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Iteration of some birational polynomial quadratic maps of p?

Yasuichiro NISHIMURA (Osaka Medical College)
ParR—ER  (RERERRE)

1 Introduction

Recently, several authors (for example, J. Hubbard and P. Papadopol [HP], J. E. Fornaess
and N. Sibony [FS3}, [FS4], T. Ueda [U2], [U3]) began to construct the general theory of
the iteration of rational maps of P? or P* with n > 2. Some examples were also investigated
by [FS2] and [Ul]. In this note, we study further examples of rational maps of P2

Let us take and fix a homogeneous coordinate system z : w : ¢ of P2. For a rational map r
of P? given by [z : w : t] = [Ro : Ry : Ry], where R; (i=0,1,2) are homogeneous polynomials
of degree d without commom factor, py = [20 : wo : %y) is a point of indeterminacy if
Ri(po) =0 (2 =0,1,2). The set of all points of indeterminacy of r is denoted by I(r).

When I(r) # 0 we always mean, by r(p) = ¢, that p € P?\ I(r) and r(p) = ¢q. We also
mean, by r~'(A) where A C P?, the set {p € P?\ I(r);r(p) € A}. When we write r(A),
the set A is assumed to be A C P?\ I(r).

The iteration of r is the study of the orbit {r"(p);n € Z,n > 0} of a point p € P2. When
we have r"(p) € I(r) for a point p € P?\ I(r) and for some n > 1, we do not consider r™(p)
for m > n. Set Ey(r) = I(r). Inductively on n, we define

En(r) = Ena(r)U{p € P\E,y(r);r" " (p) € I(r)}

for n > 2. Then, E,(r) C E,4:(r). Let E(r) = | J E.(r). Then, E(r) = {p € P%;r"(p) €
n=1

I(r) for some n > 0}. We call the closure F(r) the extended indeterminacy set. A point p
1s said to belong to the Fatou set F(r) of r if there exists an open neighborhood U of p such
that the family {r";n > 0} is equicontinuous in U \ E(r). The complement of F(r) is called
the Julia set J(r) of r. By definition, the Fatou set is an open set and U, I(r") C J(r).

We want to deal with the birational polynomial quadratic mapsv of P2. We always identify
the set {t # 0} C P? with C?. Then, our maps are written in the following form:

r. leRo, 'U)l:Rl, t1:R2:t2’

where Ry and R; are homogeneous polynomials of degree= 2. Here the equation R, = t2
corresponds to the assumption that the r is a polynomial map. We assume that R, and
R, do not have the common factor ¢ (that is, ¢ { Ry or ¢ { R;) and that r is birational.

We denote by ¢ the number of the elements of the set I(r), and by f the number of the
fixed points of r located in the line at infinity {¢ = 0}, where a point p € P? is called a
fixed point of r if 7(p) = p. :
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Then, we have the following classification result.

Proposition 1.1 According to i and f, the birational polynomial quadratic maps of P?
are classified into the following 4 classes A, B, C, and D. Considering the conjugation
by projective linear transformations as the equivalence relation, the representatives of each
class are given by the maps defined by the following (Ro, Ry, R;).

Class | i and f Representatives
A 1i=2f=1] (wt,w? —azw+ bwt + ct?,t?) (a #0)
B |1=2,f=0] (azt+bt*, zw+t*#*) (a#0)
(azt + bt zw,t?) (a #0)
(wt + bt?, zw + ct?, %)
C |i=1f=1](wt,w? -zt +~t%,¢%) (§#0)
) (w? + ay2t, aqwt, 1?)  (ay,a, #0)
(w? + 2 + zt,awt, t?) (2 #0)
(w? + azt, t* + awt, t?)  (a #0)
(w? + azt, t* + wt,t?) (@ #£0,1)

The maps r in the class C are called the Hénon maps. The restriction ricz of a map 7 to
C? is an automorphism of C2. There are already extensive studies of the iteration of the
Hénon maps, or more gereral polynomial automorphisms of C? from the point of view of
complex analysis (for examples, [H],[HO],[FM],[FS1],[B],[BS1],[BS2],[BS3],[BS4],[BLS]).

The restriction ric2 of a map r of the class D to C? is also an automorphism of C2. The
maps ricz in the class D belong to the class of the elementary maps in the sense of [FM]
and were studied in [FM].

We are intend to study the maps in the classes A and B. In this note, we deal with the
first family of maps in the class B. We always denote by ¢ the rational map

p:lziw:t] > [azt + b0 : 2w + 12 17 ' (1.1)
and by 1 the inverse of ¢ given by _
Vilziw:t] - [(z— b))% d’(w— 1)t a(z — b)), (1.2)
where a and b are complex numbers with a # 0. |
Inthe z = £,y = % coordinates in C* = P2\ {t = 0}, we have ¢ : (z,y) — (az+b,zy+1)..

So, the family U,{z = c} is invariant under (. Hence, the problem of studing the iteration
of ¢ and % is rather simple. We can deal with some dynamical objects quite concretely.

