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ABSTRACT. we consider the following Cauchy problem

uy = uAu —v|Vul> in Qr,
u(x’ 0) = UO(:‘:),

where N > 1, T > 0,7 € R, @r = R" x (0,T) and up is a nonnegative function
on RY. We establish the existence theorems of nonnegative viscosity solutions
under very weak assumptions on uq for any ¥ € R. We also investigate equivalence
between viscosity solutions and weak solutions without SSH conditions.

1. INTRODUCTION
Consider the following Cauchy problem
u; = uAu — y|Vul?> in Qr, (1.1)
u(z,0) = up(x) z € RY, (1.2)
where N > 1, T > 0,7 € R, Qr = RN x (0,T) and u, is a nonnegative function on
RN,

We define the upper and lower semicontinuous envelopes u*, u, of u by

u*(2) = lim sup{u(2'); 2’ € B,(2)},

AMS Subject Classifications: 35K15, 35K55, 35K65.
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and

u.(z) = lim inf{u(z'); 2’ € B,(z)},

r—0

respectively,

where if z € RV, B.(2) = {#;|z — 2| < r} and if z = (z,t) € RN x [0,00),
B.(z) = {#' = (y,5); (|Jz—y|*+|t—s])/? < r}. Note that u* is upper semicontinuous
and if u is upper semicontinuous, v = u*. Similarly, u, is lower semicontinuous and if
u is lower semicontinuous, u = u,. We define viscosity solutions and weak solutions

of (1.1) as follows:

Definition 1.1. Let u be a locally bounded function on Qr. we say that u is a
viscosity subsolution of (1.1) in Qr if u* satisfies that for (z,t) € Qr and (a,p, X) €
Prtur(z,t),

a < u*(z, )TrX — v|p|*

u is a viscosity supersolution of (1.1) in Qr if u, satisfies that for (z,t) € Q7 and
(a,p, X) € P> u.(z,t),

a > u,(z,)TeX — ~|p|*.

u s a viscosity solution of (1.1) in Q1 if u is a viscosily supersolution and viscosily
subsolution.

Here, for (z,t) € RN x [0, 00)
Prur(z,1) = {(a,p,X); w(y,8) < v'(z,8) +als — 1) + (py — @)
]' td
+5(X(y — ),y —z) +olly — " + s — 2])
as (y,s) — (xat)}a

and
Pru(z,t) = {(ap X); w(y,s) > w(z,8) + a(s —t) + (p,y — x)
4 LXKy = )y = =)+ olly — ol + Is — 1)
as (y,s) — (z,t)},

Definition 1.2. u € L2(Q7) is said to be a weak solution of (1.1) in Qr if Vu €
L} (Qr) and it holds that

/QT [— uh, + uVu - Vip + (v + I)IVU|21/)]d:cdt =0,

for every ¢ € Cy(Qr).
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The approach by “viscosity” solutions is difficult for this problem because of its
degenerating property, that is, the coefficient u of the term Au. Our first purpose is
to establish the “viscosity” approach for it. On the other hand, “weak” solutions for
the diffusion equations like this is studied by many authors. Our second purpose is
to investigate the relation to our “viscosity” approach and the “weak” solutions.

Bertsch, D. Passo and Ughi has shown the existence of discontinuous “viscosity
solutions” of (1.1)~(1.2) ([3]). They use “viscosity solutions” to indicate (weak or
strong) solutions constructed by the method of vanishing viscosity. We only use the
term here to indicate the one introduced by Crandall and Lions.

The existence of viscosity solutions and weak solutions with the semi superhar-
monic (SSH in short) condition is proved by [2] and [6]. Here, we say that a function
u satisfies the SSH condition if Au < K in D' for some constants I (or if u is a
viscosity subsolution of K — Au = 0).

