点集合と超平面による切り口の次元について

後藤達生 (TATSUO GOTO)

埼玉大学・教育学部

1. Introduction

Let $S \subset \mathbb{R}^3$ be the space described in K.Sitnikov[6] satisfting the relation $1 = \mu \dim S < \dim S = 2$, where $\mu \dim (\text{resp. dim})$ denotes the metric (resp. covering) dimension. As easily seen, the space S has a remarkable property that $\mu \dim (S \cap H) = \mu \dim S$ for every plane H in \mathbb{R}^3 . Motivated by this, we will be concerned with the problems whether there exists a point set X in Euclidean n-space \mathbb{R}^n satisfying (A) or both of the following two conditions:

- (A) $\mu \dim (X \cap H) = \mu \dim X$ for every hyperplane H in \mathbb{R}^n .
- (B) $\dim(X \cap H) = \dim X$ for every hyperplane H in \mathbb{R}^n .

Here by a hyperplane in \mathbb{R}^n , we mean an (n-1)-dimensional affine subspace of \mathbb{R}^n . The first result is the following which improves [2,Lemma 4]:

Theorem 1. For arbitrary integers m and n with $0 \le m \le n-1 \ge 1$, there exists a point set X_m^n in \mathbb{R}^n such that

- i) $\mu \dim X_m^n = m \text{ and } \dim X_m^n = \min\{2m, n-1\}, \text{ and }$
- ii) $\mu \dim (X_m^n \cap H) = m$ for every hyperplane H in \mathbb{R}^n .

Let us note that if a non-empty space X in \mathbb{R}^n satisfies the condition (A), then necessarily $n \geq 2$ and $\dim X \leq n-1$. Moreover since $\dim X \leq 2\mu\dim X$ by a Katětov's inequlity[4], the space X_m^n in Theorem 1 is one which admits the maximal differece between dim and $\mu\dim$ among those spaces X in \mathbb{R}^n satisfying $\mu\dim X = m$ and the condition (A).

In contrast with Theorem 1, it will be shown that there exists Y_k^n in \mathbb{R}^n with $\mu \dim Y_k^n = \dim Y_k^n = k$ satisfying the condition (A) (and also (B)) for arbitrary integers n and k with $0 \le k \le n - 1 \ge 1$ (Theorem 2).

Now suppose that a space X in \mathbb{R}^n satisfies both (A) and (B) with $\dim X = k$ and $\mu \dim X = m$. Then as above, it must be satisfied that $n \geq 2$ and $m \leq k \leq \min\{2m, n-1\}$, and also that either k < n-1 or k = n-1 = m; indeed, if $\dim X = n-1$, then $X \cap H$ must have non-empty interior in a hyperplane H by (B), which implies $\mu \dim X = n-1$.

The following is the main result which extends [3,Theorem]:

Main theorem. Let n, m and k be arbitrary integers such that $0 \le m \le n-1 \ge 1$ and $m \le k \le \min\{2m, n-1\}$. Then there exists a point set $X_{m,k}^n$ in \mathbb{R}^n such that

- i) $\mu \dim X_{m,k}^n = m \text{ and } \dim X_{m,k}^n = k$,
- ii) $\mu \dim (X_{m,k}^n \cap H) = m$ for every hyperplane H in \mathbb{R}^n , and
- iii) if either k < n-1 or k = n-1 = m, then $\dim(X_{m,k}^n \cap H) = k$ for every hyperplane H in \mathbb{R}^n .