2 Fundamental properties of 'go and

Let us state the fundamental properties of our maps ¢ in (1.1) and % in (1.2). Let
L=J=00:1:0,,=[1:0:0and J, =[b:1:1]. We can easily see that
I(¢) = {11, b} and I(¥) = {1, J>}.
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For a rational map r of P? and for a curve C, that is, an irreducible algebraic subset of
dimension 1 of P? with finite number of points deleted, C is said an r—constant curve if
r(C) is a point. v '

There are two ¢p—constant curves C; = {t = 0} \ {[1, L} and C; = {z = 0} \ {I1}. There
are two t—constant curves Dy = {z — bt = 0} \ {J1,J2} and Dy = {t = 0} \ {/1}.

We have ¢p~}(D; U Dy) = 0 and ¥~1(C, U Cy) = 0, while ¢™!(p) # 0 for any p €
P2\ (D; U D;) and ¥~*(p) # 0 for any p € P2\ (C; U Cy).

In the following proposition, we assume a # 1 and let ¢ = 1%“

Proposition 2.1 For ¢, we have E(¢) = E(p) = {t = 0}. For v, we have
E.(¢) = UiZi{z = (c — ca®)t} U {p""1(J3)} for n > 2, (2.3)

E(¢) = UnZi{z — (¢ — ca™)t = 0}.
Hence E(¢) = E(¢)U{t = 0} when |a| > 1, and E(¢) = E(¢)U{z—ct = 0} when |a| < 1.
Proof. The assertion on E(y) is obvious. By definition, E,(v) = I(v) = {J1, Jo}. We have

Ey(¥) = Ei(y)U{p € P\Ei(¥);¢(p) € L(¥)}
= {J Ly U({z = (¢ = ca)t}\{J1, /o}) U {(]2)}
= {z=(c—cat} U{p(J2)}.

Inductively, the assertion for E,(v) is proved. Then, the remaining assertions follow im-

mediately. O

In general, let U be an open neighborhood of a point p in C? and let & : U — C? be a
holomorphic map with a fixed point p. The problem of canonical form of the map h is to
seek for a neighborhood V of the origin in C? and an injective holomorphic map S : V — U
with 2(0) = p such that S7'hS : V — C? is described as simple as possible. The map S is
called a conjugation map.

Let X, u be two eigenvalues of the differential dh(p) at p. In this note, we are specially
interested in the canonical form around p of the following types of fixed point. The canonical
form of (1) or (2) was decided by Latteés [LAT]. Let us denote by N the set of positive
integers.

Definition 2.2 (1) 0 < |A| < 1,0 < |p| <1 and X # u™, p # A" for alln € N. In this
case, there is a conjugation map S such that S~*hS(r,0) = (A1, uo).

(2)0 <A <1,0<|ul <1and p= AN for some N € N. In this case, there is a
conjugation map S such that either S~*hS(7,0) = (A7, uo) or STLAS(1,0) = (A1, po+1").
We will call the former of type (2-1) and the latter of type (2-2).

(8) 0 < |A| <1 and p = 0. It seems that the problem of the canonical form has not yet
been solved for this type of the fized point. So, we can not refer to any general result.

The fized point p of type (1) or (2) is called attracting and p of type (8) is called semi super

attracting.
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Now we return to our maps ¢ and ¥ and we suppose, say, that |a| > 1. Then we see
that, for “almost” all points p of P?, ©"(p) tend to the point I;. So, despite I; € I(yp) is
not an attracting fixed point of ¢, it behaves like such. This motivates us to consider the
blowing up 7 : M — P? centered at the point I;. We consider the lifts ¢ : M — M and
% : M — M of ¢ and 1. The strict transform 7—1({z = ot} \ {f1}) of {z = at} is denoted
by B, for & € C and the strict transform of {t =0} by B,.

Definition 2.3 In order to fiz the notation, we set Oy = M \ By = C(¢) x P'(n) where g
is an inhomogeneous coordinate of P! and the w restricted to )y is given by L = ¢, 2= %
We set Qy = M \ Boo = C(z) x P(y), where we regard y as an inhomogeneous coordinate
of PL. Then, C*(€£) x P'(n) = Oy N Qy = C*(z) x P'(y), where the transformation of two

coordinate systems (z,y) and (£,n) is given by z = %,y = 51;

Let A = .77_1(]1) be the éxceptional set. Then, j3 = (¢ = 0,y = 00) is the unique point
of indeterminacy in A of ¢, and J; := (€ =0,n :7()) is the unique point of indeterminacy
in A of ¢.

Let us suppose that a # 1 and let ¢ = l—f—a as in Proposition 2.1. We also suppose that
¢ # 1 and ¢ # 0. Then, in the whole M, @ have three distinct fixed points F = (z =
¢y =00), P=(z=cy= =) and Js = (¢ = 0,7 = 0) at each point of which the two

eigenvalues of the differential d are {a,1},{a,c} and {1,0} respectively. In the whole M,
1 have three distinct fixed points F', P, and I, = (¢ = 0,7 = 00) at each point of which

11
a’c

the two eigenvalues of the differential dip are {L,c},{%,1} and {a,0} respectively. We set
Jy=7"YJ) = (z = by =1).

