ON MACAULAYFICATION OF LOCAL RINGS —IN THE CASE OF dim non-CM ≤ 2

KAWASAKI, TAKESI

Tokyo Metropolitan University

ABSTRACT. Let X be a Noetherian scheme. A birational proper morphism $Y \to X$ is said to be a Macaulayfication of X if Y is a Cohen-Macaulay scheme. In 1978 Faltings constructed a Macaulayfication of X if the dimension of its non-Cohen-Macualay locus non-CM X is at most one. Recently the author constructed a Macaulayfication of X in the case of non-CM X = 2. In the present article, we give another proof of them, which still work in general case except for only one lemma.

1. Introduction

Let X be a Noetherian scheme. A Macaulay fication of X is a birational proper morphism $Y \to X$ such that Y is a Cohen-Macaulay scheme. If $X = \operatorname{Spec} A$ is an affine scheme, then by abuse notation the Macaulay fication $Y \to \operatorname{Spec} A$ is said to be the one of A. In 1978, Faltings [4] gave the notion of Macaulay fication and constructed a Macaulay fication of Noetherian local ring A if it possesses a dualizing complex and dim non-CM $A \le 1$. Here non-CM $A = \{\mathfrak{p} \in \operatorname{Spec} A \mid A_{\mathfrak{p}} \text{ is not Cohen-Macaulay}\}$ is the non-Cohen-Macaulay locus of A, which is closed subset of $\operatorname{Spec} A$ if A possesses a dualizing complex. In the present article, we will construct a Macaulay fication of a Noetherian local ring A in the case of dim non-CM $A \le 2$.

Theorem 1.1 ([9]). Let A be a Noetherian local ring possessing a dualizing complex. If Ass A = Assh A and dim non-CM $A \leq 2$, then A has a Macaulay fication.

Here Ass A denotes the set of associated prime ideals of A and Assh $A = \{ \mathfrak{p} \in Ass A \mid \dim A/\mathfrak{p} = \dim A \}.$

The notion of Macaulayfication is an analogue of the resolution of singularities. In 1964, Hironaka [8] gave a resolution of singularities of an algebraic variety over a field of characteristic zero. However the general resolution problem is still open even a variety over a field of positive characteristic. On the other hand, Faltings'

¹⁹⁹¹ Mathematics Subject Classification. Primary: 14M05, 14B05; Secondary: 13H10, 13A30. Key words and phrases. blowing-up, Cohen-Macaulay scheme, dualizing complex, resolution of singularities.

method to construct a Macaulayfication is independent of the characteristic of A. In particular, it still works if A is mixed characteristic. Of course, our method is also independent of the characteristic.

In the last section, we give an application of Macaulayfication. A dualizing complex is an important tool of Commutative Algebra and Algebraic Geometry, though we know what rings possesses it not well. It is well-known that a homomorphic image of a Gorenstein local ring possesses a dualizing complex. In 1979, Sharp asked whether its converse is true [14]. Aoyama and Goto [1] gave a partial answer to Sharp's question by using Faltings' Macaulayfication. They showed that Sharp's question is true for a rings with dim non-CM ≤ 1 . Their argument still works in the case of dim non-CM = 2. We will show the following theorem.

Theorem 1.2. Let A be a Noetherian local ring possessing a dualizing complex. If dim non-CM $A \leq 2$, then A is a homomorphic image of a Gorenstein local ring.

Throughout this article, A denotes a Noetherian local ring with maximal ideal \mathfrak{m} . Assume that $d = \dim A > 0$.

2. A SYSTEM OF PARAMETERS

In this section, we state on the p-standard system of parameters, which was introduced by Cuong [2]. First we recall the definition of u.s.d-sequences.

Definition 2.1 ([7]). Let M be an A-module. A sequence $x_1, \ldots, x_u \in A$ is said to be a d-sequence on M if

$$(x_1, \ldots, x_{i-1})M : x_i x_j = (x_1, \ldots, x_{i-1})M : x_j$$
 for any $1 \le i \le j \le u$.

A sequence x_1, \ldots, x_u is said to be a *u.s.d-sequence* on M if $x_1^{n_1}, \ldots, x_u^{n_u}$ is a d-sequence on M for any integers $n_1, \ldots, n_u > 0$ and in any order.

The following definition and lemmas are useful to find a u.s.d-sequence, which were given by Schenzel [12, 13].

Definition 2.2. For any finitely generated A-module M, let $\mathfrak{a}_i(M)$ be the annihilator of $H^i_{\mathfrak{m}}(M)$ and $\mathfrak{a}(M) = \prod_{i \neq \dim M} \mathfrak{a}_i(M)$.

Lemma 2.3. Let M be a finitely generated A-module. If A possesses a dualizing complex, then the following statements are true:

- (1) For all i, dim $A/\mathfrak{a}_i(M) \leq i$. In particular, dim $A/\mathfrak{a}(M) < \dim M$.
- (2) Let \mathfrak{p} be a prime ideal of A such that $\dim A/\mathfrak{p} = i$. Then $\mathfrak{p} \in \operatorname{Ass} M$ if and only if $\mathfrak{p} \in \operatorname{Ass} A/\mathfrak{a}_i(M)$. In particular, $\operatorname{Ass} M = \operatorname{Assh} M$ if and only if $\dim A/\mathfrak{a}_i(M) < i$ for all $i < \dim M$.
- (3) If M is equidimensional, then non-CM $M = V(\mathfrak{a}(M))$.