2. Preliminaries

By \mathbb{I} we denote the closed interval [-1,1]. Also, \mathbb{N} , \mathbb{Z} and \mathbb{Q} denote the sets of natural numbers, integers and rationals, respectively. Thus $\mathcal{F} = \{z + \mathbb{I}^n : z \in \mathbb{Z}^n\}$ is a collection of congruent n-cubes whose interiors cover \mathbb{R}^n . Similarly, $\mathcal{F}_i = \{(1/i)z + [0,1/i]^n : z \in \mathbb{Z}^n\}$, $i \in \mathbb{N}$, is a cover of \mathbb{R}^n by n-cubes whose interiors are pairwise disjoint and sides are of length 1/i. We set

$$F_i^{(j)} = \bigcup \{ \tau^{(j)} : \tau \in \mathcal{F}_i \}, \ 0 \le j \le n, \text{ where } \tau^{(j)} \text{ denotes the union of } j\text{-faces of } \tau.$$

Let $\alpha = \{a_i\}$ be a sequence of points in \mathbb{R}^n and m, n integers with $0 \le m \le n-1$. Then we define

$$S_m^n(\alpha) = \mathbb{R}^n - \bigcup \{a_i + F_i^{(n-m-1)} : i \in \mathbb{N}\}.$$

Fact 1(cf. [2, Lemma 4].) $\mu \dim S_m^n(\alpha) = m$ for every sequence α of points in \mathbb{R}^n .

Indeed, for every i, $S_m^n(\alpha)$ admits a continuous map f onto the m-skeleton of the decomposition of \mathbb{R}^n by n-cubes which is dual to \mathcal{F}_i , satisfying $||x - f(x)|| < \sqrt{n}/2i$ for every x. This implies $\mu \dim S_m^n(\alpha) \leq m(\text{cf. [7, Corollary 2]})$, and the opposite inequality is obvious because $S_m^n(\alpha)$ contains a (rectilinear) m-simplex. The following is a special case of [8, Theorem 3].

Fact 2. If a sequence $\alpha = \{a_i\}$ of points in \mathbb{R}^n satisfies the condition

$$\dim((a_i + F_i^{(n-m-1)}) \cap (a_j + F_j^{(n-m-1)})) \le k \text{ whenever } i \ne j,$$

then dim $S_m^n(\alpha) \ge n - k - 2$.

For every finite set A of \mathbb{R}^n and every integer k with $0 \le k \le n-1$, we set

$$A^{[k]} = \{ [v_0, ..., v_j] : v_0, ..., v_j \in A, \ j \le k \}$$

where $[v_0, ..., v_j]$ denotes the plane (i.e., the affine subspace) determined by points $v_0, ..., v_j$. Then we say that $p \in \mathbb{R}^n$ is in a general position (or g.p., for short) relative to A, if $p \notin \bigcup A^{[n-1]}$. We denote by $\pi_k : \mathbb{R}^n \to \mathbb{R}$, $1 \le k \le n$, the projection of \mathbb{R}^n into the k-th factor.

Fact 3.(cf.[2, Lemma 4]) If $\alpha = \{a_i\}$ in \mathbb{R}^n satisfies the condition that

$$(\pi_k(a_i) + (1/i)\mathbb{Z}) \cap (\pi_k(a_j) + (1/j)\mathbb{Z}) = \emptyset$$
 whenever $i \neq j$,

for every k = 1, ..., n, then $\dim S_m^n(\alpha) = \min\{2m, n-1\}$.

This follows from Fact 2 and the fact that if α satisfies the condition in Fact 3, then

$$\dim\left((a_i + F_i^{(n-m-1)}) \cap (a_j + F_j^{(n-m-1)})\right) = \max\{n - 2m - 2, -1\}.$$

Sitnikov's space S cited above is of type $S_1^3(\alpha)$ with α satisfying the condition in Fact 3 for (m,n)=(1,3). Also the space X_m^n with m>0, which will be given in the proof of Theorem 1, is of form $S_m^n(\alpha)$.

3. Point sets X_m^n and Y_k^n

For a sequence $\alpha = \{a_i\}$ of points in \mathbb{R}^n , we consider the condition:

$$(C_i) \quad Every \ point \ p \in (a_i + F_i^{(0)}) \cap \mathbb{I}^n \ is \ g.p.relative \ to \ \cup \{(a_j + F_j^{(0)}) \cap \mathbb{I}^n : j < i\}.$$

Lemma 1. There exists a sequence $\alpha = \{a_i\}$ of points in \mathbb{Q}^n satisfying (C_i) for all $i \geq 2$.