In this note we only deal with the maps ¢ and 3 with generic parameter values (a,c).
We divide our description into the 4 cases and treat them in 2 sections of the rest of this
note: §3, Ja| < 1,0 < |¢] < 1 and |a| < 1,|¢| > 1,84, ]a] > 1,0 < |c| < 1and |a] > 1,]|c| > 1.

In each of these cases, each of ¢ and v has only one fixed point of the types in Definition
2.2 among the points F', P, J; and I,. We seek for the canonical form and the global
conjugation mapping for this fixed point. By falling down on P2, we can decide concretely
the Julia sets of ¢ and 1.

Our results in §3 and §4 are summarized in the following table.

lal < 1,0 < J¢| < 1

la] < 1,le] > 1

We(p, P)U E(p)

la] > 1,0 < |e] <1 || Wu(3,I3) UUZ 90 ™(J3) when a™c = 1 by some m € N
Wu(y,1;) when a™c # 1 for all m € N Ws(4, P)

lal > 1,l¢| > 1

We(p, I) E(y)
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Here, W*(p, P) is the stable curve of ¢ at the fixed point P = 7(P) of saddle type,
W?*(1, P) is the stable curve of ¥ at P, and W*¥(s, I;) is the unstable curve of + at I,.
Since C; is the p—constant curve with ¢(C;) = {J;}, each ¢~ "(J;) is a p"—constant

curve.

3 ¢and ¢y when 0< |a| <1

We assume that 0 < |a| < 1 throughout this section. Though we deal with the cases
0 < lc] < 1 and |¢| > 1, some lemmas and propositions in this section hold under the

weaker assumption on c.

Lemma 3.1 Let ¢ # 0.
(1) The radius of convergence of the following power series are oo and so the functions

K(¢), B(¢) and Y({) are entire functions:

l)m m(m 1)/2,m

K{)=1+Yx Lo el G

_l)m—lam(m—l)/2

B(C) =)= (am_(c)cm—-l(a__l) {am—1= I)Cm’

__1)m 1,m(m—1)/2

Y(C) = Zm =1L,m#N (am—c)em—1(a—1)---(a™~1-1) C ’

where we assume a™ # ¢ for allm € N for B(¢), and ¢ = o™ by some N € N for Y(().
(2) The functions K({), B(() and Y ({) satisfy the following functional equations:

K(¢) = (14 <Q)K (ac), | (3.4)
B(af) - ¢B(¢) — ¢K (¢%aC) = 0, (3.5)

—(=1N-1 N(N 1)/2

Y(ag) = e () = CK (¢ 2af) = FEimiarn o (36)
where we assume a™ # ¢ for allm € N in (3.5) and ¢ = aN by some N € N in (3.6).

Proof. Let p,, be the coefficient of the (™ term of the power series of K(¢). Then, Ipp’ill =

172l 5 0 as m — 0, so the radius of convergence of K(() is co. Similarly, the radii of

lam—1]

convergence of the other series are oo.

The equation (3.5) is proved as

0o c—ag™ m—1,m(m-1)/2 m
cB(() - B(al) = Yoo (a(m-—c)c)”(’ 12a 1)—(am=1-1) ¢

_ _l)m 1,m(m=1)/2

:CZmlcml(al amllle
= (Yo LA e — (K (c%al).

e (a—1)(@am—1) ¢ =

We can verify the other functional equations quite similarly. O
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Lemma 3.2 Let ¢ # 0. Around the origin, the function R( ) has the power series expan-

sion
1 —_— ™ m
m0"1+zwﬂwu<W1ﬁ

whose radius of convergence is equal to m. The zeros of K(¢) are {=%;n € Z,n > 0} and

ca™’

they are all simple zeros.

Proof. It is easy to check the first statement. Therefore K(() has no zero in {|{]| < ﬁ}
In view of the equation (3.4), in {|¢| < ]:T|}7K(O has the unique zero =! which is simple.
Inductively, the zeros of K({) in {|{| < |T|f1£F} are {=%;0 < m < n — 1} and they are all
simple. O

First we study the map ¢ around the point P. The eigenvalues of dp(P) are {a c}
hence, under the assumption 0 < |¢| < 1, P is attracting. According to a and «, Pis
either of type (1) or (2) in the sense of Definition 2.2. Let us seek for the conjugation
map S concretely. Using the notation in Definition 2.3, set p = 2 —c and ¢ = y — lic'
Then Up := Q, = C(p) x P'(q). We set Vp = (C(p)\UsZo{p = £}) x P!(g). Note that
J, = (p = —ac,q = =) € Vp. In the (p, q¢) coordinates, the restriction of ¢ to Vp defines
a holomorphic map ¢ : Vp — Vp given by ¢ : p1 = ap,q1 = cq + & + pq, and it satisfies

Top=@pomwon Vp.

First, we consider the case where P is of type (1) or of type (2) with a = ¢¥ by some
M € Nin Definition 2.2. We remark here that, when a = ¢, $ does not have the canonical
form (7,0) — (ar + o™, co), since {p = 0} is an invariant curve in the direction of the
eigenvalue ¢ of dp while the map (7,0) — (ar + 0™, co) does not have an invariant curve
in the direction of ¢. We also remark that, in the next proposition, we do not assume

0 < le| < 1. Set Wp = (C(r)\ UZo{r = =£}) x P'(0).