Lemma 2.4. Let M be a finitely generated A-module and x_1, \ldots, x_u a system of parameters for M. Then

$$(x_1,\ldots,x_{i-1})M:x_i\subseteq (x_1,\ldots,x_{i-1})M:\mathfrak{a}(M)$$
 for all $1\leq i\leq n$.

The following definition is slightly different from Cuong's one.

Definition 2.5. Let M be a finitely generated A-module and x_1, \ldots, x_u is a system of parameters for M. We say that x_1, \ldots, x_u is a p-standard system of parameters of type s if

$$\begin{cases} x_{s+1}, \dots, x_u \in \mathfrak{a}(M) \\ x_i \in \mathfrak{a}(M/(x_{i+1}, \dots, x_u)M) & \text{for } i \leq s. \end{cases}$$

If A possesses a dualizing complex and $s \leq \dim A/\mathfrak{a}(M)$, then we can take a p-standard system of parameters of type s for M by using (1) of Lemma 2.3.

The following is the main theorem of this section, which was given by Cuong in his unpublished work.

Theorem 2.6. Let M be a finitely generated A-module, x_1, \ldots, x_u its p-standard system of parameters of type s and $t \leq u$ a positive integer. Then $x_t^{n_t}, \ldots, x_u^{n_u}$ is a d-sequence on M for any integers $n_t, \ldots, n_u > 0$.

Proof. We have to prove that

$$(2.6.1) (x_t^{n_t}, \dots, x_{i-1}^{n_{i-1}})M : x_i^{n_i} x_j^{n_j} = (x_t^{n_t}, \dots, x_{i-1}^{n_{i-1}})M : x_j^{n_j}$$

for any $t \leq i \leq j \leq u$. If $j \geq s+1$, then the both side of (2.6.1) equal to $(x_t^{n_t}, \ldots, x_{i-1}^{n_{i-1}})M : \mathfrak{a}(M)$.

Assume that $j \leq s$ and take an element a of the left hand side of (2.6.1). Then

$$a \in (x_t^{n_t}, \dots, x_{i-1}^{n_{i-1}}, x_{j+1}, \dots, x_d) M : x_i^{n_i} x_j^{n_j}$$

= $(x_t^{n_t}, \dots, x_{i-1}^{n_{i-1}}, x_{j+1}, \dots, x_d) M : x_j^{n_j}$.

Thus we have

$$x_j^{n_j}a \in (x_t^{n_t}, \dots, x_{i-1}^{n_{i-1}}, x_{j+1}, \dots, x_d)M \cap (x_t^{n_t}, \dots, x_{i-1}^{n_{i-1}})M : x_i^{n_i}.$$

The following lemma assures us that the right hand side of this equation is equal to $(x_t^{n_t}, \dots, x_{i-1}^{n_{i-1}})M$. \square

Lemma 2.7. In the same notation as Theorem 2.6,

$$(2.7.1) (x_t^{n_t}, \dots, x_{i-1}^{n_{i-1}}, x_{j+1}, \dots, x_u) M \cap (x_t^{n_t}, \dots, x_{i-1}^{n_{i-1}}) M : x_i^{n_i} = (x_t^{n_t}, \dots, x_{i-1}^{n_{i-1}}) M$$
for all $t \le i \le j \le u$.

Proof. We work by descending induction on j. If j = u, then there is is nothing to prove. Assume that j < u and let a be an element of the left hand side of (2.7.1). Then $a = b + x_{j+1}c$ with $b \in (x_t^{n_t}, \ldots, x_{i-1}^{n_{i-1}}, x_{j+2}, \ldots x_u)M$ and $c \in M$. By using Lemma 2.4, we have

$$c \in (x_t^{n_t}, \dots, x_{i-1}^{n_{i-1}}, x_{j+2}, \dots x_u)M : x_i^{n_i} x_{j+1}$$
$$= (x_t^{n_t}, \dots, x_{i-1}^{n_{i-1}}, x_{j+2}, \dots x_u)M : x_{j+1}.$$

Hence

$$a \in (x_t^{n_t}, \dots, x_{i-1}^{n_{i-1}})M : x_i^{n_i} \cap (x_t^{n_t}, \dots, x_{i-1}^{n_{i-1}}, x_{j+2}, \dots x_u)M$$
$$= (x_t^{n_t}, \dots, x_{i-1}^{n_{i-1}})M$$

by induction hypothesis.

3. The Proof of Theorem 1.1

The main theorem of this section is the following

Theorem 3.1. Assume that $d \geq 2$ and there is a subsystem of parameters x_t, \ldots, x_d for A satisfying the following two conditions for some integer $s \geq t-1$:

- (#) $x_t^{n_t}, \ldots, x_s^{n_s}, x_{\sigma(s+1)}^{n_{s+1}}, \ldots, x_{\sigma(d)}^{n_d}$ is a d-sequence on A for any positive integers n_t, \ldots, n_d and for any permutation σ of $s+1, \ldots, d$.
- (%) x_t, \ldots, x_i is a d-sequence on $A/(x_{i+1}, \ldots, x_d)$ for all $t \leq i \leq s+1$.

We put $\mathfrak{q}_i = (x_i, \dots, x_d)$, $\mathfrak{b}_i = \mathfrak{q}_i \cdots \mathfrak{q}_{s+1}$ and $X_i = \operatorname{Proj} A[\mathfrak{b}_i T]$ for $t \leq i \leq s+1$, where T is an indeterminate.

