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The purpose of this article is to show that the main result of [K] is valid for any level.
Theorem. Let F be a cusp form of integral or half integral weight k(> 2) with respect
to the subgroup T'3(N) of Spy(Z), where

i {( £ ) erio=omom).

And let its Fourier expansion be given by

F(Z) :; a(T) exp(2nitr T(Z)),

where T' runs over positive definite symmetric half-integral 2 x 2-matrices. Then we have
a(T) < p(min T)%/ 8+ (det T)F-D/2+ (Ve > 0), (1)

where minT is the smallest positive integer represented by T'.

The idea to prove Theorem is the same as in [K], that is a combination of appropriate
estimates for both Fourier coefficients of Jacobi Poincaré series and Petterson norms of
Fourier-Jacobi coefficients of Siegel modular forms.

‘H; denotes the Siegel upper half space of degree ¢ consisting of complex ixi-matrices
with positive definite imaginary part. We often write

Z:X+iY=(T zl):<u+z.v a’;+z,y,)€'H2.
z T T4y uw +w

For simplicity, we condider only the integral weight case.
Proposition 1. We let I'{(N) be the Jacobi group which is the semi direct product of
I'y(N) and Z?, and let Jg 7 (N) be the space of holomorphic Jacobi cusp forms on Hy x C

of weight k and index m with respect to I'{(N) (cf. e.g. [E-Z]).
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For ¢ in Jewl (N), let c(n,r) be the (n,r)-th Fourier coefficient of ¢ (n,7 € Z, r* <
4mn). Put D = 1% —4dmn. Then we have

!k/2—3/4

. D
c(n,r) Lep (m+ |D(1/2+5)1/2lm (Ve > 0)

—aoy |14l

where the constant implied in < depends only on € and k (not on m).
Proof. Let P, = Pimaq, be the (n,7)-th Jacobi Poincaré series in Ji,,* (IV) characterized
by
(¥, Pasr) = Xem,pbn s (¥) (V9 € T (N))
where b, .(¢) denotes the (n,7)-th Fourier coefficients of ¢ and

1 3
Ak,m,D = 5[‘ (k — 5) ﬂ-—-k+3/2mk-—21D‘-k+3/2.

Then the Cauchy-Schwarz inequality gives
|c(n,r)|2 S A;,fn,D||¢H2<P“/’" Pn,r> = )‘I:,iz,Dbn,r(Pn,r)Hquz'
We can show that the Fourier coefficient of P, , as follows (cf. [G-K-Z], p.519);

ka2
ETVE S S exp(r? 2me) ()

v Nic>1

+(—1)kexp(-—q~2/2mc)H;L,C(n, 7)) Je—3/2 (ﬂDI) ,

bpr(Pry) =1+ (=16, (r) +

mc

where :
5.n(r) = { 1 if r = 0(modm)

0 otherwise
Jk—3/2 is the modified Bessel function of order & — 3/2, and

i

HE (n,7):= Y e(ma® +rz+n)j+ nytrz),
w(c)f.‘/(c)*

where z resp. y run through Z/cZ resp. (Z/cZ)*, § denotes an inverse of y (mod c),
e.(b) := exp(2mib/c) for ¢ € N, b € Z/cZ, ¢(y) = 1 or i according as y = 1 (mod 4)
or =3 (mod 4), and (3;-) means the Kronecker symbol. HE (n,7) is a certain character
sum, which is Gauss sum for z and Kloosterman sum for y, and by factorizing ¢ to prime
powers, for D := r? — 4mn we can prove an estimate

HE (n,7) < 7*(D,c) (Ve >0).
From this and the estimate
Je-32(2) g min{z Y%, £*73?} (z > 0)

(cf. e.g. [B], p-4 and p.74), we easily find

D 1/242¢
bn,r(Pn,r) <<e.,k 1+ I”‘—*

for any ¢ > 0 and complete the proof.
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To estimate Petterson norm ||@||, for an analogue of the Rankin convolution series

Dpr(s) :=((2s — 2k +4) > (fn, pu)n™"

n>1

where

F(Z) =" ¢nlT, z) exp(2mint’),

n>1
we want to use the following Landau’s Theorem;
Theorem (Landau-Shintani). Suppose that

&(s) = Z:lc(n) n”°, &(s) = Z:lcz(n) n=* (1§i§[)

are Dirichlet serieses with non-negative cefficients which converge for Re(s) > oq, have
meromorphic continuation to C with finitely many poles and satisfy a functional equation