Proposition 3.3 Suppose ¢ # 0,1 and a™ # ¢ for allm € N, and define S : Wp — Vp
by
S:p=r1,g=0K(c )"+ B(r)K(c )L

Then S is a surjective biholomorphic map and S™'@S is of the form 7 = at,04 = co.
Proof. Using the equations (3.4) and (3.5),

on = qK(c Pl) - _B(PI)
= cqK(c7?p) + {pK (¢ 2ap) — 12 B(ap)
= oc+ —-—B( )+ —T[&(c aT) 1 B(at) = co.

1-c

By Lemma 3.2, K(c™%7) # 0 in Wp, which shows that S is biholomorphic. O
Next, we consider the case where P is of type (2) with ¢ = ¢V by some N € N. The
next proposition shows that P is in fact of type (2-2). We set

s

Cny = N(N= D72(am1)-(a¥-1-1)" (3.7)
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Proposition 3.4 Suppose that c = a® by some N € N and define S : Wp — Vp by
Sip=r1,9=LoK(c?r) + =Y (1)K (c?r)7L
Then S is a surjective biholomorphic map and S™1(S is of the form 7y = at, 01 = co+ V.

Proof. By Lemma 3.2, it is proved that S is biholomorphic. The form S~!¢S can be proved
directly by using the equations (3.4) and (3.6). In the rest of this paper, we exhibit many
”canonical forms” and conjugation maps. The verification of these assertion are quite
straightforward. So, we only indicate the lemmas or propositions which are used and omit
the detailed computation. O

We will continue to study the map ¢ around the point P. Now we assume that le| > 1,
so P is a saddle point. Since we have a™ # ¢ for all m € N, we can apply Proposition 3.3.
Let 4, be a curve in Up defined by

q = 1= B(p)K(c?p)~". (3.8)

Then Proposition 3.3 shows that, in the neighborhood Vp, #; is the local stable curve of ¢
at P. We will show that J, ¢ ;.

Lemma 3.5 Suppose ¢ # 0, and a™ # c for all m € N, and let

1) =1+ X0 e ™

Then the radius of convergence of j(() is equal to |c|. Set § = J(—ca)+ c—1. Then, we
have B # 0.

Proof. Since the first statement is easy, we will only show the second statement. F irst, we

can see easily that

-1 n—lcn

5:J(—Ca)+c—1:ﬁm+2ﬁ=nﬁ%-

Set p, = @;%1% Then, pn, = c(1 4+ =2)--- (1 + a_n“_t—_lc). Since the series 3, |-2—|

converges, 3 = nl-l—{go pn £ 0. 0
Lemma 3.6 Suppose ¢ # 0, and a™ # ¢ for all m € N. Then, it holds
B(¢) = (5(¢) = DK (c7*¢) in {I¢] < |e]}-

Proof. This can be proved by comparing the power series expansions around the origin of
both sides. O

Proposition 3.7 Suppose that |c| > 1. Then J, ¢ 4;.
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Proof. Since J, = (p = —ca,q = =), and that K (=) # 0 by Lemma 3.2, we have -
Jy € 41 iff B(—ca) + cK(=2) = 0.

On the other hand, by Lemma 3.6, B(—ca) = (j(—ca) — 1)K(=2). Therefore, by Lemma
3.5,
B(—ca) + cK(=2) = (B— c)K(=2) + cK(=2) = BK(=2)#0. O

Next we will study the map ¢ around the fixed point F'. The eigenvalues of dp(F ) are
{a,1}, hence F is attracting when |c| > 1. Let us seek for the conjugation map S concretely.
Using the notation in Definition 2.3, set f = z—cand g = i Then Up := Q, = C(f) xP(g).
We set Vi = Ur\(UgZo{f = Z£}). Note that J, = (f = —ca,g = 1) € V. In the (f, g)
coordmates the restriction of ¢ to V& defines a holomorphic map ¢ : Vg — Vg glven by

$:fi=af,g1= ﬂgm, and it satisfies 7 o @ =@omon Vp.

We remark here that, when F is of type (2 ) that is, when ac™ = =1 or a”c =1 by some
n € N, only the type (2-1) can occur since 9 has two invarinat curves {f= O} and {9 =0}
through F. This fact is also proved by the next proposition. When |¢| > 1, the assumption
of the next proposition is fulfilled. Set Wr = C(7)\ UsZo{7 = Z£}) x P(0).

Proposition 3.8 Suppose ¢ # 0 and a™ # ¢ for all m € N, and define S : Wp — Vi by

o _ a(1=c)K(c™27)
9 =19 = SR -G

Then, S is a surjective holomorphic map and S™*@S is of the form 7, = ar,01 = £

Proof. We use Lemma 3.2 in order to show that S is biholomorphic. The verification of
the canonical form is performed by using the equations (3.4) and (3.5). O

Now, we will turn to consider the map v and treat with the problem of the canonical

form around the point . Using the notation in Definition 2.3, set u = 19_2—5— v = % Then

c€?
we have :

Uy := M\(B. U By) = (C(u)\{u = ==°}) x P'(v),
where B, is the strict transform by 7 : M — P? of {z — ¢t = 0}. We set

Vi = (Cl)\Uizo{u = 25} x PY(v)\{(u = 0,v = o0)}.

