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ON MACAULAYFICATION OF LOCAL RINGS
—IN THE CASE OF dimnon-CM < 2

KAWASAKI, TAKESI

Tokyo Metropolitan University

ABSTRACT. Let X be a Noetherian scheme. A birational proper morphism ¥ — X
is said to be a Macaulayfication of X if Y is a Cohen-Macaulay scheme. In 1978
Faltings constructed a Macaulayfication of X if the dimension of its non-Cohen-
Macualay locus non-CM X is at most one. Recently the author constructed a
Macaulayfication of X in the case of non-CM X = 2. In the present article, we give
another proof of them, which still work in general case except for only one lemma.

1. INTRODUCTION

Let X be a Noetherian scheme. A Macaulayfication of X is a birational proper
morphism Y — X such that Y is a Cohen-Macaulay scheme. If X = SpecA is an
affine scheme, then by abuse notation the Macaulayfication Y — Spec A is said to be
the one of A. In 1978, Faltings [4] gave the notion of Macaulayfication and constructed
a Macaulayfication of Noetherian local ring A if it possesses a dualizing complex and
dimnon-CM A < 1. Here non-CM A = {p € Spec A | 4, is not Cohen-Macaulay} is
the non-Cohen-Macaulay locus of A, which is closed subset of Spec A if A possesses
a dualizing complex. In the present article, we will construct a Macaulayfication of
a Noetherian local ring A in the case of dimnon-CM A < 2.

Theorem 1.1 ([9]). Let A be a Noetherian local ring possessing a dualizing complez.
If Ass A = Assh A and dimnon-CM A < 2, then A has a Macaulayfication.

Here Ass A denotes the set of associated prime ideals of A and AsshA = {p €
AssA|dimA/p = dim A}. '

The notion of Macaulayfication is an analogue of the resolution of singularities.
In 1964, Hironaka [8] gave a resolution of singularities of an algebraic variety over
a field of characteristic zero. However the general resolution problem is still open
even a variety over a field of positive characteristic. On the other hand, Faltings’
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method to construct a Macaulayfication is independent of the characteristic of A. In
particular, it still works if A is mixed characteristic. Of course, our method is also
independent of the characteristic.

In the last section, we give an application of Macaulayfication. A dualizing complex
is an important tool of Commutative Algebra and Algebraic Geometry, though we
know what rings possesses it not well. It is well-known that a homomorphic image of
a Gorenstein local ring possesses a dualizing complex. In 1979, Sharp asked whether
its converse is true [14]. Aoyama and Goto [1] gave a partial answer to Sharp’s
question by using Faltings’ Macaulayfication. They showed that Sharp’s question is
true for a rings with dimnon-CM < 1. Their argument still works in the case of
dimnon-CM = 2. We will show the following theorem.

Theorem 1.2. Let A be a Noetherian local ring possessing a dualizing complex. If
dimnon-CM A < 2, then A is a homomorphic image of a Gorenstein local ring.

Throughout this article, A denotes a Noetherian local ring with maximal ideal m.
Assume that d = dim A > 0. '

2. A SYSTEM OF PARAMETERS

In this section, we state on the p-standard system of parameters, which was intro-
duced by Cuong [2]. First we recall the definition of u.s.d-sequences.

Definition 2.1 ([7]). Let M be an A-module. A sequence z, ... , z, € A is said to
be a d-sequence on M if

(z1,..,zic)Mizizj = (24,...,2i-1)M :z; forany1<:<j<u.

A sequence z;, ..., z, is said to be a u.s.d-sequence on M if z7*, ..., 2} is a
d-sequence on M for any integers n;, ..., n, > 0 and in any order.

The following definition and lemmas are useful to find a u.s.d-sequence, which were
given by Schenzel [12, 13].

Definition 2.2. For any finitely generated A-module M, let a;(M) be the annihilator
of Hi,(M) and a(M) = [Tikaimm ®:(M).

Lemma 2.3. Let M be a finitely generated A-module. If A possesses a dualizing
complez, then the following statements are true:

(1) For all i, dim A/a;(M) <. In particular, dim A/a(M) < dim M.

(2) Let p be a prime ideal of A such that dimA/p = i. Then p € AssM if
and only if p € Ass A/a;(M). In particular, Ass M = Assh M if and only if
dimA/a;(M) < ¢ for all i < dim M. "

(3) If M is equidimensional, then non-CM M = V(a(M)).
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Lemma 2.4. Let M be a finitely generated A- module cmd zy, ...; T, a system of
parameters for M. Then ' g P

(1, i) M iz C (24, ... ,:ci_l)M:a(M). foralll <i<n.
The followmg deﬁnltlon is slightly different from Cuong’s one.