Theorem 1.3 ([6]). Let T > 0, N > 1 and uo € C(RN) satisfy

0 <wug < M(Jz|* + 1), = (1.3)

|Vuo| < Ki(Jz] +1)  a.e. in RY, (1.4)
AUO S [(2 m D,, (15)

for some constants M > 0, Ky and K3 > 0. If v > N/2, then there is a nonnegalive
function u € C(Qr) such that u is the unique nonnegative viscosity solution and weak
solution of (1.1)-(1.2) and satisfies that for some constants My, K3 > 0,

0 < u(a,1) < My(Jal? +1),
|[Vu| < Kj(|z| +1) a.c. in RV,
Au< K, in D,

where M, depends only on M, N and T'.

Theorem 1.4 ([2]). Let N > 1 and up € C(RY) satisfy (1.3), (1.4) and (1.5). Then

there exist T > 0, Lo > 0 and a nonnegative function u € C(Qr) such that u is the
unique nonnegative viscosity solution of (1.1)—(1.2) and satisfies that

0 < u(z,t) < Wrpr(t)(lz]* + 1),
[Vul> < Ug 1, ()u s.e. in RN,
Au < (1 4+44)¥7 L, (2) in D,

where Qr = RN x [0,T), Ure(t) = C/(1 = T~%) for C = M or Lo and v4 =
max(7y, 0).
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To prove theorem 1.3 and 1.4, we consider the following Cauchy problem

uy = (u+€)Au — v|Vul* in Qr, (1.6)
u(z,0) = u§(z) e RN, (1.7)

where {u§} C C®(RYN) such that u§ — wuo in C(RV) as € | 0 and u§ holds (1.3),
(1.4) and (1.5) for 0 < € < 1. Then it is shown that the Cauchy problem (1.6)-(1.7)
has a smooth solution u, for 0 < € < 1 and the sequence of smooth solutions {u.}
converges uniformly to the viscosity solution of (1.1)-(1.2) under the assumptions of
theorem 1.3.

Below, section 2 is devoted to state our main results and to establish the existence
of viscosity solutions of (1.1) which are lower semicontinuous and satisfy the initial
condition

u(z,0) = uou(z) z €RY (1.8)

instead of (1.2). For constructing solutions, we use the inf-convolution approximation
of initial functions and apply the results of theorem 1.3 and 1.4 which establish the
existence in a rather narrow function classes. Our method is not used before so long
as we know.

In section 3, we discuss the behavior of viscosity (sub) solutions. We show that
every viscosity solution u satisfies limsupu(z,t) < uj(z) for z € RN. This implies
t—0
that if ug is continuous, then the viscosity solution constructed in section 2 is really
viscosity solution of (1.1)-(1.2) and satisfies %ir% u(z,t) = up(z) for any z € RN, If
up is piecewise continuous, then %irré u(z,t) = uo(z) almost everywhere in RV,

In section 4, we consider equivalence between viscosity solutions and weak solu-
tions.

2. EXISTENCE RESULTS

In this section we assume that the initial function wug is just a real valued function
and satisfies

0 <wup(z) < M(|z]>+1) = €eR", (2.1)

for some constants M > 0. Note that we don’t assume the continuity of ug. Our
purpose of this section is to construct the viscosity solutions and weak solutions of
(1.1) with the initial condition (1.8) in LSC(Qr), where LSC(Q7) is a set of lower
semicontinuous functions in Q7. The main results in this section are the following
theorems.

Theorem 2.1. Let N =1 and uq satisfy (2.1).
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() If vy 2 1/2, for any T > 0, there exists u € C(Q7) N LSC(Q1) such that u
is a nonnegative viscosity solution of (1.1)~(1.8). Moreover, limsupu(z,t) <
0

ug(z) forz € R.
(i1) If v < 1/2, there exist a T > 0 and u € C(Qr)NLSC(Qr) such that u is

a nonnegative viscosity solution of (1.1)~(1.8). Moreover, limsupu(z,t) <
t—0

ug(z) for z € R.