Let us note that (C_i) implies

(1)
$$(\pi_k(a_i) + (1/i)\mathbb{Z}) \cap (\pi_k(a_j) + (1/j)\mathbb{Z}) = \emptyset$$
 for every $j < i$ and $k = 1, \dots, n$.

Since each $F_i^{(n-m-1)}$ can be expressed as the countable union of (n-m-1)-planes, there exist (n-m-1)-planes $B_{i,s}^{n-m-1}$ such that

(2)
$$a_i + F_i^{(n-m-1)} = \bigcup \{B_{i,s}^{n-m-1} : s \in \mathbb{N}\}, i \in \mathbb{N}.$$

Lemma 2. Suppose a sequence $\alpha = \{a_i\}$ of points in $\mathbb{R}^n (n \geq 2)$ satisfies (C_i) for every $i \geq 2$. Then for every hyperplane H in \mathbb{R}^n with $H \cap \operatorname{Int} \mathbb{I}^n \neq \emptyset$,

$$\Lambda = \{i \in \mathbb{N} : B_{i,s}^{n-m-1} \cap \mathbb{I}^n \neq \emptyset, \ B_{i,s}^{n-m-1} \subset H \ for \ some \ s \in \mathbb{N}\}$$

consists of at most n elements.

Lemma 3. Let m and n be integers with $0 \le m \le n-1 \ge 1$ and α a sequence of points in \mathbb{R}^n satisfying (C_i) for every $i \ge 2$. Then we have

- i) $\mu \dim S_m^n(\alpha) = m$ and $\dim S_m^n(\alpha) = \min\{2m, n-1\}$.
- ii) $\mu \dim (S_m^n(\alpha) \cap H) = m$ for every hyperplane H in \mathbb{R}^n in case m > 0.

Proof of Theorem 1. Let α be an arbitrary sequence of points in \mathbb{R}^n which satisfies (C_i) for all $i \geq 2$. We choose a point $q_{i,s}$ from each hyperplane $B_{i,s}^{n-1}$ so that $Q = \{q_{i,s} : i, s \in \mathbb{N}\}$ is discrete in \mathbb{R}^n . Then we define

$$X_m^n = \begin{cases} S_m^n(\alpha) & (0 < m \le n-1) \\ S_0^n(\alpha) \cup Q & (m=0) \end{cases}$$

Obviously we have $\dim X_0^n = 0$ because $\dim S_0^n(\alpha) = \dim Q = 0$ and Q is closed. Then it is evident that X_m^n satisfies all of the required conditions in view of Lemma 3. \square

Let N_k^n be the space of those points in \mathbb{R}^n at most k of whose coordinates are rationals. It is known that $\dim N_k^n = k(\text{cf.}[1])$ and $\mu \dim N_k^n = k$ because N_k^n contains a k-simplex. Moreover for every hyperplane H in \mathbb{R}^n , we have

(3)
$$k-1 \le \mu \dim (N_k^n \cap H) \le \dim (N_k^n \cap H) \le k, \ 0 \le k \le n.$$

Also it is obvious that $N_m^n \subset S_m^n(\alpha)$ for every sequence α of points in \mathbb{Q}^n . Let A_i^{n-k-1} be the (n-k-1)-planes such that

(4)
$$N_k^n = \mathbb{R}^n - \bigcup \{A_i^{n-k-1} : i \in \mathbb{N}\}, \ 0 \le k \le n-1.$$

We denote by $\mathcal{H}_0 = \{H_i : i \in \mathbb{N}\}$ the family of all hyperplanes in \mathbb{R}^n which are determined by points in \mathbb{Q}^n . Moreover we set $\mathcal{A}_H^{n-k-1} = \{A_i^{n-k-1} : A_i^{n-k-1} \subset H\}$ for arbitrary hyperplanes H in \mathbb{R}^n . Since every non-empty open set in A_i^{n-k-1} contains points in \mathbb{Q}^n densely, we have

Lemma 4. If U is a non-empty open set in a hyperplane H in \mathbb{R}^n such that $U \cap (\cup \mathcal{A}_H^{n-k-1})$ is dense in U for some k with $0 \le k \le n-1$, then $H \in \mathcal{H}_0$.