Definition 2.5. Let M be a finitely generated A-module and z,, .. .. , T, 1s a system
of parameters for M. We say that z;, ..
of type s if

., Ty is a p-standard system of parameters

$s+la---’xu’€ a(M)
z; € a(M/(zig1,...,2,)M) for: <s.

If A possesses a dualizing complex and s < dim A/a( ), then we can take a
p-standard system of parameters of type s for M by using (1) of Lemma 2.3.

The following is the main theorem of this section, which was given by Cuong in
his unpublished work.

Theorem 2.6. Let M be a finitely generated A-module, x4, ..., T, its p-standard
system of parameters of type s and t < u a positive integer. Then Ty, ..., Tt s a
d-sequence on M for any integers ng, ..., ny, > 0.

Proof. We have to prove that
(26.1) (zF, ..,z )M : :r"’m =(zM, ..., a7 )M iz}

for any t < i < j < u. If j > s+ 1, then the both side of (2.6.1) equal to
(z,...,2 ?’11)M a(M).
Assume that j < s and take an element a of the left hand side of (2.6.1). Then

a € (x?',...,x?j}l,mj+1,.l.,a:d)M::v?"J:?j
= (x?',...,m?i‘il,xj+1,...,:cd)M::c?’.
Thus we have
zya € (a2 Ty T)) MO (z3, ...,z )M sz

The following lemma. assures us that the right hand side of this equation is equal
to (z7",...,2;.3 )M. O

Lemma 2.7. In the same notation as Theorem 2.6,

(2.7.1)
(x?t,...,x?'ll,x”l, LT )M N (x?‘,...,:c?i‘ll)M::c?" = (z},..., M

forallt <:1<j < u.



Proof. We work by descending induction on j. If j = w, then there is is nothing to
prove. Assume that j < u and let a be an element of the left hand side of (2.7.1).
Then a = b+ z;11c with b € (z},...,2°7',Tj42,...2,)M and ¢ € M. By using
Lemma 2.4, we have

ng Ni—1 IR ()
c€ (zf, . 2T T, Tu)M 2 2
— g Ti—1 .
—(.’Et gorey Ly g ,$j+27...$y)M.Ij+1.
Hence _
ne - Ny—1 R (71 nt ni;l . .
a€(af,. i )M gl (e, wliT T, Tl M

= (2T )M

by induction hypothesis. O

3. THE PROOF OF THEOREM 1.1

- The main theorem of this section is the following

Theorem 3.1. Assume that d > 2 and there is a subsystem of parameters xi, ... ,
x4 for A satisfying the following two conditions for some integer s >t —1: "
(#) i, ..., xs, xzsjfrl), cee Q:Z‘(id) is a d-sequence on A for any positive integers
ng, ..., ng and for any permutation o of s+1, ..., d.

(%) x4, ..., z; is a d-sequence on A/(Tiy1,...,2q) forallt <2< s+ 1.
We put q; = (2i,...,24), bi = qi+- - qoy1 and X; = Proj A[b;T] fort <i < s+1,
where T is an indeterminate. '

Ifs—1<t<s+1, then depth Oy, , > d—t +1 for all closed point p € X;.

Theorem 1.1 immediately comes from Theorem 3.1. In fact, if d < 1, then A itself
is Cohen-Macaulay. If d > 2, then s = dimnon-CM A < d — 2 by (2) and (3) of
Lemma 2.3. Let zy, ..., 24 be a p-standard system of parameters of type:s for A.
Theorem 2.6 says that zy, ..., z, satisfies (#) and (%). Hence X; is a Cohen-
Macaulay scheme. LR

The rest of this section is devoted to the proof of Theorem 3.1. From now on, we
use the notation of Theorem 3.1. Of course, z,,1, ..., ¥4 satisfy (#) and (%) as a
system of parameters for A/z!A for any positive integer [ < s+ 1. Furthermore, they
satisfy (#) and (%) as a system of parameters for A. For example, we get

(Tigrye ooy Tin1) i TiT; = ﬂ(xi, TiplyevsLimy) LT
: !

= ﬂ(xi, .'L't+1, ey ;1,’1'__,1) : :UJ
I -

= (Te41,-- - yTi1) ‘T

by Krull’s intersection theorem.
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Lemma 3.2. Let yo, ..., yu € A. If y1, ..., yu is a d-sequence on A/yoA, then

(321) (yl’ . 'ayk)(yla' "7yu)n:y0 = (3/1,~ "’yk)[(yla' .. 7yu)n:y0] + Oiyo

foralln >0 and1 <k <u.