Theorem 2.2. Let N > 2 and v > N/2. If ug satisfies (2.1) then there exists
u € LSC(Q7)NLe(Q1) such that u is a nonnegative viscosity solution of (1.1)-
(1.8) in Q7. Moreover, limsupu(z,t) < uy(z) for z € RV,

t—0

—

Remark 2.3. The viscosity solution u of (1.1)~(1.2) constructed in Theorem 2.1 or
2.2 is a weak solution and satisfies (i), (ii) and (iii) in proposition 2.4. Moreover, (i)
in proposition 2.4 implies that if ¥ > N/2 then u in theorem 2.2 is continuous.

The behavior near ¢t = 0 is discussed in section 3 (theorem 3.2).

To prove the existence part of our theorems, we need the following notation: for

u € LSC(RV),
— 3 1 2
ue(z) = Jnf, {u(y) + ool —vl }

This u. is called the inf-convolution of u. Then u. is semiconcave. This implies that
ug, satisfies (1.3), (1.4) and (1.5) (see remark 2.3 in [2]).

Now, let ug, be the lower semicontinuous envelope of uy and ug. be the inf-
convolution of ug, for any € > 0. We consider the the Cauchy problem (1.1) with the
initial condition

u(z,0) = up(z) z€RY, (2.2)

By theorem 1.3 and 1.4, it has a viscosity and weak solution u.. We want to take the
limit as € to 0. However, the estimates of Vu, and the terminal time T in theorem
1.4 depend on the constants K; and K, appeared in (1.4) and (1.5), which might be
infinite as ¢ — 0. Therefore, first we have estimate them so as not to depend on K,
and Ks.

Proposition 2.4. Let N > 1, v € R and u be the solution in theorem 1.3 and 1.4.
Then the following properties hold

1
(i) Au > —3 inD'.
(ii) For any R >0 and 0 < s < T, there ezists a constant C > 0 such that

/ ) / |Vul? dzdt < C,
o JBg
where C depends on N, v, M, T, R and s only.
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(iii) Ify > N/2,

N
(2y — N)t

2u

2L ——— D
|[Vu|? < 5 = V)i in

Au

IA

in D,

Remark 2.5. (i) in proposition 2.4 implies that Au is a Radon measure.
To prove this proposition, we show the following lemma.

Lemma 2.6. Let ¢ > 0 and u® be a smooth solution of (1.6). Then the following
properties hold.

1
(i) Au 2 -
(ii) Let R > 0 be any fized number, 0 < s < T and Mg, be a positive numbcr such

that 0 < u® < Mp s holds on Bry1 % [0,s] for any e > 0. Then for 0 < a <1
with o # v + 1, there exists a constant C > 0 such that

2
/ WVl a<c, (2.3)
Br (ue +¢)

where C depend on N, ) R, s, Mp s and o only.
(i) If y > N/2,
N
At < — D
ut < 5~ )i in D',
2 14
Ve < ————— in D'
(2y = N)t
Proof. (i) for v > 0 and (iii) is proved by [4]. Moreover, by applying the maximum
principle we can prove (1) for v < 0 in an analogous way to that for the porous
medium equation (see [1]).
Finally, we prove (ii). Let v* = u® + ¢ and ¢ € C§°(Bpy1) satisfy that 0 < ¢ <1
in Bry1, ¢ = 1in Bg and |A¢| < 1in Bgryy. Then

0 = /0 /B {vf—veAvs+7|V'v€|2}(ve)‘°‘¢dmdt
= /OS/BM{L(%E-)_—I—_:—)’zb+(1—a+7)|Zf;f

- [ /BR+1 {g—?j%)% +(1—a+7) 'Zf;f - (;?2:A¢}dmdt.