Theorem 2. Let n and k be integers such that $0 \le k \le n-1 \ge 1$. Then there exists a space Y_k^n in \mathbb{R}^n such that

- $i)^{n} N_{k}^{n} \subset Y_{k}^{n} \subset N_{k+1}^{n},$
- ii) $\mu \dim Y_k^n = \dim Y_k^n = k$, and
- iii) $\mu \dim (Y_k^n \cap H) = \dim (Y_k^n \cap H) = k$ for every hyperplane H in \mathbb{R}^n .

Proof. First we choose a sequence $\{z_i\}$ of points in \mathbb{Z}^n such that $H_i \cap \operatorname{Int}(z_i + \mathbb{I}^n) \neq \emptyset$ and $\{z_i + \mathbb{I}^n : i \in \mathbb{N}\}$ is discrete in \mathbb{R}^n . Then we can take a k-simplex $\sigma_i^k \subset N_{k+1}^n \cap (z_i + \mathbb{I}^n) \cap H_i$ for every i. We set $Y_k^n = N_k^n \cup \bigcup \{\sigma_i^k : i \in \mathbb{N}\}$. Then obviousely i) and ii) are satisfied. To prove iii), let H be an arbitrary hyperplane with $H \notin \mathcal{H}_0$. Then by Lemma $4, \cup \mathcal{A}_H^{n-k-1}$ is not dense in H. Hence there exists a non-empty open set U in H such that $U \cap (\cup \mathcal{A}_H^{n-k-1}) = \emptyset$. Then

it is clear that $N_k^n \cap U$ contains a k-simplex and hence $\mu \dim (Y_k^n \cap H) = \dim (Y_k^n \cap H) = k.\square$ In the above proof, it has been proved that

(5)
$$\mu \dim (N_k^n \cap H) = \dim (N_k^n \cap H)$$

holds if $H \notin \mathcal{H}_0$; however, as shown in the following, the condition $H \notin \mathcal{H}_0$ can be dropped.

Theorem 3. For every hyperplane H in \mathbb{R}^n , $\mu \dim(N_k^n \cap H) = \dim(N_k^n \cap H)$, $0 \le k \le n-1$.

Proof. Let H be the hyperplane defined by $\sum_{i=1}^{n} a_i x_i = b$. We set $\lambda = \{i : a_i \neq 0\}$; here we may assume $n \in \lambda$. If in particular, $\lambda = \{n\}$, then $N_k^n \cap H$ is a copy of N_{k-1}^{n-1} or N_k^{n-1} according as $b/a_n \in \mathbb{Q}$ or not, and (5) follows. Hence we can assume that $s = |\lambda| \geq 2$. Then we claim that

(6) dim
$$(N_k^n \cap H) = \mu \text{dim} (N_k^n \cap H) = k$$
.

Let $\pi_0: \mathbb{R}^n \to \mathbb{R}^s = \prod \{\mathbb{R}_i : i \in \lambda\}, \ \mathbb{R}_i = \mathbb{R}$, be the projection. Also by $\pi: \mathbb{R}^n \to \mathbb{R}^{n-1}$ we denote the projection defined by $\pi(x_1, \ldots, x_n) = (x_1, \ldots, x_{n-1})$. Then it is obvious

(7) $\pi|_H: H \to \mathbb{R}^{n-1}$ is a uniform isomorphism, and

(8) if
$$A_i^{n-k-1} \subset H$$
, then $A_i^{n-k-1} \subset \pi_0^{-1}(p) \subset H$ for some $p \in \mathbb{Q}^s \cap \pi_0(H)$.

