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- HARDY CLASS OF FUNCTIONS DEFINED BY-
SALAGEAN OPERATOR

Norio N1wa, TosHIYA JIMBO AND SHIGEYOSHI OWA
FRPISE (REEER) MR (BREEX) BAESR Rk -8

ABSTRACT. The object of the present paper is to derive some properties for Hardy
class of analytic functions defined by Salagean operator.

1. INTRODUCTION
Let A be the class of functions f(z) of the form

(1.1) flz2)=z+ Z ap2®
, e

that are analytic in the open unit disk U = {z : |z < 1}.
For f(z) € A, the Salagean operator D™ (cf. [6]) is defined by

(1.2) DOf(z) = f(2),
(1.3) D'f(z) = Df(z) = 2f'(2),
(1.4) D™f(z) = D(Dn_lf(z)) (ne N= {1,2,3,---}).
A function f(z) belonging to A4 is said to be starlike of order « if it satisfies
(1.5) Re{i}%;—)}Sa (zeU)

for some o (0 < @ < 1). We denote by S*(c) the subclass of A consisting of
functions which are starlike of order « in U.
A function f(z) € A is said to be convex of order « if it satisfies

zf"(z
(1.6) - Re{1_+ ]{/(i))}>a (zeU)
for some o (0 < & < 1). Also we denote by K () the subclass of A consisting of all
such functions. Note that f(z) € K(a) if and only if zf'(z) € S*(a) for 0 < a < 1.
Let H? (0 < p < o0) be the class of all analytic functions in U such that -

(L.7) | | Ilfl|p=r1ir?_{rwp(r,f)}<o<;,
where
| ‘—]; 2w . ovp % | .
(18) My(r,f)= (27"/0 (el da) O<pco) Tt
]rﬁglf(z)l (p = ) (cf. [1]).
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2. SOME LEMMAS

To discuss our problems for Hardy class HP of functions, we need the following
lemmas. '

Lemma 1 ([7]). If f(z) € K(a), then f(z) € S*(8), where

1-2a
PYZ R (a#%)
ey p=p@={ T
(a=1).
2log?2

This result is sharp.

Lemma 2 ([2]). If f(z) € S*(a) and is not of the form

-
<

(2.2) flz)= -

(1= zeit)2(1-0)’

s L . f(Z) 5+=‘,T11?;‘
then there exists § = §(f) > O such that —~> € H b

”
A

Lemma 3 ([5]). If p(z) is analytic in U with p(0) = 1 and

1-2log?2

23) Re(p(2) + zp'(2)) > 21— 1og2)

(z € U),

then Re(p(z)) > 0(z € U) .

Remark. 'We see that
1-2log2 = —0.629-.- .
2(1 - log?2)

Lemma 4 ([1]). Every analytic function p(z) with positive real part in U is in the
class HP for all 0 < p < 1.

Lemma 5 ([4]). If f(z) € A satisfies 2" f(z) € HP (0 < p < o0) for a real r, then
f(z) € H? (0 < p < o0).

Lemma 6 ([1]). If f/(z) € HP for some p(0 < p < 1), then f(z) € Hi(qg =
p/(1-p)).

Lemma 7 ([3]). Let w(z) be analytic in U with w(0) = 0. If |w(z)| attains its
maximum value on the circle 2| = 7 (0 < r < 1) at a point zg, then we can write

Zow'(zo) = kw(zO))

where k is real and k£ > 1.



3. Harpy CrAsSS OF FUNCTIONS

Our first result for Hardy class is contained in

Theorem 1. Let f(z) € A satisfy

n+1
(3.1) Re{%;?{i—;l}>ao (z€ U)
for some ap (0 < ag < 1), and let
1- 2C!j_1 1
21 (aj—l # 'ﬁ)
(32) a; = 2(21 o - 1) :
1 _1
2log 2 (a5-1=13)
forj=1,2,--- ,n. If DI f(2) is not of the form
(3.3) D™ f(z) = -

(1 — zeit)2(1-25)’
. . ‘ 1
then there exists § > 0 such that D™"77 f(z) € Jaam el

Proof. Note that

(3.4) D™ f(z) = D(D™f(z))
=z(D"f(2))
=2(D™ ' f(2)) + (D f(2))"
and
(3.5) D" f(z) = 2(D™"' f(2)).
This implies that
. D™ f(2) 2(D" 1 f(2))"
3.6 A S A ol Sl o 2
30 Re{ D77 (z) } e {1 Y } - oo

so that, D™~! f(2) € K(cyp). Therefore, an application of Lemma 1 leads to
D" f(2) € K(ap) = D™7! f(2) € §*(c1)
&= D"%f(2) € K(ay)
= D" 2f(2) € §*(a2)
& D" f(2) € K(aj-1)
= D™ f(z) € S*(a;).