If
$$s-1 \le t \le s+1$$
, then depth $\mathcal{O}_{X_t,p} \ge d-t+1$ for all closed point $p \in X_t$.

Theorem 1.1 immediately comes from Theorem 3.1. In fact, if $d \leq 1$, then A itself is Cohen-Macaulay. If $d \geq 2$, then $s = \dim \operatorname{non-CM} A \leq d-2$ by (2) and (3) of Lemma 2.3. Let x_1, \ldots, x_d be a p-standard system of parameters of type s for A. Theorem 2.6 says that x_1, \ldots, x_d satisfies (#) and (%). Hence X_1 is a Cohen-Macaulay scheme.

The rest of this section is devoted to the proof of Theorem 3.1. From now on, we use the notation of Theorem 3.1. Of course, x_{t+1}, \ldots, x_d satisfy (#) and (%) as a system of parameters for $A/x_t^l A$ for any positive integer $l \leq s+1$. Furthermore, they satisfy (#) and (%) as a system of parameters for A. For example, we get

$$(x_{t+1}, \dots, x_{i-1}) : x_i x_j = \bigcap_l (x_t^l, x_{t+1}, \dots, x_{i-1}) : x_i x_j$$

$$= \bigcap_l (x_t^l, x_{t+1}, \dots, x_{i-1}) : x_j$$

$$= (x_{t+1}, \dots, x_{i-1}) : x_j$$

by Krull's intersection theorem.

Lemma 3.2. Let $y_0, \ldots, y_u \in A$. If y_1, \ldots, y_u is a d-sequence on A/y_0A , then

$$(3.2.1) \quad (y_1, \dots, y_k)(y_1, \dots, y_u)^n : y_0 = (y_1, \dots, y_k)[(y_1, \dots, y_u)^n : y_0] + 0 : y_0$$

for all n > 0 and $1 \le k \le u$.

Proof. We work by induction on k. Let k=1 and a an element of the left hand side of (3.2.1). Then $y_0a=y_1b$ with $b\in (y_1,\ldots,y_u)^n$. By using Theorem 1.3 of [7], $b\in (y_0):y_1\cap (y_1,\ldots,y_u)^n\subseteq (y_0)$. If we put $b=y_0a'$, then $a'\in (y_1,\ldots,y_u)^n:y_0$ and $a-y_1a'\in 0:y_0$. Thus a belongs to the right hand side of (3.2.1).

Assume that $k \geq 2$ and let a be an element of the left hand side of (3.2.1). We put $y_0a = y_kb + b'$ with $b \in (y_1, \ldots, y_u)^n$ and $b' \in (y_1, \ldots, y_{k-1})(y_1, \ldots, y_u)^n$. Then we have

$$c \in (y_0, y_1, \dots, y_{k-1}) : y_k \cap [(y_0) + (y_1, \dots, y_u)^n]$$

= $(y_0) + (y_1, \dots, y_{k-1})(y_1, \dots, y_u)^{n-1}$

by using Theorem 1.3 of [7] again. Let

$$b = y_0 a' + c$$

with $c \in (y_1, \ldots, y_{k-1})(y_1, \ldots, y_u)^{n-1}$. Then $a' \in (y_1, \ldots, y_u)^n : y_0$ and

$$a - y_k a' \in (y_1, \dots, y_{k-1})(y_1, \dots, y_u)^n : y_0$$

= $(y_1, \dots, y_{k-1})[(y_1, \dots, y_u)^n : y_0] + 0 : y_0$

by induction hypothesis. The proof is completed. \Box

The following is a bottle neck of the general Macaulayfication problem.

Proposition 3.3. If i = s or s + 1, then

$$\mathfrak{q}_{i-1}[\mathfrak{b}_i^n:x_{i-1}^l]\subseteq \mathfrak{b}_i^n$$
 for all $n>0$ and $l>0$.

Proof. Assume that i = s + 1. Then Lemma 3.2 says that

$$\begin{split} \mathbf{q}_{s+1}^n : & x_s^l = \mathbf{q}_{s+1}^{n-1}[\mathbf{q}_{s+1} : x_s^l] + 0 : x_s^l \\ & = \mathbf{q}_{s+1}^{n-1}[\mathbf{q}_{s+1} : x_s] + 0 : x_s. \end{split}$$

Thus we have the assertion.

Next assume that i = s. We prove

$$(3.3.1) \hspace{1cm} \mathfrak{b}_{s}^{n}: x_{s-1}^{l} = \mathfrak{b}_{s}^{n-1}\mathfrak{q}_{s+1}[\mathfrak{q}_{s}: x_{s-1}] + x_{s}^{n}\mathfrak{q}_{s+1}^{n-1}[\mathfrak{q}_{s+1}: x_{s-1}] + 0: x_{s-1}$$

for all n > 0 and l > 0. Let a be an element of the left hand side of (3.3.1). Then by Lemma 3.2, we have

$$a \in \mathfrak{q}_{s}^{2n} : x_{s-1}^{l}$$

$$= \mathfrak{q}_{s}^{2n-1}[\mathfrak{q}_{s} : x_{s-1}] + 0 : x_{s-1}$$

$$= \mathfrak{q}_{s}^{n-1}\mathfrak{q}_{s+1}^{n}[\mathfrak{q}_{s} : x_{s-1}] + 0 : x_{s-1} + x_{s}^{n}\mathfrak{q}_{s}^{n-1}[\mathfrak{q}_{s} : x_{s-1}].$$

