A metrical result on transcendence measures in certain fields (Abstract)

by

Masaaki Amou (天羽 雅昭) Gunma University (群島大工)

Let \mathbb{F}_q be a finite field of characteristic p with q elements. Then we denote by $A=\mathbb{F}_q[T]$ the ring of polynomials in a variable T over \mathbb{F}_q , $K=\mathbb{F}_q(T)$ the quotient field of A, and $K_\infty=\mathbb{F}_q((1/T))$ the field of formal power series in 1/T over \mathbb{F}_q .

The purpose of the present talk is to give transcendence measures for almost all elements of K_{∞} with respect to a Haar measure on K_{∞} .

As in Sprindžuk [4], we have a non-archimedean absolute value $|\cdot| \text{ on } K_{\infty}. \text{ That is, for any element } \omega \in K_{\infty} \text{ of the form}$

$$\omega = \sum_{v=\ell}^{\infty} a_v T^{-v} \quad (a_v \in \mathbb{F}_q, v \in \ell, \ell + 1, \ldots),$$

we define $|\omega| = q^{-\ell}$ if $a_{\ell} \neq 0$, $|\omega| = 0$ if $a_{\nu} = 0$ for all $\nu \geq \ell$. We know that K_{∞} is complete and locally compact with respect to the metric defined by this absolute value. Let μ be the Haar measure normalized by

$$\mu(\mathbb{D}) = 1$$
, where $\mathbb{D} = \{\omega \in K_{\infty}; |\omega| \le q^{-1}\}$.

For any nonzero polynomial $P(x) = \sum_{i=1}^{d} a_i x^i \in A[x]$, we define logarithmic height $\hat{h}(P)$ of P by

$$\hat{h}(P) = \log_q \max_{0 \le i \le d} |\alpha_i|,$$

where $\log_q x$ means the logarithmic function with base q. Then our main result is stated as follows.

Theorem. Let ϵ be an arbitrary positive number. Then, for almost all $\omega \in K_{\infty}$ (w.r.t. μ), we have

$$|P(\omega)| \ge q^{-(3+\varepsilon)dh} \min(1, |\widetilde{\omega}|)^d$$

for all nonzero polynomials $P \in A[x]$ with $\deg P \leq d$, $\hat{h}(P) \leq h$, and $\max(d,h) \geq c(\omega,\epsilon)$, where $\tilde{\omega} = \omega$ - (the constant term of ω) and $c(\omega,\epsilon)$ is a positive constant depending only on ω and ϵ .

We see that this lower bound is fairy good. In fact, by Hilfssatz 3 of Bundschuh [2], for any $\omega \in K_{\infty}$ and any positive integers d,h, there exists a nonzero polynomial $P \in A[x]$ with $\deg P \leq d$, $\hat{h}(P) \leq h$ satisfying

$$|P(\omega)| \le q^{-d(h-1)-1} \max(1, |\omega|)^d$$
.

For the proof of the theorem, We refer to the paper [1].

References

- [1] M. Amou, A metrical result on transcendence measures in certain fields, preprint.
- [2] P. Bundschuh, Transzendenzmasse in Körpern formaler Laurentreihen, J. reine angew. Math. 300 (1978), 411-432.
- [3] G.V. Chudnovsky, Contributions to the theory of transcendental numbers, Amer. Math. Soc., Mathematical surveys and monographs, no. 19, Providence, R. I., 1984.
- [4] V.G. Sprindžuk, Mahler's problem in metric number theory,
 Amer. Math. Soc., Translations of mathematical monographs,
 vol. 25, Providence, R. I., 1969.

Masaaki Amou
Department of Mathematics
Gunma University
Tenjin-cho 1-5-1, Kiryu 376

Japan