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2. MOTIVATION

Using the Weil _representation, we calculate a trace of a theta series associated with a
lattice of a certain quadratic space over Q in order to examine the relation of the'space
of Siegel modular forms and the space of such theta series.

Let us explain our problem in more detail. For simplicity, suppose n is an even positive
integer. Let S be a rational symmetric matrices of size 2n such that the determinant of S
is a square of nonzero rational numbers. Let V = (Q®", Q) be a positive definite regular

quadratic space of rank 2n over QQ represented by S.
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For every integral lattice L of V, we define the theta series 91 by the following formula:

(3) = ) exp (27r\/—_1tr (t:cS:c))

3€L™

where 3 is an element of the Siegel upper half space of degree m. If the level of L devides
a positive integer N, the theta series 9 belongs to the space M,,(n, N) of Siegel modular
forms of weight n, degree m and level N. Let 6,,(V, N) be the subspace of M,,(n, N)

spanned by such theta series.

For any positive divisor N’ of N we obtain the follwing inclusion:
0.n(V,N') C 0,(V,N) N Mp(n,N').
But it is not obvious whether or not the equality holds in the above formula.
Problem V. Is the following equality
0 (V,N') = 0,(V,N) N My, (n,N")
true?

To attack Problem V, we can use the global trace operator TJ(VZ)V, which is defined as

follows. For every ¢ € My (n, N) put
Ty ()(3) = X det(cs +d) ¢ ((a3 + b)(c3 + ) )
¥

a b
(3 € Hp) wherey = runs over a complete set of representative of Iy ™ (V) \Fém)(N ).
' c d

Then we have TJ(VTf])V,(w) € My(n,N').

If we get
T (0m(V, N')) C 6, (V, N'),
we solve Problem V. Thus we reduce Problem V to Problem L stated below:

Problem L. Does the global trace Tl(v'f 1)\,,(19,;) belongs to Mupy(n,N') for every integral
lattice L of V' of level N ?
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These two problems are discussed in several papers {3, 4, 1] . The authors of these
papers reduce Problem L to the case when degree m is greater than 2n by establishing
relative commutation relations of the global trace operators and the Siegel’s ¢-operators.

In contrast to their global method, we try to transform Problem L to a p-adic analogue

by means of the global and local Weil representation.

3. NOTATION

The following notation will be used throuout of this paper: Let m,n be positive integers.
For an associative ring A with identity element we denote by A* the group of all invertible
elements and by Mat,, ,(A) the module of all m X n -matrices with all entries in A; we put
A™ = Mat,, ;(A), Mat,,(A) = Mat,, (A) for simplicity. The identity and zero elements
of the ring Mat,,(A) are denoted by 1, and 0, (when m needs to be stressed). The
transpose of a matrix g is denoted by *g. We denote by tr(z) the trace of a square matrix
z. Let J be an A-submodule of A. We denote by Sym,,(J) the module of all m x m-
symmetric matrix with all entries in J. If all entries of a matrix g € Mat,, ,(A) belongs

to J, we write g =0 mod J. We put

T={¢eC|l¢|=1},
e(c) = exp(2mrv/—1c)  (c € C).

For any set E, |E| means the cardinality of E. The characteristic function of a subset E’
of E is denoted by Iz . For every locally compact Hausdorff group X, we denote by S(X)
the space of Schwartz-Bruhat functions on X.

Let oo and h be the infinite place and the set of all finite places of Q, respectively.
We identify the latter set h with the set of all rational primes. We denote by Q, the
completion of Q at v for any place v of Q. Let & be an algebraic group defined over Q.
For any field k containing O, we denote by &; the group of k-rationz;tl points of & and
abbreviate Bq, to &, for each place v of Q. We define the adelization &, of & and view

&g and &, as subgroups of &, as usual. We then denote by &, and &y, the infinite and
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the finite part of ®,, respectively. For g € &4, we denote by g,, g, and gn its projections
to &,, B, On.