In the (u,v) coordinates, the restriction of 1) to V; defines a holomorphic map ¢ : V; — V;
given by u; = au,v; = %ﬁ and it satisfies 7 o 1,2' =omon V.

Since the eigenvalues of dip(I;) is a and 0, I, is a fixed point of type (3) in Definition
2.2. It turns out that, though it is possible to take the canonical form (7,0) — (7,70) by
the conjugation map in the the formal power series category, this series does not have a
positive radius of convergence. So, in the following proposition, we select more complicated

“canonical” form. Set W; = (C(r)\ U2 _,{r = =£}) x PX(¢)\{(7 = 0,0 = oo)}

ca™
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Proposition 3.9 Suppose ¢ # 0 and define S: Wy — Vi by

Then S is surjective biholomorphic and S~'9S is of the form 7, = ar,0y = o7 — 72K (Z)71.

Proof. By Lemma 3.2, it is proved that S is biholomorphic. Using the equation (3.4), we
can verify the canonical form. O

Now, we will determine the Julia set of ¢ and ¥ in P2.
Theorem 3.10 Suppose that 0 < |c| < 1. Then, J(¢) = {t =0} = E(p).

Proof. Since the iteration sequence of the canonial forms of Propositions 3.3 and 3.4
converges uniformly on every compact of C(7) x C(c) to the constant map 0, {(™} converges
uniformly on every compact in Vp\{g = oo} to the constant map P. So, 7(Vp\{q =o0}) C
F(p). Let us consider the remaining set

P\r(Vp\{q = o0}) = Uofz — (c — %)t = 0} U {t = 0}.

Note that J, € F(¢) since J; € Vp. Then, since "1 ({z — (¢ — St =0\{I1}) = Jo, it is
easy to see that Uy2o({z — (¢ — %)t = 0}\{L1}) C F(yp).

Finally, we study {¢ = 0}. Let U C P?\ {f1, 1} be an open set such that U N {t =
0} # 0. Since (7 1({t = 0} \ {l1,1,})) = J5 and J; is a fixed point of @, @" (7~ 1(U))
contains a point near P and a point near J; for sufficiently large n. Therefore, {¢"} is not
equicontinuous in U \ E(y), which shows that {t =0} C J(y). O

Next, we suppose |c| > 1 and set v; = 7(Up N 41) in P2.

Theorem 3.11 Suppose that |c| > 1. Then, J(p) =71 =11 U{t =0} = 7, U E(p).

Proof. By Proposition 3.8, n#(Vr\%) C F(p) because 41 = S({o = oo}) in V. Let us
study the remaining set P\n(Vp\¥1) = v UUiz {z = (c + =)t} U {t = 0}.

By Proposition 3.7, o"({z = (¢ + =5)t}) = J» € F(¢) when n >1,
hence UpZ,{z = (c+ Z5)t} C F(p). It is clear that {t =0} C 77 C J(¢). O

Let |¢| > 1. By a sufficiently small open neighborhood Q of P € P?, U2, ¢ " (7, N Q) is
called the stable curve of ¢ at P and denoted by W*(¢, P).

Theorem 3.12 Suppose |c| > 1. Then, we have W*(o, P) = 11\ {1}, Jo ¢ W*(p, P) and
(UnZ1 97 (J2)) N W2(ep, P) = 0.

Proof. The first statement follows from the definition of W?*(¢, P). The second follows
=P\ {1} C F(p) forn > 1,

an

from Proposition 3.7. Finally, since ¢ "(J3) = {z = (¢ +
we have o™ (J3) N W*(p, P) =0 for n > 1. O

Finally, we will determine the Julia set of the map 1.
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Theorem 3.13 Suppose ¢ # 0. Then, J(¥) = U2 {z = (c — ca™)t} U {z = ¢} = E(%).

Proof. Let W = (C(1)\UZ_1{7 = =% }) x C!(0).Then, since K(7/a) # 0in W, it is easy
to see that the iteration of the “canonical” form in Proposition 3.9 converges uniformly on
every compact of W to the constant map 0. So, by the same Proposition, {1&”} converges
uniformly to the constant map I on every compact on Vi\{v = oo}. Hence we have

m(Vi\{v = o0}) C F(¢). Let us examine the remaining set
PA\7(Vi\{v = 00}) = U2 _o{z — (¢ — ca™?)t = 0} U {z = c}.

Since
P2 ({u = ZLP\{g+(J)}) = I; € {v = 0o} for n > —1

ca™

and

P ({u = ZE N\ (1))}) € {v = 00} for m > 2,

{#)"} is not equicontinuous around a point of {u = =L}\{@"+1(J;)}. Therefore, we have

ca”

o _{z—(c—ca™?)t =0} C J(¢).On the other hand, since ¥({z = 0}\{J;}) C F(v),

n=

it is easy to see that {z = 0}\{J1} C F(¢). Finally, it is clear that {z = ¢} C J(¢). O

4 ¢ and ¢ when |a| > 1

We assume that |a| > 1 throughout this section. Though we deal with the cases 0 <
le] < 1 and |¢| > 1, some lemmas and propositions in this section hold under the weaker

assumption on c.
When ¢ = o™ by some N € N, we use the constant Cy defined in (3.7).