Hence we may assume that $a = x_s^n a'$ with $a' \in \mathfrak{q}_s^{n-1}[\mathfrak{q}_s : x_{s-1}]$. Then

$$x_{s-1}^{l}x_{s}^{n}a' \in \mathfrak{q}_{s+1}^{2n} + \dots + x_{s}^{n-1}\mathfrak{q}_{s+1}^{n+1} + x_{s}^{n}\mathfrak{q}_{s+1}^{n}.$$

We put $x_{s-1}^l x_s^n a' = b + x_s^n b'$ with $b \in \mathfrak{q}_{s+1}^{n+1}$ and $b' \in \mathfrak{q}_{s+1}^n$. Since

$$\begin{aligned} x_{s-1}^{l}a' - b' &\in \mathfrak{q}_{s+1}^{n+1} : x_{s}^{n} \cap \mathfrak{q}_{s} \\ &= \mathfrak{q}_{s+1}^{n} [\mathfrak{q}_{s+1} : x_{s}] + 0 : x_{s} \cap \mathfrak{q}_{s} \\ &\subset \mathfrak{q}_{s+1}^{n}. \end{aligned}$$

Therefore

$$a' \in \mathfrak{q}^n_{s+1} : x^l_{s-1} = \mathfrak{q}^{n-1}_{s+1} [\mathfrak{q}_{s+1} : x_{s-1}] + 0 : x_{s-1}$$

by Lemma 3.2. Thus (3.3.1) is proved and the assertion comes from it. \Box

Next we consider affine charts of X_i . We put

$$\mathbf{c}_{i} = (x_{s+1}^{s-i+2}, \dots, x_{d}^{s-i+2}) + (x_{\alpha_{1}}^{\alpha_{1}-i+1} x_{\alpha_{2}}^{\alpha_{2}-\alpha_{1}} \dots x_{\alpha_{k-1}}^{\alpha_{k-1}-\alpha_{k-2}} x_{\alpha_{k}}^{s-\alpha_{k-1}+1} \mid i \leq \alpha_{1} < \dots < \alpha_{k-1} \leq s < \alpha_{k})$$

for all $t \le i \le s+1$.

Lemma 3.4. The ideal c_i is a reduction of b_i , that is, $b_i^n = c_i b_i^{n-1}$ for a sufficiently large n.

Proof. We work by descending induction on i. If i = s + 1, then $\mathfrak{b}_{s+1} = \mathfrak{c}_{s+1} = \mathfrak{q}_{s+1}$. There is nothing to prove.

Assume that $i \leq s$ and $\mathfrak{b}_{j}^{n} = \mathfrak{c}_{j}\mathfrak{b}_{j}^{n-1}$ for all $i < j \leq s+1$ and for a sufficiently large n. Let k be an integer such that $0 \leq k \leq s-i$. Then, since $x_{i+k}^{k+1}\mathfrak{c}_{i+k+1} \subset \mathfrak{c}_{i}$, we have

$$\begin{split} \mathfrak{q}_{i+1} \cdots \mathfrak{q}_{i+k-1}^{k-1} \mathfrak{q}_{i+k}^{kn-\binom{k}{2}} \mathfrak{b}_{i+k}^n &= \mathfrak{q}_{i+1} \cdots \mathfrak{q}_{i+k-1}^{k-1} \mathfrak{q}_{i+k}^{(k+1)n-\binom{k}{2}} \mathfrak{b}_{i+k+1}^n \\ &= \mathfrak{q}_{i+1} \cdots \mathfrak{q}_{i+k}^k \mathfrak{q}_{i+k+1}^{(k+1)n-\binom{k+1}{2}} \mathfrak{b}_{i+k+1}^n \\ &+ \mathfrak{q}_{i+1} \cdots \mathfrak{q}_{i+k-1}^{k-1} \mathfrak{q}_{i+k}^{(k+1)(n-1)-\binom{k}{2}} [x_{i+k}^{k+1} \mathfrak{c}_{i+k+1} \mathfrak{b}_{i+k+1}^{n-1}] \\ &\subseteq \mathfrak{q}_{i+1} \cdots \mathfrak{q}_{i+k}^k \mathfrak{q}_{i+k+1}^{(k+1)n-\binom{k+1}{2}} \mathfrak{b}_{i+k+1}^n + \mathfrak{c}_i \mathfrak{b}_i^{n-1}. \end{split}$$

Hence

$$b_{i}^{n} = q_{i}^{n} b_{i+1}^{n}
\subseteq q_{i+1}^{n} b_{i+1}^{n} + c_{i} b_{i}^{n-1}
\subseteq q_{i+1} q_{i+2}^{2n-1} b_{i+2}^{n} + c_{i} b_{i}^{n-1}
\dots
\subseteq q_{i+1} q_{i+2}^{2} \cdots q_{s}^{s-i} q_{s+1}^{(s-i+2)n-\binom{s-i+1}{2}} + c_{i} b_{i}^{n-1}
= c_{i} b_{i}^{n-1}$$

because $(x_{s+1}^{s-i+2}, \ldots, x_d^{s-i+2}) \subset \mathfrak{c}_i$ is a reduction of \mathfrak{q}_{s+1} . \square