Further, by using Lemma 2 and Lemma 5, we know that there exists § > 0 such
1

that D"9f(z) € H Vo5

Taking j = n in Theorem 1, we have



Corollary 1. Let f(z) € A satisfy (3.1) for someao (0 < a0 < 1), and let

1~ 20n—1 ' o 1
2(21~2&n—1 — 1) (Qn—l # 2)
Qp = 1 |
2log 2 (an-1=3)-
g2
. 5 L
If f(z) is not of the form (3.3), then there ezists § > 0 such that f(2) € H e,

Next, we derive
Theorem 2. Let f(z) € A satisfy

DL f(2) 1-—2log2
ze U).
(37) Re{ 2 > iy <9
Then there exists p; (j = 1,2,--- ,n+ 1) such that D*~7+1 f(z) € HP, where
1
: < —— ¢ = 1) 21 ’ )
(3.8) P < S ( 7)

Proof. Define the function p(z) by

Dn
(3.9 () = L)
Then p(z) is analytic in U and p(0) = 1. Since
D™+ f(z) o 1-2log2
(3.10) Re {————;———} = Re(p(z) + 2p'(2)) > m,

Lemma 3 gives that
(3.11) Re(p(z)) = Re{g—rg—(f—)-} >0 (zeU).

Noting that

2@ prisayy,

an application of Lemma 4 implies that (D™~ f(z))’ € HP!, so by Lemma 6,
D"'f(z) € H” (pp = 7).
I-p
Further, since D"~ f(z) = 2(D"~2f(z))’, using Lemma 5, we obtain (D™~2f(z))' €
HP2. Taking this process again and again, we conclude that D*~7+2f(z) € HPi-1
and 0 < pj_; < 1/2. Thus, finally we have DI+ f(z) € H? (0 < p; < 1). This
completes the proof of Theorem 2. g

Letting j = n + 1 in Theorem 2, we have

Corollary 2. Let f(z) € A satisfy (3.7). Then there exists pni1 such that f(z) €
HP~+1 where
1

AP G —
Pk n—=k+2

(k=1,2,---,n+1).
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4. HARDY CLASS OF BOUNDED FUNCTIONS ’
Next our theorem for Hardy class of bounded functions is contained in

Theorem 3. Let f(z) € A satisfy

(4.1) ‘%Zf—;g_l%%ﬁi (2 D)
for some ag (1/3 < ag < 1/2), or ;

D”“f(.z) N 1] _%- 202 +1
o | DL f(2) o v -
for some ap (1/2 < o9 < 1). If D™ Jf( ) is not of the form:(3.3), then there exists

8§ > 0 such that D" f(2) € H ks (j = 1,2,---,n), where a; is given by
(3.2). . |

(4.2) (;z eU)

‘ 2&0

Proof. Define the function w(z) by - . v
DMUf(z) _ 14 (1=2a0)w(z) oy,

(+3) B T e () A1)
Then w(z) is analytic in U and w(0) = O', It follows from (4.3) that
, Dr2f(z)

Y DGy

= (50 (- + 5L Uiz (25)

Suppose that there exists a point 25 € U such that

,rln<z}‘< [w( )| = [w(z0)] = 1 .(w(zo) #1).

Then Lemma 7 leads us to w(z) = €% and
Z()'lU/(ZO) = kw(zo)_ (k 2 1) .

Therefore, we have

(4.5)
D'n+2f(2’0) _ 1' :
D f(z) | - ~
_|_wlzo) 2w/(20) | (1= 200)(1= w(z0)) ( 2/ (0)\ |
11— w(z) 201~ o) + w(zp) g 14+ (1—2a0)w(zo) < 1‘{(20) )1
e"e (1= 200)(1 = )

2(1—ao)+k+k‘

1= 1+ (1— 2a0)e® |
(1~ao)+k k[1—2a0| »
T [1-e®] 1+ (1- 2a0)e]

2(1 - Oto) + k _ kil - 2C!()|
2 20!0 h

v




For 1/3 < ap < 1/2, we have -

Dn+‘2f( ) ‘1l> 500"'20(2}_1

(4.6) D7 f(z0) oo

and for 1/2 < op < 1, we have

D"*2 (o)

ap— 203 +1
D+ f(20) '

20(0

(4.7)

S E

Since the above contradicts our conditions (4.1) and (4.2) of the theorem, we con-
clude that |w(z)| < 1 for all z € U. This implies that

(4.8) | Re{%}>ao (ze U).

Noting that (4.8) is equivalent to D™ f(z) € S*(ap). Using the same manner in the
proof of Theorem 1, we conclude that D™/ f(z) € S* (a;). Thus, applying Lemma
2 and Lemma 5, we can prove Theorem 3. g

If we put 7 = n in Theorem 3, then we have .

Corollary 3. Let f(z) € A satisfy the condition (4.1) for some ag (1'/3 < ap <
1/2) or (4.2) for some ap (1/2 < o < 1). If f(z) is not of the form (3.3), then
there ezists § > 0 such that f(z) € H‘S+m—1_°n5, where a,, is given by (3.2).
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