Lemma 4.1 Let ¢ # 0.
(1) The radius of convergence of the following power series are oo and so the functions

k(¢), h(¢), 7(¢) and i(¢) are entire functions:

k(Q) =1+ oot pooon ™

k

A(C) = 1+ Trma (=W Hm/2 S a2 et )em,

(a=1)(@-1
I =140 oy t™

z(C) = g;% am(m+1)/2(a]\g':})_]_)...(aN—m_1)Cm

CyaNN-1) N-1 _a* -N _1 :
;?:N aNm(afla)..‘(am—N-l) X {(m - 1) - Zk:l al?_l + 221:1 ak_l}Cma

where we assume a™ # ¢ for allm € N for j({) and ¢ = a”¥ by some N € N for:i(C).
(2) The functions k({), h(¢), 7(¢) and i({) satisfy the following functional equations:

k(a¢) = (1 + cC)k(C), (4.9)
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h(a€) = k(C) +a*CR(Q), S (40
i) = (C+ () +1—c, (4.11)
(¢ +aV)i(¢) + ¢ = i(al) = OnCVR(@ ), (4.12)

where we assume a™ # ¢ for allm € N for (4.11) and ¢ = aV by some N € N for (4.12).

Lemma 4.2 Let c # 0. Around the origin, the function i R has the power series expansion

( l)m m(m=-1)/2.m

ﬁ~1+z (a—1)--(a™-1) Cm

=1,2---} and

whose radius of convergence is equal to Jﬂ The zeros of k()
they are all simple zeros.

First we study the map ¢ around the fixed point J;. The eigenvalues of dn,é(fg) are
1.0}, hence Js is of type (3) in Definition 2.2.
It turns out that, the canonical form (7,0) — (Z,07) is achieved. Using the notation in

Definition 2.3, set r = Jc—ﬁ,

Ur =M N = (Cr)\{r = =2}) x P(s),

s=1. Then

where B, is the strict transform by 7 : M — P? of {z — ¢t = 0}. We set
Vi =U\UiLe{r = =2} U (L)),
Note that J, € V;. In the (r,s) coordinates, the restriction to V; of % defines a holomorphic

map ¢ :¢:Vy— Vygiven by ¢:r; =I5 :'(—af%;’"j% and it satisfies 7 0 ¢ = ¢ o 7 on
VJ. Set .
Wi = (C(r)\UiZim = =) x PY(0) \ {(r = 0,0 = 00)}.
Proposition 4.3 Suppose ¢ # 0, and define S : W; — V; by
S:r:—-r,s=%. (4.13)

Then, S is a surjective biholomorphic map and S™'3S is of the form 1, = I,oy=o0T.

Proof. By Lemma 4.2, it is shown that .S is biholomorphic. Using the equations (4.9) and
(4.10), we can verify the canonical form. O

Now we turn to study the map v. First we study it around the fixed point . The
eigenvalues of di)(F) are {%,c}. Hence, F is attracting when |c| < 1. Take the (f,9)
coordinates in Ur defined before Proposition 3.8. Set V4 = (C(f)\(US,{f = —ca}) x
P!(g). Then, the restriction of ) to V} defines a holomorphic map % : Vi — Vi given by
fi= f,gl = “(1+ i and it satisfies 7 0¢) = 1) o 1 on VE.

We remark here that, when F is of type (2), that is, when ac™ = 1 or a"c = 1 by some
n € N, only the type (2-1) can occur since ¢ has two invarinat curves {f = 0} and {g =10}
through F. This fact is also proved by the next proposition. When |¢| < 1, the assumption
of the next proposition is fulfilled. Set Wg = (C(7)\(UZ,{7 = —ca™}) x P!(0).
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Proposition 4.4 Suppose ¢ # 0 and ¢ # a™ for all m € N and define S : Wi — Vi by

(1—c)o

S:f=19= o3 () —(—c)k(r/c2) "

Theﬁ, S is a surjective biholomorphic map and S~'4S is of the form 7 = I,01= co.

Proof. By Lemma 4.2, S is biholomorphic. Using the equations (4.9) and'(4.11), we can
verify the canonical form. O 1 |

Next we consider the map ¢ around the fixed point P. The eigenvalues of dv,/;(f’) are
{%, —i—}, hence P is attracting when |c¢| > 1. According to a and c, P is either of type (1) or
(2) in Definition 2.2. Let us seek for the conjugation map S concretely. Using the notation
in Definition 2.3, set p =2 —cand ¢ =y — Ti”c Then Up := 0, = C(p) x P(q). We~set
Ve = (C(p)\ Uiz {p = —ca™}) x P!(g). In the (p,q) coordinates, the restriction of 1 to
Vi defines a holomorphic map ¥ : Vb — Vp given by Y:p = g = ('%cl);(;ﬁ%, and it
satisfies T 0 1) = 1) o on V. _

First, we consider the case where P is of type (1) or of type (2) with a = M by some
M € N in the sense of Definition 2.2. We remark here that, when a = ¢™, ) does not
have the canonical form (7,0) — (Z + o™, 2), since {p = 0} is an invariant curve in the
direction of the eigenvalue X of dip while the map (r,0) — (£ + o™, 2) does not have an
invariant curve in the direction of % We also remark that, in the next proposition, we do
not assume |c| > 1. Set Wi = (C(7)\ UsZ, {7 = —ca™}) x PY(0). |

Proposition 4.5 Suppose ¢ # 0,1 and a™ # ¢ for all m € N, and define S : Wp — V}

by
S:p=r1,9=0k(c )+ 1—1:;(](7) —1).