Thus X_i is covered by spectrum of such rings as

$$A[\mathfrak{b}_i/x_{\alpha}^{s-i+2}] = A\left[\frac{x_i}{x_{\alpha}}, \dots, \frac{x_d}{x_{\alpha}}\right]$$

with $s+1 \le \alpha \le d$ and

$$\begin{split} A[\mathfrak{b}_{i}/x_{\alpha_{1}}^{\alpha_{1}-i+1}x_{\alpha_{2}}^{\alpha_{2}-\alpha_{1}}\cdots x_{\alpha_{k}}^{s-\alpha_{k-1}+1}] \\ &=A\left[\frac{x_{i}}{x_{\alpha_{1}}},\ldots,\frac{x_{\alpha_{1}-1}}{x_{\alpha_{1}}},\frac{x_{\alpha_{2}}}{x_{\alpha_{1}}},\frac{x_{\alpha_{1}+1}}{x_{\alpha_{2}}},\cdots,\frac{x_{\alpha_{k-1}-1}}{x_{\alpha_{k-1}}}\frac{x_{\alpha_{k}}}{x_{\alpha_{k-1}}}\frac{x_{\alpha_{k-1}+1}}{x_{\alpha_{k}}},\cdots,\frac{x_{d}}{x_{\alpha_{k}}}\right] \end{split}$$

with $i \leq \alpha_1 < \cdots < \alpha_{k-1} \leq s < \alpha_k \leq d$. Assume that i > t. Then it is easy to verify that

$$\begin{split} A[\mathfrak{b}_{i-1}/x_{\alpha}^{s-i+3}] &= A[\mathfrak{b}_{i}/x_{\alpha}^{s-i+2}][x_{i-1}/x_{\alpha}], \\ A[\mathfrak{b}_{i-1}/x_{i-1}x_{\alpha}^{s-i+2}] &= A[\mathfrak{b}_{i}/x_{\alpha}^{s-i+2}][x_{\alpha}/x_{i-1}], \\ A[\mathfrak{b}_{i-1}/x_{\alpha_{1}}^{\alpha_{1}-i}\cdots x_{\alpha_{k}}^{s-\alpha_{k-1}+1}] &= A[\mathfrak{b}_{i}/x_{\alpha_{1}}^{\alpha_{1}-i+1}\cdots x_{\alpha_{k}}^{s-\alpha_{k-1}+1}][x_{i-1}/x_{\alpha_{1}}], \\ A[\mathfrak{b}_{i-1}/x_{i-1}x_{\alpha_{1}}^{\alpha_{1}-i+1}\cdots x_{\alpha_{k}}^{s-\alpha_{k-1}+1}] &= A[\mathfrak{b}_{i}/x_{\alpha_{1}}^{\alpha_{1}-i+1}\cdots x_{\alpha_{k}}^{s-\alpha_{k-1}+1}][x_{\alpha_{1}}/x_{i-1}], \\ \mathfrak{q}_{i}A[\mathfrak{b}_{i}/x_{\alpha}^{s-i+2}] &= x_{\alpha}A[\mathfrak{b}_{i}/x_{\alpha}^{s-i+2}] \end{split}$$

and

$$\mathfrak{q}_i A[\mathfrak{b}_i/x_{\alpha_1}^{\alpha_1-i+1}\cdots x_{\alpha_k}^{s-\alpha_{k-1}+1}] = x_{\alpha_1} A[\mathfrak{b}_i/x_{\alpha_1}^{\alpha_1-i+1}\cdots x_{\alpha_k}^{s-\alpha_{k-1}+1}].$$

Therefore

Corollary 3.5. The sheaf $\mathfrak{q}_{i-1}\mathcal{O}_{X_i}$ of ideals is locally generated by two elements and X_{i-1} is the blowing-up of X_i with respect to $\mathfrak{q}_{i-1}\mathcal{O}_{X_i}$ for all $t < i \leq s+1$.

Now we prove Theorem 3.1 by induction on t. We may assume that A/\mathfrak{m} is algebraically closed without loss of generality: see the proof of [6, Proposition 3.5].

If t=s+1, then x_{s+1}, \ldots, x_d is a u.s.d-sequence on A. Let $R=A[\mathfrak{q}_{s+1}T]$ and $\mathfrak{M}=\mathfrak{m}R+R_+$. Then $H^i_{\mathfrak{M}}(R)$ is finitely graded for all $i\leq d-s$, that is, the homogeneous component $[H^i_{\mathfrak{M}}(R)]_n$ is zero for all but finitely many n. By using [3, Satz 1], we have depth $\mathcal{O}_{X_{s+1},p}\geq d-s$ for all closed point $p\in X_{s+1}$.

Next we assume that $t \leq s$ and let p be a closed point of X_t . Since the blowing-up $X_t \to \operatorname{Spec} A$ is a closed map, we have an expression:

$$\mathcal{O}_{X_t,p} = A\left[\frac{x_t}{x_{\alpha_1}}, \frac{x_{t+1}}{x_{\alpha_1}}, \cdots, \frac{x_d}{x_{\alpha_k}}\right]_{(\mathfrak{m}, x_t/x_{\alpha_1} - a_t, x_{t+1}/x_{\alpha_1} - a_{t+1}, \dots)}$$