Proof. We work by induction on k. Let k¥ = 1 and a an element of the left hand
side of (3.2.1). Then yoa = y;,b with b € (y1,...,y.)". By using Theorem 1.3 of [7],
b€ (y0):y1 N (Y1,-- -, 4u)" C (y0). If we put b= yod’, then a’ € (y1,...,9.)" :yo and
a —y1a’ € 0:yo. Thus a belongs to the right hand side of (3.2.1).

Assume that k£ > 2 and let a be an element of the left hand side of (3.2.1). We

put yoa = yib+ b with b € (y1,...,9.)" and ¥ € (y1,.-.,¥k-1)(¥1,---, )" Then
we have

¢ € (Yo, Y15+ > Yr—1) ¥k N [(¥0) + (y1,- -5 %)"]
= (yO) + (yh R yk—l)(ylv .. ayu)n_l

by using Theorem 1.3 of [7] again. Let
b=yod +c¢
with ¢ € (y1,---»Yk-1) (Y1, - - yu)" " . Then a’ € (y1,...,%.)" :yo and

a— yka' € (yla ‘. ayk—l)(yh e ayu)n:yo
= (Y15 Yk—1)[(¥15 -+ %u)" 190 + 090

by induction hypothesis. The proof is completed. [
The following is a bottle neck of the general Macaulayfication problem.
Proposition 3.3. Ifi =s or s+ 1, then
Gia[b7:2l ] €67 foralln >0 and > 0.
Proof. Assume that i = s + 1. Then Lemma 3.2 says that
Qo = Gopd (Ao 2] + 012
= g1 Qo1 @) + 0 2,

Thus we have the assertion.
Next assume that : = s. We prove

(3.3.1) b7 1xl_y = b7 depa[ds 1 Zoma] + 20001 (Ao 1 Tsma] + 05 Ty
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for all n > 0 and [ > 0. Let a be an element of the left hand side of (3.3.1). Then by
Lemma 3.2, we have
a€q iz,
= qzn—l[qs : zs—l] +0: Ts-1
n—1.n n n-—1

= (; qs+1[q3 (o) + 012 + 259,70 [gs Too1).

Hence we may assume that a = z7a’ with o’ € q7![q,:2,-1]. Then

I} n /! 2n n— l n+1 n N
ws—lxsa € qs+1 + + l‘ qs+1 + ‘rs qs+1'

We put 2! _,z%a’ = b+ z7¥ with b € q::_rll and b € q},,. Since

l [ / n+1 .
‘rs—la’ _b 6 qs+1 33 nqs

= _qg+1[qs+l 1z, + 0z, N,
C Q41
Therefore
a' € Oor1 :x.ls—l = q?-ﬁl [Gog1:Ts1] + 02,
by Lemma 3.2. Thus (3.3.1) is proved and the assertion comes from it. [J

Next we consider affine charts of X;. We put

R s—i+2 s—i+42
= (2,2
+ (xg;—z+1xgz—a1 .. xz: i g gxskak —~1+1 |Z < < <o <s< akv)

forallt<i<s+1.

Lemma 3.4. The ideal ¢; is a reduction of b;, that is, b = ¢;b""! for a sufficiently
large n.

Proof. We work by descending induction on . If i = s + 1, then b,y = ¢,p1 = qsy1.
There is nothing to prove.

Assume that ¢ < s and b} = Cjb?_l for all # < 5 < s+ 1 and for a sufficiently
large n. Let k be an integer such that 0 < k < s —:. Then, since mfj,cchkH C ¢;, we
have

in (%)

_1  _(k+1)n— () n

k-1 2/ .
Gi+1 " Qiph—1%i4k  Bigr = Qi1 qz+k 194k i+k+1
(40n- ("4,
= Qiy1- qz+qu+k+l k41

(k+1)(n=1)-

+ qi+1 qz-{—k:'l lqz+k ( )[ ::-l-kl cH—IH—I bz+k+]]
(k+1)n—(*1? —

g ql+1 qz+kql+k+1 ( )b1+k+1 + Cibi 1.
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Hence

b = qz z+1
- qi+1bi+l + cb’.‘_l
- q1+1qz+2 lbz-{-z + Czbn_

s—i4+1
s—i (s—i+2)n—

g_ Qi+1q?+2 g qs+1 : ) + cib?_l
= ¢;b7! |

s—i+2 s—i+2)