I

(6 —s)=>_&(s)

=1
where

J
E:(S) = B A° H F(a]‘S + b])ﬁ(s) (A € C, Be C, a; > 0, bj ER),

j=1

J
£i(s) = B; A} [[ T(ajs + b;)€(s) (Ai€C, B; € C, a; and b; are same as above). .

j=1

Suppose

J
1
K= (20’0-6}207~5>0.

j=1

Then we have

OEEDS Res<@ws)+o,;(xﬂ)

n<e s:all poles §

for anyn > ng:= {6 + oo(k — 1)}/(k +1).
For the proof, see Theorem 3 and its procf in [S-S].

The central extension of I'J (V) by Z is erabedded into I'y(N) via

a 0 b ¢
a b Al p K , nfa b
A = (A
(20 ) mmn) = [ 208 5] am=n (%)
0 00 1
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and we denote by Cy the image in I';(/N). Denote the left upper entry of Z € Hsy by Z;.
For a natural number N, Z € H; and s € C with Re(s)>2 we define a Klingen-Siegel type
Eisenstein series

detIm M(Z)\°
= 2 (S, )
MeCn\To(v) \ 1 1
It is easily seen that this series is well defined, absolutery convergent, and invariant under

the action of I';(/N). We put

on(Z) =77 T(s)((25) B, n(2).

By Main Lemma on p.545 in [K-S], we know F,1(Z) has a meromorphic continuation to
C, has only two poles at s = 0,2 which are simple, and satisfies a functional equation

E;—-s,l(Z) = E:,l(Z)'
By the method of Rankin-Selberg convolution
1 FE 2w, F) = Dy p(s) (2)

can be proved, and analytic properties of D7 (s) follow from those of E} y(s). But the
functional equations are complicated.

The idea to prove Theorem for any level IV is to write the functional equations satisfied
by Eisenstein series as a form

E5_, y(Z) = alinear combination of E7, (Z)

where m is a natural number with m|N. This is necessary to apply Rankin’s method.
Lemma 1. E, y(Z) has a meromorphic continuation to C. Its poles are s = 0 and 2,
which are simple. And it satisfies a functior.al equation

+n®

P(s)

E;_, x(Z) = afinite sum of E; (Z),

where m,n are natural numbers with m|N and P(s) is a finite product of 1 — m*?~*) with

Proof. For M = ( é g ) = ( :3 2; ;3 ;4 ) € I';(N), we notice that

detIm M{(Z) Y|

ImM(Z) {Z( o ) * ( —d:ls ﬂ

(Y [ 4 ] = (a,b)Y ( ¢ ), Z* means the adjoint matrix of Z) and the mapping

x % % %
: ds,d
( c3 ¢4 dz dy ) = (s, c4,ds, do)
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induces a bijection between
Cn\T'2(N) and {(c3, cq,d3,ds) € Z*|primitive and c3=c,=0 (mod N)}.

/

d
“ , d= ( > ) run over Z? under the condition that
Cq  dy

cs, C4,d3, dy are relatively prime. In general, for a square free integer m and a natural

In the following sums, ¢ = (

number ! = pi'ps?...p¢ € N (where py, p, ..., p, are different prime numbers and e; > 0)
it holds

1

= Eom(12)
_ 5 v
tiimy (Y[Z¥e+d))
c¢=0(mod m)
Y|
- | T+ T | e
(tc,td)=1 (te,td)=1 (Y[Z lc + d])
(1,td)#1 (1,td)=1
c=0(mod m) ¢=0(mod m)
Y Yl
= > manrant RGP
tetme (Y[Z*le + d]) (tc,,Zd)ZI (Y[Z*c+d))
d=0(mod Ip;) ¢=0(mod lm)
¢=0(mod m)
1 Yy
25 2 Wzt d)
cEO(rx:od m)
1 Y

- ; (pip;)* (tc,p,z,,;d,:l (Y[Z*(l/pipj)c + d])*

¢=0(mod m)

+...
Y?
+
a;’@:l (Y[Z*c+d)
e=0(mod Im)
_ 1 Y|
- 2”': pfs ("‘c,tzd)=1 (tc§=1 (Y[Z*([/p’l)c + d])s
¢=0(mod 0) ¢=0(mod m) .
¢=0(mod p;)
1
= E W{Es,m((l/Pi)Z) — B Lem(mp:((1/0:)2)}
1
=2 A Bem((l/2iP)) Z) = Esrcn(mp) (1/PiP) Z) = Es rexn(mp)(/PiP5) Z)

