; here we may
=1

assume n € A. If in particular, A = {n}, then N N H is a copy of N7} or N}~! according

as b/a, € Q or not, and (5) follows. Hence we can assume that s = |A\| > 2. Then we claim

that

(6) dim (N N H) = pdim (NN H) = k.

Let mo: R® —» R®* = [[{R, : i € \}, R; = R, be the projection. Also by 7 : R* — R™"! we

denote the projection defined by n(z1,...,2,) = (21,...,Zn-1). Then it is obvious
(1) 7|y : H - R"! is a uniform isomorphism, and
(8) if A7™*=! C H, then A?*=! C n5'(p) C H for some p € Q° Nmo(H).

Let us set
A= {r(x{p) NI i p € mo(H) N QYU {r(AT* 1 nH)NnI"!: Ar~*"1 ¢ H},

where I"™" is the (n — 1)-cube in R"™!. Then A is a countable family of closed sets in 1"
and clearly we have

dim (r(r5 () N I°) < n— s <n —2 for p € mo(H) N Q, and

dim (AR NH) N <n—k—2 if A7TRL ¢ HL
Morever it is impossible that (75" (p)) N I*! intersects with all of the (n — 2)-faces of I";
indeed, m(7y'(p)) is pararell to at least one of the (n — 2)-faces. The same is true as for

(AP 51N H)Nn 1", Also the following are valid: .

(75 (p)) N7w(7g(q)) =0 ifp#q (p, ¢ € Q Nmo(H)).
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dim (r(A7F A H) O r(AFF N H) Sn—k =3 i ATTINH A AT 0 H
(A7 ¢ H and A7™*" ¢ H).

dim (x(x5 (p)) N (AP F TN H) <n—k—3 if AL "N H ¢ 75" (p)
‘ (p € Q°Nmo(H) and A7 ¢ H).

Hence by [5, Theorem 2] we obtain

pdim (I —UA) >n—-1—(n—k—-3)-2=k.
Since I"™' — UA C #(NF 0 H) by (8), we have pudim (Ny N H) = pdimx (N7 N H) > k by
virtue of (7), which proves (6).0 :

~

4. Proof of Main theorem
Hereafter we fix integers n,m and k satisfying the following:
0<m<n—1>1and m <k <min{2m,n — 1}.

Lemma 5(cf.[3]). Let o be a sequence of points in R™. Then
1) udim (S7 () N N¢) =m, and
ii) if in particular, a satisfies the condition (C;) for all 1 > 2, then dim (S7,(a) N Ng) = k.

Lemma 6. Let k > m + 1 and H a hyperplane in R™. Then pdim (S} () N NFNH) =m
for every a satisfying (C;) for all ¢ > 2.

Henceforth we fix an a = {a;} in Q" satisfying (C;) for all ¢ > 2. Let us define
Fi,j — (ai + Fvi(n—m—l)) n (Clj + Fj(n—-m—l))’ L% ]

In case 2m < n—2, there exists a collection F; ; of (n —2m — 2)-planes such that UF;; = F; j,
and we set F;; =0 if 2m > n — 1.

Lemma 7. For every hyperplane H in R™ with H ¢ Ho, we have
dim(SZ(a)NNFNH)=k
if either k< n—2 ork=m.

Lemma 8. k—1<dim(S”(a)N NN H) <k for every hyperplane H in R".

Proof of Main theorem. As in the proof of Theorem 2 we take a sequence {z;} of points -
in Z" such that H; N Int(z; + ") # @ and {z; + I" : ¢ € N} is discrete in R". Then by
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Lemma 8 we can define J; with dimJ; = k where J; = SZ(a) N NP N (z;, + I") N H; or
Ji=Sp(a) N NZ N (z;+ 1) N H;. We set
{ (Sr(a)NNE)UU{J;:i e N} (m+1<k<n—2)

)

no
m,k T

Sr(a) N NE_, m+1<k=n-1

Ye (m=k<n-1)

where Y* = NP UU{o} : i € N} and each o} is a k-simplex contained in Nj,; N H; N (z; +1")
(cf. Theorem 2); here it is possible to choose of so that of C S7(a) N Np N H; N (7 + I7)
(cf. Lemma 8). Then we have

ng(a) NNg C X::Lz,k C S;';lm(a) n Nl?+17

which implies pdim X7 , = k by Lemma 5. Also we have dim X , = k by Lemma 5 and
Theorem 2; we note that each J; is closed and {J; : ¢ € IN} is discrete in X, in case
m+1 < k < n—2. Thus the condition i) of Main theorem is satisfied. Moreover the
remaining conditions ii) and iii) follow from Lamma 6, Lemma 7 and Theorem 2 directly.
This completes the proof of Main theorem.O
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