because (23317, ..., 2} C ¢; is a reduction of qs41. O

Thus X; is covered by spectrum of such rings as

Albsfay ) = A2, 2

a:oz xO’
withs+1<a<dand

oq —1+1 Qp—o L STk -Fl
Alb; [z ™ a g T2, ]
xak_l—-l xak xozk_l-{—l Zg

y Ty ) )
Loy Ta; Tar Lo Tag—y LTagoy Loy Loy

Z; 330,1___1 maz X

with?z < a; < - <oapq <s<a <d. Assume that i > t. Then it is easy to verify
that

- Al [257 ] = Albi /2T [z [2d],
Albi—r /- 1ws = Al /2y [wa/ 2im],

Albia /o2 e = Al R s CTRVE)
T SR T s Sy

[bi/xi H = g Albifxl ]
and

qu[b o — z+1 . xs—ak_1+1] — :ralA[b /$a1—2+1 . Is (79 1+1]

ozl ok ay o

Therefore

Coroilary 3.5. The sheaf q;.1O%, of ideals is locally generated by two elements and
Xi_1 is the blowing-up of X; with respect to q;_1Ox, for allt < i< s+ 1.



Now we prove Theorem 3.1 by induction on t. We may assume that A/m is
algebraically closed without loss of generality: see the proof of [6; Proposition 3.5].

Ift = s+ 1, then z,4, ..., 24 is a u.s.d-sequence on A: Let R = Alqs417]
and M = mR 4+ R,. Then Hyy(R) is finitely graded for all i < d — s, that is, the
homogeneous component [Hi,(R)], is zero for all but finitely many n. By using [3,
Satz 1], we have depth Ox_,,, > d — s for all closed point p € X,4.

Next we assume that ¢t < s and let p be a closed point of X;. Since the blowing-up
X; — Spec A is a closed map, we have an expression:

Ty Tg41 Tq
SN EE R
‘Tal xﬂ’l . mOflc (m,z‘t/xal—at,l't+1/1?a1—at+1«~~~)
_ —t42 : .
(or Ox,p = A[b/x5 " (oo foa—ar,zesr [ra—atsr,)) With @y, aipq, ... € A, Assume
that a; > ¢ and let [ be a positive integer. Let
Ti41 Tq
bl 2] |
Loy Loy (0,24 [Ty =1, Te 41 [Tag —Qi41yee-)

Iq

Loy Loy,

Ti41
BY = A/zlA [—H R

] (mv-":t/xal —at,Tt41 /l‘q1 —at41 ,)

and n be the maximal ideal of B. Since z:41, ..., 4 satisfies (#) and (%) as a
subsystem of parameters for A and for A/x A, the induction hypothe51s says that
depth B, depth B®) > d —¢. v

We compute H; (B). Since q,B is generated by z  and :cal, Wthh are non-zero
divisor on B, we have H{ (B) = 0 for ¢ # 1, 2. Taking direct limit, local cohomology
with respect to z,, and localization of a short exact sequence

b br b+ (2)
(351) 0 —s — f+1 t oty t+1 —_— s o SOILIR e 74 — 0,
7% 41T 0z 71690 2% néPo (1)
we obtain H;al H!(B) = lim;,B" /27 BY because the left term of (3.5.1) is an-
nihilated by z,,: see Proposition 3.3. The spectral sequence E3* = Hf HI (-) =

(004, )(—) induces a short exact sequence
Tay

0 — HY, HE(-) — B

(-”L't,l'cxl ( ) _) Hgal Hgt(_) - 0‘
Hence H; (B) = lim,, BY /2™ BY. Since z,, is a non-zero divisor on B,
HYH? (B)=0 forallp<d—t-1.
Furthermore, we get

b™ .:x
H (Alb,T H® H (A[b,T],) = € —HL 1
(A1) = Hy, He (Al T)) = gt
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from (3.5.1). In fact, z,, is a non-zero divisor on the right term of (3.5.1) because
(2!): 20y N[(}) + 93] = (2}). Therefore q.H, (B) = 0. V

Consider the spectral sequence E}* = HYH? (—) = H(—). Since depth B > d—t,
EP' = H*Y(B)=0forp<d—t—1. Thus | |
| HP'HI(B)=0 ifg#1,20rp<d—t—1

and

By using this, we compute the depth of
(G —r=)
Ul>0(’73a1U - l't) : xlal (n,U—at) ’

where U denotes an indeterminate. Taking local cohomology with respect to (z;, 4, )
of a short exact sequence

1%

oXt»P = B[:Et/mal](“»l'r/l‘a}—at)

.’L'al U—Ift

0 — B[U] B[U] — B[U]/(z0,U — ) — 0,

we obtain an exact sequence
0 — Hy (BIU)) — Hy (B[U)/(za,U = 21)) — HE (B[U) — Hg (B[U]) — 0.
By using an exact sequence
‘ 0— H(lu—a,)Hﬁ_l(—) - Hfu_at,n)(—) - H?U—a,)Hg(—) — 0,
we getHY 1, HI (B[U])=0if ¢ #1,20r p<d—t. Hencewe obtain
H(pn,U—-a,)qut(B[Lr]/(‘TalU —z¢))=0 forp<d-—t.
Taking local cohomology of a short exact sequence

Uso(za, U — xt)il’g] _ B[U]

0
— (26, U — 1) (20, U — x¢)

— Blzi/14,] — 0,

we have
H. (Blz/za,])) = H,, (B[U]/(20,U — 24))
that is,
an,xt/a:al—at)H;t(B[xt/fcm]) =0 forp<d-—t.