Let us set

$$\mathcal{A} = \{ \pi(\pi_0^{-1}(p)) \cap \mathbb{I}^{n-1} : p \in \pi_0(H) \cap \mathbb{Q}^s \} \cup \{ \pi(A_i^{n-k-1} \cap H) \cap \mathbb{I}^{n-1} : A_i^{n-k-1} \not\subset H \},$$

where \mathbb{I}^{n-1} is the (n-1)-cube in \mathbb{R}^{n-1} . Then \mathcal{A} is a countable family of closed sets in \mathbb{I}^{n-1} and clearly we have

$$\dim (\pi(\pi_0^{-1}(p)) \cap \mathbb{I}^{n-1}) \le n - s \le n - 2 \text{ for } p \in \pi_0(H) \cap \mathbb{Q}^s, \text{ and}$$

 $\dim (\pi(A_i^{n-k-1} \cap H) \cap \mathbb{I}^{n-1}) \le n - k - 2 \text{ if } A_i^{n-k-1} \not\subset H.$

Morever it is impossible that $\pi(\pi_0^{-1}(p)) \cap \mathbb{I}^{n-1}$ intersects with all of the (n-2)-faces of \mathbb{I}^{n-1} ; indeed, $\pi(\pi_0^{-1}(p))$ is pararell to at least one of the (n-2)-faces. The same is true as for $\pi(A_i^{n-k-1}\cap H)\cap \mathbb{I}^{n-1}$. Also the following are valid:

$$\pi(\pi_0^{-1}(p)) \cap \pi(\pi_0^{-1}(q)) = \emptyset \text{ if } p \neq q \ (p, \ q \in \mathbb{Q}^s \cap \pi_0(H)).$$

$$\dim\left(\pi(A_i^{n-k-1}\cap H)\cap\pi(A_j^{n-k-1}\cap H)\right)\leq n-k-3 \ \text{ if } A_i^{n-k-1}\cap H\neq A_j^{n-k-1}\cap H \\ (A_i^{n-k-1}\not\subset H \text{ and } A_j^{n-k-1}\not\subset H).$$

$$\dim (\pi(\pi_0^{-1}(p)) \cap \pi(A_i^{n-k-1} \cap H)) \le n - k - 3 \text{ if } A_i^{n-k-1} \cap H \not\subset \pi_0^{-1}(p)$$

$$(p \in \mathbf{Q}^s \cap \pi_0(H) \text{ and } A_i^{n-k-1} \not\subset H).$$

Hence by [5, Theorem 2] we obtain

$$\mu \dim (\mathbb{I}^{n-1} - \cup \mathcal{A}) \ge n - 1 - (n - k - 3) - 2 = k.$$

Since $\mathbb{I}^{n-1} - \cup \mathcal{A} \subset \pi(N_k^n \cap H)$ by (8), we have $\mu \dim(N_k^n \cap H) = \mu \dim \pi(N_k^n \cap H) \geq k$ by virtue of (7), which proves (6).

4. Proof of Main theorem

Hereafter we fix integers n, m and k satisfying the following:

$$0 \le m \le n - 1 \ge 1$$
 and $m \le k \le \min\{2m, n - 1\}$.

Lemma 5(cf.[3]). Let α be a sequence of points in \mathbb{R}^n . Then

- i) $\mu \dim (S_m^n(\alpha) \cap N_k^n) = m$, and
- ii) if in particular, α satisfies the condition (C_i) for all $i \geq 2$, then $\dim(S_m^n(\alpha) \cap N_k^n) = k$.

Lemma 6. Let $k \geq m+1$ and H a hyperplane in \mathbb{R}^n . Then $\mu \dim (S_m^n(\alpha) \cap N_k^n \cap H) = m$ for every α satisfying (C_i) for all $i \geq 2$.

Henceforth we fix an $\alpha = \{a_i\}$ in \mathbb{Q}^n satisfying (C_i) for all $i \geq 2$. Let us define

$$F_{i,j} = (a_i + F_i^{(n-m-1)}) \cap (a_j + F_j^{(n-m-1)}), \ i \neq j.$$

In case $2m \le n-2$, there exists a collection $\mathcal{F}_{i,j}$ of (n-2m-2)-planes such that $\cup \mathcal{F}_{i,j} = F_{i,j}$, and we set $\mathcal{F}_{i,j} = \emptyset$ if $2m \ge n-1$.