(or $\mathcal{O}_{X_t,p} = A[\mathfrak{b}_t/x_{\alpha}^{s-t+2}]_{(\mathfrak{m},x_t/x_{\alpha}-a_t,x_{t+1}/x_{\alpha}-a_{t+1},\dots)}$) with $a_t, a_{t+1}, \dots \in A$. Assume that $\alpha_1 > t$ and let l be a positive integer. Let

$$B = A \left[\frac{x_{t+1}}{x_{\alpha_1}}, \cdots, \frac{x_d}{x_{\alpha_k}} \right]_{(\mathfrak{m}, x_t/x_{\alpha_1} - a_t, x_{t+1}/x_{\alpha_1} - a_{t+1}, \dots)},$$

$$B^{(l)} = A/x_t^l A \left[\frac{x_{t+1}}{x_{\alpha_1}}, \cdots, \frac{x_d}{x_{\alpha_k}} \right]_{(\mathfrak{m}, x_t/x_{\alpha_1} - a_t, x_{t+1}/x_{\alpha_1} - a_{t+1}, \dots)}$$

and \mathfrak{n} be the maximal ideal of B. Since x_{t+1}, \ldots, x_d satisfies (#) and (%) as a subsystem of parameters for A and for $A/x_t^l A$, the induction hypothesis says that depth B, depth $B^{(l)} \geq d - t$.

We compute $H^i_{\mathfrak{q}_t}(B)$. Since $\mathfrak{q}_t B$ is generated by x_t and x_{α_1} , which are non-zero divisor on B, we have $H^q_{\mathfrak{q}_t}(B) = 0$ for $q \neq 1, 2$. Taking direct limit, local cohomology with respect to x_{α_1} and localization of a short exact sequence

$$(3.5.1) \qquad 0 \longrightarrow \bigoplus_{n>0} \frac{\mathfrak{b}_{t+1}^n : x_t^l}{\mathfrak{b}_{t+1}^n + 0 : x_t} \xrightarrow{x_t^l} \bigoplus_{n>0} \frac{\mathfrak{b}_{t+1}^n}{x_t^l \mathfrak{b}_{t+1}^n} \longrightarrow \bigoplus_{n>0} \frac{\mathfrak{b}_{t+1}^n + (x_t^l)}{(x_t^l)} \longrightarrow 0,$$

we obtain $H^1_{x_{\alpha_1}}H^1_{x_t}(B) = \varinjlim_{l,m} B^{(l)}/x^m_{\alpha_1}B^{(l)}$ because the left term of (3.5.1) is annihilated by x_{α_1} : see Proposition 3.3. The spectral sequence $E_2^{pq} = H^p_{x_t}H^q_{x_{\alpha_1}}(-) \Rightarrow H^n_{(x_t,x_{\alpha_1})}(-)$ induces a short exact sequence

$$0 \to H^1_{x_{\alpha_1}}H^{p-1}_{x_t}(-) \to H^p_{(x_t,x_{\alpha_1})}(-) \to H^0_{x_{\alpha_1}}H^p_{x_t}(-) \to 0.$$

Hence $H^2_{\mathfrak{q}_l}(B) = \varinjlim_{l,m} B^{(l)} / x^m_{\alpha_1} B^{(l)}$. Since x_{α_1} is a non-zero divisor on $B^{(l)}$,

$$H^p_{\mathfrak{n}}H^2_{\mathfrak{q}_t}(B) = 0 \quad \text{for all } p < d-t-1.$$

Furthermore, we get

$$H^{1}_{\mathfrak{q}_{t}}(A[\mathfrak{b}_{t}T]_{+}) = H^{0}_{x_{\alpha_{1}}}H^{1}_{x_{t}}(A[\mathfrak{b}_{t}T]_{+}) = \bigoplus_{n>0} \frac{\mathfrak{b}_{t+1}^{n}: x_{t}}{\mathfrak{b}_{t+1}^{n} + 0: x_{t}},$$

from (3.5.1). In fact, x_{α_1} is a non-zero divisor on the right term of (3.5.1) because

 $(x_t^l): x_{\alpha_1} \cap [(x_t^l) + \mathfrak{q}_{\alpha_1}] = (x_t^l)$. Therefore $\mathfrak{q}_t H^1_{\mathfrak{q}_t}(B) = 0$. Consider the spectral sequence $E_2^{pq} = H^n_{\mathfrak{p}} H^q_{\mathfrak{q}_t}(-) \Rightarrow H^n_{\mathfrak{n}}(-)$. Since depth $B \geq d - t$, $E_2^{p1} = H_{\mathfrak{n}}^{p+1}(B) = 0$ for p < d-t-1. Thus

$$H_n^p H_{q_t}^q(B) = 0$$
 if $q \neq 1, 2$ or $p < d - t - 1$

and

$$\mathfrak{q}_t H^1_{\mathfrak{q}_t}(B) = 0.$$

By using this, we compute the depth of

$$\mathcal{O}_{X_t,p} = B[x_t/x_{\alpha_1}]_{(\mathfrak{n},x_t/x_{\alpha_1}-a_t)} \cong \left(\frac{B[U]}{\bigcup_{l>0}(x_{\alpha_1}U-x_t):x_{\alpha_1}^l}\right)_{(\mathfrak{n},U-a_t)},$$

where U denotes an indeterminate. Taking local cohomology with respect to (x_t, x_{α_1}) of a short exact sequence

$$0 \to B[U] \xrightarrow{x_{\alpha_1}U - x_t} B[U] \to B[U]/(x_{\alpha_1}U - x_t) \to 0,$$

we obtain an exact sequence

$$0 \longrightarrow H^1_{\mathfrak{q}_{\mathfrak{t}}}(B[U]) \longrightarrow H^1_{\mathfrak{q}_{\mathfrak{t}}}(B[U]/(x_{\alpha_1}U-x_t)) \longrightarrow H^2_{\mathfrak{q}_{\mathfrak{t}}}(B[U]) \longrightarrow H^2_{\mathfrak{q}_{\mathfrak{t}}}(B[U]) \longrightarrow 0.$$