Of course, H? (B[z;/,]) = 0 if ¢ # 1. The spectral sequence
E} = H(pn,l‘t/l‘al_at)Hgt(B[xt/xal]) = H&vxt/$a1—at)(B[$t/xa1])

says that depthOx,, > d —1t+ 1.
If a; = t or Oy, , = A[b;/25"""?|(m 21 /za—ar,...) then we can also show depth Oy, , >
d —t+1 in the same way as above. Thus Theorem 3.1 is proved.



4. THE PROOF OF THEOREM 1.2

In this section, we prove Theorem 1.2 in the same way as [1]. Let A be a Noetherian
local ring possessing a dualizing complex and s = dimnon-CM A.

First we assume Ass A = Assh A. We work by induction on s. If s < 0, that is, A
is Cohen-Macaulay, then the idealization A x K4 of the canonical module K4, which
exists because A possesses a dualizing complex, is a Gorenstein ring [11] and A is its
homomorphic image.

When 0 < s < 2, let zy, ..., 74 be a p-standard system of parameters of type s
for A, q; = (zi,...,24) and b; = q; -+ - q,41 for i < s+ 1. We consider R = A[b{ T
and M = m+ R;. If s = 0, then Ry is Cohen-Macaulay [7, Theorem 7.11] and
A is its homomorphic image. Since Rgy also possesses a dualizing complex, A is a
homomorphic image of a Gorenstein ring.

Assume that s > 0 and let 8 C R be a prime ideal such that dim R/B > s.
We show that Ryp is Cohen-Macaulay, hence dimnon-CM Rgy < s. Without loss
of generalities, we may assume that 8 is homogeneous. If P 2 Ry, then Ry is
Cohen-Macaulay by Theorem 1.1. If 8 O R,, then we put P = pR + R, with
p € SpecA. If p 2 q,41, then R, = A,[T] is Cohen-Macaulay. If p D .41, then
Top1s --- 5 Tq 18 @ system of parameters for A, which forms a u.s.d-sequence on A,
because dim A/p = dim R/P > s. Hence R, = Ap[q271 A,T] is Cohen-Macaulay. By
induction hypothesis, we find that Ryy is a homomorphic image of a Gorenstein ring
and A is also. ' ,

Next we consider the general case, we work by induction on d = dim A. If d = 0,
then there is nothing to prove. Assume that d > 0. Let (0) =%, N---Nt, be a
primary decomposition of (0) in A. By renumbering t;, we may assume that there is
an integer [ < n such that dim A/v; = d if and only if ¢+ < [. Letvf =t N---Ny and
f=vupmnN---Ne,. ' : ’

Let p such that dimA/p > s. Then A, is Cohen-Macaulay, hence equidimen-
sional. Therefore p D f if and only if p % f. This implies that dimnon-CM A/f,
dimnon-CM A/f" < s. By induction hypothesis and the case of Ass A = Assh A,
there are Gorenstein local rings B and B’ such that A/f and A/f" are their homo-
morphic image, respectively. We may assume that dim B = dim B’ = d.

Consider A as a subring of A/f®A/f. Let C be the inverse image of Aby B& B’ —
A/f@® A/f. Then there exists a commutative diagram

0 C BB —— BB /C — 0
| | |
0 y A Alf® Alf —— A/f+f —— 0

with exact rows and epimorphisms f and g.
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Since A/f + ' is finitely generated over A, B & B’/C’ and B @ B’ are finitely

generated over C. Therefore Cisa Noetherlan local ring by Eakin-Nagata theorem.

18

Since

C —— B’

J J

B — B® B'/C

a fiber product, B possesses a dualizing complex: see [5, Lemma 3 and 5] or [10,

Corollary 3.7). Furthermore, dimnon-CM C' < s and Ass C = Assh C because B® B’

18

a Cohen-Macaulay C-module and dim A/f + § < s. Thus C is a homomorphic

image of a Gorenstein local ring and A is also.

10.
11.

12.
13.
14.
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