Then S is a surjective biholomorphic map and S=24S is of the formm =% 0y = 2.

Proof. By Lemma 4.2, S is biholomorphic. Using the equations (4.9) and (4.11), we can

verify the canonical form. O

Next, we consider the case where P is of type (2) with ¢ = a” by some N € N. The
next proposition shows that P is in fact of type (2-2).

Proposition 4.6 Suppose that ¢ = a” by some N € N and define S : Wp — Vi by

S:ip=1,q= lg_%ak(c‘zT) + =i(7).

TN
ca

|

2|

Then S is a surjective biholomorphic map and S~1%S is of the formr =1 0, =

o |9

Proof. By Lemma 4.2, S is biholomorphic. Using the equations (4.9) and (4.12), we can -

verify the canonical form. O
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We will continue to study the map ¥ around the point P. Now we assume that le] <1,
so P is a saddle point. Since we have a™ # c for all m € N, we can apply Proposition 4.5.
Let 4| be a curve in Up defined by

g =i (4.14)
In view of Proposition 4.5, we can see that in the neighborhood V}, #} is the local stable
curve of 1/; at P. We will show that Jo € -

Lemma 4.7 Suppose 0 < |c| < 1. Then, j(—ca) =1 —c.

Proof. By the same computation which we used in the proof of Lemma 3.5, we have
j(=ca)+c—1= (a—%l‘%"l"zm nﬁ%
As n — oo, the first term on the right side converges to 0 since 0 < |c| < 1, and the second

term converges to 0 since j(() is an entire function. O
Proposition 4.8 Suppose that 0 < |c| < 1. Then, J, € ..

Proof. Note that J, = (p = —ca,q = i==)- So, in view of the equation (4.14), we have
Jy € 4;. O

Next, we study the map v around the fixed point I, where the eigenvalues of dz/;(_f2)
are {a,0}. Take the (r,s) coordinates on U; defined before Proposition 4.3 and the (p, q)
coordinates on Up defined before Proposition 4.5.

In view of the equation (4.13), we can find the unstable curve of 9 at I,. Let 7, be the

curve defined on M\ B, by
{ g = —ak!;‘h!!(z—)-l-cr! in UJ

g=pen _ L i gp\{p = 0).

pk(a/p)  1-c

(4.15)

Proposition 4.9 Let ¢ #0. Then, ¥, is the local unstable curve of ¥ at I,.

Proof. We will work on V;. Then, by the conjugation map S in Proposition 4.3, $1.S~1
is of the form 7 = ar, 0y = Z. So, §(7,00) is the local unstable curve. O

We will study when J, € 2.
Proposition 4.10 Let ¢ # 0. Then, J;, € 3, if and only if h(=%) = 0.

Proof. Note that J, = (r = =ls = ¢ —ac) € V;. We remark that k(=) # 0 by Lemma
4.2. So, we have J, € 7, iff k(= ) “lp(=L) = 0.
On the other hand, by the equation (4.10), we have h(=%) = k(<L) + =LA(=1). O

Lemma 4.11 Let A(() =1+ Y2, (—1)m£‘(‘;113));;§‘2‘mc'1) .
If dMc =1 for some M € N, A(¢) is a polynomial of degree M — 1.

If a™c# 1 for allm € N, the radius of convergence of A(C) is equal to ]I%II
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Proof. Using the condition |a| > 1, the assertion can be easily verified. O
Proposition 4.12 Let ¢ # 0. We have h({) = A({)k(() in the domain of A(().

Proof. This can be shown by comparing the power series expansion around 0 of the both

sides.

Proposition 4.13 Ifa™c # 1 for all M € N, then h(=2) # 0
If aMc =1 by some M € N, then h(=2) = 0.

Proof. Suppose that a™c # 1 for all m € N. Since the ratio of two entire functions

A(¢) = %(% has the power series expansion with radius of convergence equal to U and that

=% is a unique simple zero of the function k(¢) in {|¢| < lCI } by Lemma 4.2, it follows that
M=2) £ 0.

Now, suppose that a™c = 1 for some M € N. Then, by Lemma 4.11, A(¢) is a polynomial
of degree M — 1. Since h({) = A(¢)k(¢) by Proposition 4.12 and k(=%) = 0 by Lemma 4.2,
we have h(=2) = 0. O :

The following is the immediate consequence of Propositions 4.13 and 4.10.

Theorem 4.14 Let ¢ # 0. Then, J, € Fg iff aMe = 1 by some M € N. Specially, we have
Jy & 3, when || > 1.

Now, we will describe the Julia set J (). We set v, = 7(5,) C P2.