Lemma 7. For every hyperplane H in \mathbb{R}^n with $H \notin \mathcal{H}_0$, we have

$$\dim \left(S_m^n(\alpha) \cap N_k^n \cap H \right) = k$$

if either $k \leq n-2$ or k=m.

Lemma 8. $k-1 \leq \dim (S_m^n(\alpha) \cap N_k^n \cap H) \leq k$ for every hyperplane H in \mathbb{R}^n .

Proof of Main theorem. As in the proof of Theorem 2 we take a sequence $\{z_i\}$ of points in \mathbb{Z}^n such that $H_i \cap \operatorname{Int}(z_i + \mathbb{I}^n) \neq \emptyset$ and $\{z_i + \mathbb{I}^n : i \in \mathbb{N}\}$ is discrete in \mathbb{R}^n . Then by

Lemma 8 we can define J_i with dim $J_i = k$ where $J_i = S_m^n(\alpha) \cap N_k^n \cap (z_i + \mathbb{I}^n) \cap H_i$ or $J_i = S_m^n(\alpha) \cap N_{k+1}^n \cap (z_i + \mathbb{I}^n) \cap H_i$. We set

$$X_{m,k}^{n} = \begin{cases} (S_{m}^{n}(\alpha) \cap N_{k}^{n}) \cup \{J_{i} : i \in \mathbb{N}\} & (m+1 \leq k \leq n-2) \\ S_{m}^{n}(\alpha) \cap N_{n-1}^{n} & (m+1 \leq k = n-1) \\ Y_{k}^{n} & (m = k \leq n-1) \end{cases}$$

where $Y_k^n = N_k^n \cup \bigcup \{\sigma_i^k : i \in \mathbb{N}\}$ and each σ_i^k is a k-simplex contained in $N_{k+1}^n \cap H_i \cap (z_i + \mathbb{I}^n)$ (cf. Theorem 2); here it is possible to choose σ_i^k so that $\sigma_i^k \subset S_k^n(\alpha) \cap N_{k+1}^n \cap H_i \cap (z_i + \mathbb{I}^n)$ (cf. Lemma 8). Then we have

$$S_m^n(\alpha) \cap N_k^n \subset X_{m,k}^n \subset S_m^n(\alpha) \cap N_{k+1}^n$$

which implies $\mu \dim X_{m,k}^n = k$ by Lemma 5. Also we have $\dim X_{m,k}^n = k$ by Lemma 5 and Theorem 2; we note that each J_i is closed and $\{J_i : i \in \mathbb{N}\}$ is discrete in $X_{m,k}^n$ in case $m+1 \leq k \leq n-2$. Thus the condition i) of Main theorem is satisfied. Moreover the remaining conditions ii) and iii) follow from Lamma 6, Lemma 7 and Theorem 2 directly. This completes the proof of Main theorem.

References

- [1] R.Engelking, Dimension theory, North Holland, 1978.
- [2] T. Goto, Metric dimension of bounded subspaces in Euclidean spaces, Top. Proc. 16(1991)45-51.
- [3] —, A construction of a subspace in Euclidean space with designated values of dimension and metric dimension, Proc. Amer. Math. Soc. 118(1993)1319-1321.
- [4] M.Katětov, On the relation between the metric and toplogical dimensions, Czech. Math. J. 8(1958)163-166. (Russian)
- [5] J.H.Roberts and F.G.Slaughter, Characterization of dimension in terms of the existence of a continuum, Duke. Math. Jorn. 37(4)(1970)681-688.
- [6] K.Sitnikov, An example of a two dimensional set in three dimensional Euclidean space allowing arbitrarily small deformations into a one dimensional polyhedron and a certain new characterization of the dimension of sets in Euclidean spaces, Dokl. Akad. Nauk SSSR 88 (1953)21-24. (Russian)
- [7] Ju.M. Smirnov, On the metric dimension in the sense of P.S. Alexandroff, Izv. Akad. Nauk SSSR 20(1956)679-684. (Russian)
- [8] J.W.Wilkinson, A lower bound for the dimension of certain G_{δ} sets in completely normal spaces, Proc. Amer. Math. Soc. 20 (1969)175-178.