By using an exact sequence

$$0 \to H^1_{(U-a_t)}H^{p-1}_{\mathfrak{n}}(-) \to H^p_{(U-a_t,\mathfrak{n})}(-) \to H^0_{(U-a_t)}H^p_{\mathfrak{n}}(-) \to 0,$$

we get $H^p_{(n,U-a_t)}H^q_{\mathfrak{g}_t}(B[U])=0$ if $q\neq 1, 2$ or p< d-t. Hence we obtain

$$H^p_{(\mathfrak{n},U-a_t)}H^1_{\mathfrak{q}_t}(B[U]/(x_{\alpha_1}U-x_t)) = 0 \quad \text{for } p < d-t.$$

Taking local cohomology of a short exact sequence

$$0 \longrightarrow \frac{\bigcup_{l>0}(x_{\alpha_1}U - x_t) : x_{\alpha_1}^l}{(x_{\alpha_1}U - x_t)} \longrightarrow \frac{B[U]}{(x_{\alpha_1}U - x_t)} \longrightarrow B[x_t/x_{\alpha_1}] \longrightarrow 0,$$

we have

$$H^1_{\mathfrak{g}_t}(B[x_t/x_{\alpha_1}]) \cong H^1_{\mathfrak{g}_t}(B[U]/(x_{\alpha_1}U - x_t))$$

that is,

$$H^{p}_{(\mathfrak{n},x_{t}/x_{\alpha_{1}}-a_{t})}H^{1}_{\mathfrak{q}_{t}}(B[x_{t}/x_{\alpha_{1}}])=0$$
 for $p < d-t$.

Of course, $H_{\mathfrak{q}_t}^q(B[x_t/x_{\alpha_1}])=0$ if $q\neq 1$. The spectral sequence

$$E_2^{pq} = H^p_{(\mathfrak{n}, x_t/x_{\alpha_1} - a_t)} H^q_{\mathfrak{q}_t}(B[x_t/x_{\alpha_1}]) \Rightarrow H^n_{(\mathfrak{n}, x_t/x_{\alpha_1} - a_t)}(B[x_t/x_{\alpha_1}])$$

says that depth $\mathcal{O}_{X_t,p} \geq d - t + 1$.

If $\alpha_1 = t$ or $\mathcal{O}_{X_t,p} = A[\mathfrak{b}_t/x_{\alpha}^{s-t+2}]_{(\mathfrak{m},x_t/x_{\alpha}-a_t,\dots)}$ then we can also show depth $\mathcal{O}_{X_t,p} \geq$ d-t+1 in the same way as above. Thus Theorem 3.1 is proved.

4. The Proof of Theorem 1.2

In this section, we prove Theorem 1.2 in the same way as [1]. Let A be a Noetherian local ring possessing a dualizing complex and $s = \dim \text{non-CM } A$.

First we assume Ass $A = \operatorname{Assh} A$. We work by induction on s. If s < 0, that is, A is Cohen-Macaulay, then the idealization $A \ltimes K_A$ of the canonical module K_A , which exists because A possesses a dualizing complex, is a Gorenstein ring [11] and A is its homomorphic image.

When $0 \le s \le 2$, let x_1, \ldots, x_d be a p-standard system of parameters of type s for A, $\mathfrak{q}_i = (x_i, \ldots, x_d)$ and $\mathfrak{b}_i = \mathfrak{q}_i \cdots \mathfrak{q}_{s+1}$ for $i \le s+1$. We consider $R = A[\mathfrak{b}_1^{d-1}T]$ and $\mathfrak{M} = \mathfrak{m} + R_+$. If s = 0, then $R_{\mathfrak{M}}$ is Cohen-Macaulay [7, Theorem 7.11] and A is its homomorphic image. Since $R_{\mathfrak{M}}$ also possesses a dualizing complex, A is a homomorphic image of a Gorenstein ring.

Assume that s>0 and let $\mathfrak{P}\subset R$ be a prime ideal such that $\dim R/\mathfrak{P}\geq s$. We show that $R_{\mathfrak{P}}$ is Cohen-Macaulay, hence dim non-CM $R_{\mathfrak{M}}< s$. Without loss of generalities, we may assume that \mathfrak{P} is homogeneous. If $\mathfrak{P}\not\supset R_+$, then $R_{\mathfrak{P}}$ is Cohen-Macaulay by Theorem 1.1. If $\mathfrak{P}\supset R_+$, then we put $\mathfrak{P}=\mathfrak{p}R+R_+$ with $\mathfrak{P}\in \operatorname{Spec} A$. If $\mathfrak{P}\not\supset \mathfrak{q}_{s+1}$, then $R_{\mathfrak{p}}=A_{\mathfrak{p}}[T]$ is Cohen-Macaulay. If $\mathfrak{P}\supset \mathfrak{q}_{s+1}$, then x_{s+1},\ldots,x_d is a system of parameters for $A_{\mathfrak{p}}$ which forms a u.s.d-sequence on $A_{\mathfrak{p}}$ because $\dim A/\mathfrak{p}=\dim R/\mathfrak{P}\geq s$. Hence $R_{\mathfrak{p}}=A_{\mathfrak{p}}[\mathfrak{q}_{s+1}^{d-1}A_{\mathfrak{p}}T]$ is Cohen-Macaulay. By induction hypothesis, we find that $R_{\mathfrak{M}}$ is a homomorphic image of a Gorenstein ring and A is also.