We denote by G(™) the symplectic group of genus m. For a commutative ring R with
identity element, we assume that the group of all R-ratoinal points of ng) of Gt™ is

given explicitly by

- | O 1n Om  1nm
Gy =g € GLam(R) | 'g g=
| (m) a b i
We usually denote every element g of G as g = with m X m-matrices a, b, c,
c d

d. Let H,, be the Siegel upper half space of genus m. We define a action of G{™ on H,,

and the factors of automorphy j(-,-) as follows:
g = (a3 +b)(cs + )7,
7(9,3) = (3 + d),

a
where g = € G™ and 3 € H,,. For any positive integer N, we define a congruence
c d

subgroup I\™(NN) by
a b
I{™(N) = € GLym(Z) NG | =0 mod N
c d
Let (n, N) be a pair of positive integers such that N is arbitrary if n is even or N divides

4 if n is odd. For such a pair (n, N) we define the action of I{™(N) on the space of all

holomorphic functions on H,, as follows :

(Fll) (3) = xn(1)3(7,8) 7" F (73)

where f is a holomorphic function on H,,, v € Fom)(N )y 3 € Hm, and Xy, is the character
of I\™(N) given by

Xa(7) = (det a, (=1)")e,
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a b : o
v = e I™(N)|. We denote by M, (n, N) the space of all holomorphic func-

c d
tions on H,, satisfying the condition

f”n’y:f

for any element y of I\™(N). | |
Let F be a local field with the characteristic of F' # 2. We denote by (:,-)p the Hilbert
symbol of index 2 over F. Let V = (V,Q) be a regular quadratic space of rank n over

F. We denote by B the nondegenerated bilinear form associated with the quadratic form

Q given by B(z,y) = Q(z + y) — Q(z) — Q(y) (z,y € V). For some basis {e;} of V
and for some n X n-regular symmetric matrix S, we have Q(X; z;e;) = *zSz for any

z = [z;] € F™). We put
detV =detS mod (F¥)* € F* /(F*)?

It is independent of the choice of {e;} and S. The Hasse symbol of V is denoted by er(V').

For some a; € F*(i =1,...,n) and some basis {fi} of V, we get

for any = = [z;] € F™; in this case we obtain
6F(V) = H (a’ia a’j)F'
1<i<j<n
Furthermore assume F is non-archimedean. Let R, w and g be the maximal compact

subring, a prime and the module of F. For every lattice L of V, put
1Y={zeV|ByeR (Wel)}.

Then, LV is also a lattice of V. If L is integral (Q(L) C R) the R-module generated -
by Q(LV) in F can be written as w™'R for some non negative integer /. This number is

denoted by levy (L). Represent the quadratic form @ as a symmetric matrix S’ by taking
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some R-basis of L. We denote by det L the element det S’ mod (R*)? of F*/(R*)%. Tt
is independent of the choice of R-basis and S’

Let V = (V, Q) be a regular quadratic space of rank n over Q. For each place v of Q,
we denote by V, = (V,, Q) the scalar extention of V over Q, as quadratic space. We put
£,(V) = €q,(V). For every p € h and every lattice M of V,,, we put lev,(M) = levy,(M).
For every p € h and every lattice L of V, we put L, = L ®zZ,. This module L, becomes
a lattice of V,. If L is an integral lattice of V (Q(L) C Z), L, is also an integral lattice
of V,, for every p € h and lev,(L,) = 0 for almost all p € h. We denote by level(L) the

integer [[yen p'¥». We define det V and det L as similarly as in the local field case.

4. MAIN RESULTS

4.1. Preliminaries. Let N, m, n be positive integers. Fix a nonsingular symmetric
matrix S € Sym,,(Q) N GL2,(Q). We obtain a regular quadratic space V = (Q**,Q)
of rank 2n over Q by Q(z) = 'zSz (z € Q*). Let B be the nondegenerated bilinear
form associated with the quadratic form @ determined by B(z,y) = Q(z + y) — Q(z) —
Q(y) (z,y € V). Let X be the vector-space direct sum of m-copies of V' . We identify this
vector space X with Maty, »(F). For any z € X, we write z =(z;) by column vectors
z; (1<i<m).