2 (Upip;)* |
+Es, l.c.m.(m,pipj)((l/pipj)z)}
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H (Ipips - .. pr)

+Z Es,l.c.m.(m,pipj)((l/pl .. pr)Z) - ...+ (_1)TE3,l.c.m.(m,pl...pr)((l/pl .- pr)Z)}
i#]
+Es,lm(Z)' (3)

(Bl 5)7) = X Batemmpn (51 0))

We apply (3) for m = 1 and [ = N; if N is not square-free the last term is F, y(Z),
otherwise the last two terms are (—N~2* 4 1)E, y(Z), and in the both cases the rests
are :i:’FL"Es,,;L(iZ) where [, 7,7 are natural numbers with ir’h]N, m < N. Hence for a
non-square-free number N we have

E; y(Z) = afinite sum of £n° E]_ (12)
where I, m, n are natural numbers with {m|N, m < N, and for a square-free number N we
have
(1-— st) :’N(Z) = a finite sum of the same type as above.

So, by induction on N we deduce that E, y(Z) has a meromorphic continuation to C, has
poles only at s = 0,2 and satisfies a functional equation
+n’
Pi(s)
where I, m,n are natural numbers with Im|N and Py(s) is a finite product of 1 — m2(2-*)
with 7m|m. Now we notice that (3) makes ! smaller, and apply (3) repeatedly in all terms

in this right-hand side until ! becames 1, then finally we get the functional equation in
Lemma 1.

E;_, y(Z) = a finite sum of E;.(1Z)

Then we can use Rankin’s method and deduce
Lemma 2. Let the notations be as above, and take a natural number m with m|N. For
L € T's, we write the Fourier expantions of F(L™Y(Z)) as

PUHZ) = X baslr2) e (2";) |

We define a Dirichlet series Dp pm(s) as ((2s — 2k + 4) times

> { > /}_ |@n. 1, (T, 2)|%exp <_£7_T1;?]1v_y2) v* 3 dudvdz dy} n~*

n>1 | LELy(N)\T2(m)

where F is a fundamental domain T'{(m)\H1 x C (so Dppn(s) = Drr(s)), and put

}’F’m(s) = (2m) 2 T(s) (s — k4 2) Drpm(s).
Then we have

71-—_Ic—+-2<FE:—I<:+2,m’ F> = N* D;,F,m(s)' (4)
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From (2), (4) and Lemma 1 we have proved
Proposition 2. Dppn,(s) is a Dirichlet series which has a meromorphic continuation
to C, possibly has a unique pole at s = k, and satisfies a functional equation

j: 8§
D} p(2k — 2 — s) = Dy py(2k — 2 - s) = afinite sum of —n~D},F5m(s)

P(s)
where m,n are natural numbers with m|N and P(s) is a finite product of 1 — m2*=*) with
O
Now we can use Landau’s Theorem for Dp pm(s)’s, because Dp rm(s)/(1 — p?(k=9)) has

non-negative coefficients and has a unique pole at s = k, hence it converge for s > k.
Therefore we have

D v
S 116all? = (R—-Q) £+ O,(a+47) (Ve > 0)
n<z

where @, is the n-th Fourier-Jacobi coefficient of #(Z). Taking ¢ =m and z =m —1 and
subtracting, we find ‘ '

hence _
||Gml| Kep mF=T20F (Ve > 0). (5)

By Proposition 2 and (5), we obtain
e(n,7) Lep (M + ID!1/2+5)1/2 ID| /184

Both sides of (1) are invariant if 7" is replaced by tUTU (UeGLy(Z)). Hence we may

assume that
2
T:( norf ),m:minT,
r/2 m

so that a(T) = ¢(n,7). By reduction theory we have m = min7" < %|D|l/2 and complete
the proof of Theorem.

O

Remark.

1. When N = 1, the Rankin convolution series D ¢(s) is a linear combination of spinor
zeta functions of Hecke eigen forms, as shown in [K-S]. In order to deduce estimates for
eigenvalues of Hecke operators, we need find a relation between D rm(s)’s and spinor zeta
functions.
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2. When we generalize Kohnen’s method to higher genus, we should cut Z as follows;
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