Next we consider the general case, we work by induction on $d = \dim A$. If d = 0, then there is nothing to prove. Assume that d > 0. Let $(0) = \mathfrak{r}_1 \cap \cdots \cap \mathfrak{r}_n$ be a primary decomposition of (0) in A. By renumbering \mathfrak{r}_i , we may assume that there is an integer $l \leq n$ such that $\dim A/\mathfrak{r}_i = d$ if and only if $i \leq l$. Let $\mathfrak{f} = \mathfrak{r}_1 \cap \cdots \cap \mathfrak{r}_l$ and $\mathfrak{f}' = \mathfrak{r}_{l+1} \cap \cdots \cap \mathfrak{r}_n$.

Let \mathfrak{p} such that $\dim A/\mathfrak{p} \geq s$. Then $A_{\mathfrak{p}}$ is Cohen-Macaulay, hence equidimensional. Therefore $\mathfrak{p} \supset \mathfrak{f}$ if and only if $\mathfrak{p} \not\supset \mathfrak{f}'$. This implies that $\dim \text{non-CM } A/\mathfrak{f}$, $\dim \text{non-CM } A/\mathfrak{f}' \leq s$. By induction hypothesis and the case of $\operatorname{Ass} A = \operatorname{Assh} A$, there are Gorenstein local rings B and B' such that A/\mathfrak{f} and A/\mathfrak{f}' are their homomorphic image, respectively. We may assume that $\dim B = \dim B' = d$.

Consider A as a subring of $A/\mathfrak{f} \oplus A/\mathfrak{f}'$. Let C be the inverse image of A by $B \oplus B' \to A/\mathfrak{f} \oplus A/\mathfrak{f}'$. Then there exists a commutative diagram

with exact rows and epimorphisms f and g.

Since $A/\mathfrak{f}+\mathfrak{f}'$ is finitely generated over $A, B\oplus B'/C$ and $B\oplus B'$ are finitely generated over C. Therefore C is a Noetherian local ring by Eakin-Nagata theorem.

Since $\begin{array}{ccc} C & \longrightarrow & B' \\ & \downarrow & & \downarrow \\ B & \longrightarrow & B \oplus B'/C \end{array}$

is a fiber product, B possesses a dualizing complex: see [5, Lemma 3 and 5] or [10, Corollary 3.7]. Furthermore, dim non-CM $C \leq s$ and Ass $C = \operatorname{Assh} C$ because $B \oplus B'$ is a Cohen-Macaulay C-module and $\dim A/\mathfrak{f} + \mathfrak{f}' \leq s$. Thus C is a homomorphic image of a Gorenstein local ring and A is also.

REFERENCES

- Yoichi Aoyama and Shiro Goto, A conjecture of Sharp—the case of local rings with dim non-CM ≤ 1 or dim ≤ 5, Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata, Kinokuniya, 1987, pp. 27-34.
- 2. Nguyen Tu Cuong, On the dimension of the non-Cohen-Macaulay locus of local rings admitting dualizing complexes, Math. Proc. Cambridge Philos. Soc. 109 (1991), 479-488.
- 3. Gerd Faltings, Über die Annulatoren lokaler Kohohomogiegruppen, Arch. Math. (Basel) 30 (1978), 473-476.
- 4. _____, Über Macaualyfizierung, Math. Ann. 238 (1978), 175-192.
- 5. _____, Zur Existenz dualisierender Komplexe, Math. Z. 162 (1978), 75-86.
- 6. Shiro Goto, Blowing-up of Buchsbaum rings, Preedings, Durham symposium on Commutative Algebra, London Math. Soc. Lect. Notes, vol. 72, Cambridge Univ. Press, 1982, pp. 140-162.
- 7. Shiro Goto and Kikumichi Yamagishi, The theory of unconditioned strong d-sequences and modules of finite local cohomology.
- 8. Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic 0, Ann. of Math. 79 (1964), 109-326.
- 9. Takesi Kawasaki, On Macaulayfication of certain quasi-projective schemes, preprint, 1995.
- 10. Tetsushi Ogoma, Existence of dualizing complexes, J. Math. Kyoto Univ. 24 (1984), 27-48.
- 11. Idun Reiten, The converse to a theorem of Sharp in Gorenstein modules, Proc. Amer. Math. Soc. 32 (1972), 417-420.
- 12. Peter Schenzel, Dualizing complexes and system of paramters, J. Algebra 58 (1979), 495-501.
- 13. _____, Cohomological annihilators, Math. Proc. Cambridge Philos. Soc. 91 (1982), 345-350.
- 14. Rodney Y. Sharp, Necessary conditios for the existence of dualizing complexes in commutative algebra, Sém. Algèbre P. Dubreil 1977/78, Lecture Notes in Mathematics, vol. 740, Springer-Verlag, 1979, pp. 213-229.

Department of Mathematics, Tokyo Metropolitan University, Hachioji Minami-Ohsawa 1–1, Tokyo 192-03 Japan

E-mail address: kawasaki@math.metro-u.ac.jp