For any integral lattece L of V, define the theta series associated with L by the following

formula:

I(3)= > e (tr (‘mSw;,))

zel™

(3 € Hum). It is well-known that if level(L) divides N then
I E.Adm(n,ﬁv).
Let ©.,(V, N) be the subspace of M,,(n, N) generated by

{¥9L|L is an integral lattice of Vwith level(L)|N}
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For N and its positive divisor N', define a subset P(V; N, N') of h by
P(V;N,N') = {p € RN, > 1, N =0, (—v=T""P)e, (V) = —1}
where we write the prime factorization of N, N’ as

N =TI "%, N' =TI 0",

p€h p€h
(0 < N,, N} € Z) and set
0 p#2
b2(p) =
1 p=1

for any p € h.

Since det V = 1 mod (Q*)?2, we can write

4" det L = ] p*»
p€h

(t,(L) € Z, p € h) for any lattice L of V.
For N and its positive divisor N’, define the global trace operator TI(V’TJ)V, by the following

formula:

T (f) = ) flloy (f € Ma(n, N)).

reri™ )\ LM v

Then TI(J:'I)V, is a well-defined C-linear mapping of M,,(n, N) onto M,,(n, N’).
4.2. Statement of main results. Now we state our main results.

Theorem V. Let the notation and the assumptions be as above. Write the prime factor-

ization of N, N' as

N=][p", N'=T]»".

peh p€h
Suppose

2< N, =N, n odd,

2<Ny=Njorl>N;>N;>0 n odd
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Then we have
On(V, N’) = 0,(V, N) N Mp(n, N')

ifm > n.
Theorem L. Let the notation and the assumptions be as above. Suppose L is an integral

lattice of V with level(L) = N. Set

to(£) = max {1,(L) - [F2==] | p € POVIN, N}

(1) We have
Ty a(92) € Om(V, N')

if m > min{n,t,(L)}.

(2) Furthermore suppose to(L) > 0. We obtain
Ty (1) = 0
if m > min{n,t,(L)}.
5. LOCALIZATION OF THE GLOBAL TRACES

5.1. Preliminaries. Let v be any place of Q.
Define the nontrivial character ¢, : Q, — T by
Po(z) = e(z) if v = o0,
¥y(z) = e(=Fr(z))  if v €h,
where Fr(z) (z € Q,) is the fractional part of the p-adic expansion of z.

Give a self-duality on X, by (z,9) — ¥.(tr(2'2Sy)).
For any ¢ € §(X,), define the Fourier transform ¢~of ¢ by the following formula:

() = [ plepu(tr(2'esy)d

v

(y € X,). Here d, is the self-dual Haar measure on X, with respect to the above self-

duality.
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Under our assumptions, the Weil constant 7,(V') can be easily determined [2, 5]:

;

(V=-D*  ifv=o0,

(5.1) (V) = e, (V) if v € h\{2},

(V=D ifv=2.
The extention Q,,(W ) / Q, determines the unique character w, of Q) by the
local class field theory [6]: namely,
wo(z) = (z,(-1)")e, (€ Q).
Notice that, for any p € h,

1+4Z, p=2
(5.2) ker wp D _
/s p # 2.

We have the so called local Weil representation m, of G, realized on S(X,); m, is

characterized by the following three conditions (cf. [7] ):

1 bq
(5.3) Ty ¢ | () = Yo (tr(b'zSz))p(z),
0 1_ ‘
a O -
(5.4) Ty - ¢ | (z) = wy(deta)| det alyp(za),
0 l1 : ‘
(5.5) o ¢ | (@) =n(V)"¢(2),
-1 0—

for ¢ € 8(X,), z € X, a € GL,(Q,) and b € Sym,,(Q,). The mapping
G, X S(X'v) > (g, ‘P) = Wv(g)QD € S(X,)

is continuous. For any p € h and ¢ € §(X,), the stabilizer of ¢ in G, under 7, contains
an open compact subgroup of G,.
The global Weil representation ma of G realized on S(X,) is defined as follows. Let @

be an element of S(X,) of the form ¢ = II, ¢, such that ), = IMatsn . (2,) for almost all



80

p € h. For any g = (g,) € Ga, put

WA(g)(P = H 7rv(9‘u)¢v-

This action of G4 extends by continuity to the representation 75 of G4 on S(Xja).
Let v be any place of Q. We give some examples of compact subgroups in G, and of
semi-invarivant vectors under the action of these subgroups.