Theorem 4.15 Let c # 0.

(1) When J; & 12, T (@) = 7. |

(2) When Js € 12, T (¢) =72 U Uffil{z T(Em —ot=0}= %UUZ‘il{V"( 2)}-

Proof. Since the canonical form of Proposition 4 3 converges uniformly on every compa,ct.j
of C(7) x C(o) to the constant map 0, {¢"} converges uniformly on every compact in
Vi \ 42 to the constant map Js. So, (Vs \ 42) C F(p). Let us examine the remaining set
PAT(Vi\A2) = (Usife + (55 — o)t = 0} U {z —ct = 0} U~y). Then it is clear that
({z =t =0}U72) C T (¢). Note that o™({z + (=5 — )t = 0}) \ {I} = {J»}. Then it is
clear that:

(1) when J, & 7,, we have Us2, ({z + (== — )t = 0} \ {I;}) C F(¢p), and

(2) when J; € 7,5, we have U2, {z + (a"_ =0} C T (p).

Here we would like to state some comments. Since the p—constant curve C; = {t =
0} \ {L, I,} satisfies ¢(Cy) = I, € I(g), we do not consider ¢ "(p) for p € Cy and n >
2. However, for an open neighborhood U C P2\ {I},I,} of a point p € Ci, {p"} is
equicontinous in U \ E(y). In conclusion, we have C; C F(¢) though ¢(C;) € I(p). O

By a sufficiently small open neighborhood Q of I, € P2, U2, ¥ (v, NN \ E.(v)) is called
the unstable curve of 4 at I, and is denoted by W* (4, I,,).
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Theorem 4.16 (1) Suppose J, & 2. Then for @ € C, y2 N {z —at = 0} = {J1} iff
a=c— =55 by somen € N. We have W (1p, L) =7, \ {/h}.
(2) Suppose Jy € y2. Then Jy &€ v2 and W*(p, ) = 72 \ UL {z + (5= — ¢)t = 0}.

Proof. By the equation (4.15), 3, : ¢ = %%}/%l in Up \ {p = 0}. By Lemma 4.2, the

denominator is equal to 0 iff p = —=% by some n > 1.
(1)When J, ¢ 3,, by Proposition 4.10, h(=%) # 0. On the other hand, by the equation

(4.10) and Lemma 4.2, we have h(%ﬂﬂ) = k(=) + #h(‘gn) = =" p(=2") forn >'1.

(o] Cc C

Hence, inductively, we know that A(=2~) # 0 for n > 1. Therefore, by Lemma 4.2,

[

F2N{p = =5} € {¢g = o}. Now the first assertion of (1) is proved.

an—1

(2)By the above argument, A(=2") = 0 for n > 1. By Lemma 4.2, k(%) = 0 and this is

Cc

a simple zero. Hence ¢ # oo at p = <. This implies J; ¢ 7.
Finally, by the equation (2.3), it is easy to see the assertion on W*(3, ;). O

Next, we will describe the Julia set J(v).
Theorem 4.17 Let |c| > 1. Then, we have J(¢) = UL, {z = (c—ca™)t}U{t = 0} = E(¥).

Proof. Since the iteration sequences of the canonical forms of Propositions 4.5 and 4.6
converge uniformely on every compact of C*(7,0) to the constant map 0, {7,/;”} converges
uniformly on every compact in V5 \{g = 0o} to the constant map P. So, 7(Vj\{g = 00}) C
F (). Let us consider the remaining set P2\m(Vi\{g = oo}) = U, {z — (¢ — ca™)t =
0} U {t = 0}. Then, since
P ({p = —ca™ N\ {¢™(1)}) =I5 € {g= 00} for n >0,

it is easy to see that [J22,({z — (¢ — ca™)t = 0}) C J(¥). On the other hand, we have
clearly {t =0} C J(p). O

When 0 < |¢| < 1, we set 41 = 7(7}) C P2 |
Theorem 4.18 Let 0 < |c| < 1. Then, J(¢)) = 74 =+, U {t = 0}.
Proof. Since the iteration sequence of the canonical forms of Proposition 4.4 converges
uniformely on every compact of C*(7, ) to the constant map 0, {z/;”} converges uniformly
on every compact in Vi \ 7{ to the constant map F. So, 7(VE\7,) C F(t). Let us consider
the remaining set P*\7(Vz\31) = v UUS, {z — (¢ — ca™)t = 0} U {t = 0}. Then, since

P ({p = —ea™ N\ (G (D)) = I € {g =00} for n >0,

1t is easy to see that UL, ({z — (¢ — ca™)t = 0}\{p""1(J2)}) C F(¥). On the other hand,
we have clearly v; U {t =0} C J(¢). O

Let 0 < |c| < 1. By a sufficiently small open neighborhood Q of P € P2, (J2, %~ "(v,NN)
is called the stable curve of ¢ at P and denoted by W*(3, P).
Theorem 4.19 Let 0 < |¢| < 1. Then, W*(¢, P) = 1 \ U {(J3)}-

Proof. By Proposition 4.8, J, € 4;. In view of the equation 4.14, v{ C C?(z,y). Hence,
the assertion can be seen easily. O
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