First, suppose v = p € h. For any non-zero element A of Z,, define an open compact

subgroup D,(A) of G, by

b
DP(A) =949 € GZ,,
c d

¢ =0 mod M\Z,

If L, be an integral lattice of V,, with lev,(L,) = [, then we can easily see kerw, D

(1+p'Z,) N2 (see (5.3),(5.4),(5.5)) and

IL;,n (1=0)
(5.6) Tp(g)Lr =
wp(deta)lpm (1 2>1)
a b
for any g = ; € D,(p') (see (5.3),(5.4),(5.5), [9]).

Next suppose v = 00. Set i =+/—1-1,, € H,,. Let Uy, be the stabilizer of i under the

standard action of G, on H,,. We can immediately see

A B
Uy = ueGoolu-_—

-B A

and that Uy, is compact. For every 3 € H,,, we can define an element ¢, of S(X) by
¢5(z) = e(tr(*zSz3))
(z € Xo). Then we can show (cf. [9])

Too(®) g5 = det(A — /—1B)"y;
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A B )
for any u = € Uy. Therefore we obtain
-B A

(57) ‘ 7roo(goo)(pl = j(g<>07i)—n(pycoi

for any g € G-

5.2. The local trace operators. We define a character x, of a compact group Dy(X)

(A € Z if n is even or A € 4Z,\{0} if n is odd ) by

1 if n even
(5.8) Xn(9) =

(deta,—1)q, if n odd

a b
g = S D2(>\) .
c d

Take a non-negative integer [ and a finite place p € h. Let £™)(V,, ) be the subspace
of 8(X,) spanned by the set of all functions of the form Iy such that M is an integral
lattice of V, with lev,(M) < I. Notice that L™ (V,,1) =0ifp=2,nisodd and 0 < I < 1,
orif p € h, 7,(V,) = —1 and | = 0 (see (5.6)).

From now on, we assume that

[>0 if p # 2,
(5.9) [>2 if p = 2 and n is odd,
>0 if p = 2 and n is even.

Under this assumption, we define a C -linear map 7'1(,?) on 8(X,) by the follwing formula:

(see (5.2),(5.6), (5.8),(5.9))

I, (o) (Tp(w) @) () dp p(u ifp#2,
(5.10) (™)) () = o (p!) o) (@)dpi(u) D

Iy 1y Xn (W) (mp(w) ) (2)dp(u) if p =2,
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(p € 8(X,), = € X,) where d,; is the Haar measure of Dy(p') normalized such that
b, @pi(w) = 1. The integrals on the right-hand side are essentially finite sum, and the
map 7'1(:?) is well-defined. We call this map local trace operator.

By the definition of the local trace operator, we get T},T,'”((p) = ¢ for p € L™ (V,1). Let
1, be non-negative integers satisfying the above assumption and the condition I > I’ > 0.

The following theorem is a local analogue of Theorem L.

Theorem L. Let the notation and assumption be as above. Take an integral lattice L,
of Vp with levy(Ly) =1 2> 1.
(1) Supposep #2 andl>1>0. If m > 1, we have
TI(:;)(ILgm)) € ,C(m)(Vp, ).
(2) Suppose thatp #2 and!>1'=0, or thatp=2,1=1>1"=0 and n is even.

a v, =1 and m > 1, we have
(a) Fyp(Vp)=1andm2>1, weh

D,

7o (Lgm) € LI(V,,0).

(b) If1p(V,) = —1 and m > min {n,t,(L,) — ['5] }, we have

and
7y (Lgm) € L™(V;,0).
(c) If v(V,) = —1 and m < min {n,tp(Lp) - [1—71]}) we have
(m) I 0
Tpo (Lom) #
and

8 (Lgm) ¢ £7(V;,0).

Since t,(M) > t,(M') for any two lattices M, M’ of V,, with the condition M C M’,

Theorem L, follows immediately from the two lemmas below.
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Lemma 5.1. The notation and the assumptions are as in Theorem L, . Moreover suppose
p#2andl > 2. Then, if m > 1, there exist a finite number of integral lattices M(i e I)
of V,, satisfying

l1—2<lev, (M) <1-1(Viel)

such that

roia(lop) = 2 ale
: el

(Ci € (C)
Lemma 5.2. The notation and assumptions are as in theorem . Moreover,suppose | = 1.
(1) Let v,(Vp) = 1. Then, if m > 1, we obtain
TIYS)(IL?) = CZIMm
M
(c € C*), where the sum is taken over all integral lattices M of V, such that
lev,(M) =0 and L, C M C L.
(2) Let v,(Vp) = —1. Then, we have
TI(,,TB")(IL?) =0 if m > min {n,t,(L,)}
Tz(,fg)(Ing) #0 if m < min {n,t,(L,)}

We omit the proof of these two lemmas in this article.

5.3. Construction of theta series via the Weil representation. Let f be an element

of §(Xn). Put

(i ® f)(z) = pi(z0) f2n) - (Toos Zn) € Xa,

then ¢; ® f € S(Xa). For each g € Gy, set

U(fi9)= Y. malg)(@ ® f)(z).

:BEXQ

We can show (cf. [5, 8, 9])
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e the series in the right-hand side is absolutely convergent on every compact subset
of Ga; hence ¥(f;-) is a cotinuous function on Gy;

o this function ¥(f;-) is left G invariant and right invariant for some open compact
subgroup of Gy;

e the restriction to G, determines ¥(f;-) by the strong approximation theorem for

Ga.

For every 3 € Hn, take an element g, of G such that 3 = g..i and set
(5.11) H(£33) = 5(9o0s 1)"¥(f; (9oor 1n))-

Then we have

3(f;3) = Y (9, ® f)(x)

z€Xg

= 3 e(tr("CeSTo3)) f(zn)-

z=(¢c0.zn)EXq

Therefore we get a well-defined function 3 — ¥(f;3) on H,,. Furthermore we can imme-

diately see that

(5.12) I f3¥03) = 3 (Yoo, 1)"I(mn(15 ") f33)

for any ¥ = (Yo, 7n) € Gg and any 3 € H,,. Take an integral lattice L of V and put
fom = Tlpenlp. We can easily see frm € S(Xn) and

I frm;-) = F1.
5.4. Relation of the global and local traces. Let N be a positive integer and N’
its positive divisor. We define an open compact subgroup Dy(N) of Gy by Dy(N) =
[Iyen Dp(N) and set
Dg(N) = GgN Gquh(N).
By a morphism v — (v,7,7,...), we identify Fém)(N) with Dg(N). Since the strong ap-
proximation theorem is hold for G, we can easily see that Go, Dg(N) is dense in Goo Dn(N).

Thus the image of Dg(N) under the canonical projection G4 3 ¢ = (goo, gn) — 9n €
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Gy is dense in Dy(N). Therefore we can identify a complete set of representativés of
I{™(N)\I§™ (N') with that of Du(N) \Du(N').

From now on, assume (see (5.9))

N'|N  if n even,
(5.13)

4N'|N if n odd.
We see . is also a character of Dy(N) via the canonical projection Dy(N) — Dy(N).

Let L be an integral lattice of V with level(L)|N. We compute the global trace Tfﬁ,,ﬁL

as follows:
(TN 91)(geod) = > Xn(€)7 (€, 9ood) "I F1m; €good)
éefé'”’(zv)\ré'"’w'
(5.14) (9o, 1) an T)E(frm; (oo mmt)  (see(5.12))

(5.15) = 0(2 Xn ()T (%) frm; (goo» 1 )), (see(5.11))

where 7 = (Ys0,7n) and u extend over Do(N)\Dg(N') in (5.14) and Dy(N’) /Dy(N) in
(5.15), respectively. Let the prime factorization of N’ be N’ = [I ¢, p*¥). Notice that,
since Dp(N) = D,(N') for almost all p € h, I]yen T;Z)(N’)(ILL") is an element of S(Xy).
The last equality (5.15) shows that, up to the multiplication by an nonzero constant, the

two functions

TI(VnI)V’ﬂL and ’19 (H Tpl (N’ (IL;n); )

are equal on H,,. Therefore Theorem L, implies Theorem L.
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