AR ng}dxdt
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Hence,

|VU |2 <2MRs Mz - 3)
dzdt < : :
—a+ I//B < T2t 3. m(Br+1),

where m(Bgy1) is Lebesgue measure of By, O

Proof of proposition 2.4. (i) follows from lemma 2.6 (i). By lemma 2.6 and theorem
1.3, we have '

’ e2 (Mi(R? +1))=C, v = NJ/2,
/c’) /BR Ver| dedt < {(\IITJ\,[(s)(R2 +1))*C v < N/2, (24)

which implies that (ii) holds valid. By (2.4) we see that [Vu|> — |Vu|* in D"
Indeed, since Vu® — Vu weakly in L} (Qr), Au® — Au in D’ and u® — u uniformly

in Q7 or QT, we have

/ / |Vus|*pdzdt = ——/ / uEVuE-Vqu:cdt—/ Aucu ¢ dzdt
o JBg o JBr o JBg
—/ / uVu - Vodzdt — (Au,ud) = /s/ |Vu|?¢ dzdt,
0 JBR } 0 JBR
for any ¢ € C°(Br x (0, s)). Hence (iii) holds. O

Next, when N = 1 we prove that the terminal time T is independent of K, and
K, in (1.4) and (1.5) for v < 1/2.

Theorem 2.7. Let N =1 and v < 1/2. Assume that ug € C(R) satisfies (1.3) and
(1.5). Then there exist T' = T(M,v) > 0 and u € C(Qr) such that u is a nonnegative
viscosity solution of (1.1)—(1.2) and satisfies

0 <u(z,t) < Uru(t)(lel* +1) (,1) € Qr,
(1) and (ii) in proposition 2.4.

Proof. Let T = [2M(1 — 2y_)]7!, where v~ = min(«,0) and u® be a smooth
solution of (1.6)-(1.7). Then, since ¥z (¢)(|z|* + 1) is a supersolution of (1.1) and
Urar(0)(Jz)? + 1) = M(|z|* + 1) > ug > €, by the maximum principle, we have

e <ut+e < Urp(t)(zP+1) in Qr-

Moreover, u® satisfies (i) and (ii) in Lemma 2.6 for any € > 0.
Next, put p® = u,. Then p° is a solution of

Pe = U Pz — 2(1 — y)ugps — (1 — 2’7)172 = 0. (2.5)
It can be easily seen that W s(t) is a supersolution of (2.5‘) in Qs, where S = [K(1—
2v)]71. Hence, by (1.5), u¢, < ¥k s(t) in Qs. Therefore u® is uniformly semiconcave

I.’E—
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in R x [0,6) and is uniformly semiconvex in R x [§/2,T) for some 0 < § < S.
This yields that it is locally equicontinuous in RY x [0,7T). Therefore, there exists
a subsequence {¢;} converging to 0 as i — oo and u € C(Qr) such that us — u
uniformly in Qr as i — oo and Vus — Vu weakly in L2_(Qr). This u satisfies our
requirement. (O

Remark 2.8. In theorem 2.7, since u® satisfies (i) in lemma 2.6 for any ¢ > 0, we
get |Vusi|? — |Vu|? weakly in the sense of measure, i.e.,

[ IVusPpdzdt — [ [Vupdadt for any ¥ € Co(Qr).
Qr Qr

Therefore, u in theorem 2.7 is a weak solution.

Proof of theorem 2.1. Let ug. be the inf-convolution of ug, for any ¢ > 0.

Let v > 1/2 and T' > 0 be arbitrary. By theorem 1.3, there exists a viscosity and
weak solution u. € C(Qr) satisfying the assertions in theorem 1.3 and proposition 2.4
for any € > 0. This yields that {u®} is locally uniform bounded and equicontinuous
in R x [§,T) for any 6§ > 0. Therefore, there exist a subsequence {¢;} converging to 0
as 1 — oo and u € C(R x [4,T)) such that u., — u uniformly in R x [6,T) as ¢ — o
for any § > 0. That is, u € C(Qr) and it is a viscosity solution of (1.1). Further,
uge(z) — uo.(z) as € | 0 for z € R. This implies that u(z,0) = uo.(z) for z € R.

In the case v < 1/2, by theorem 2.7, there is T = T(M,~) > 0 and u. € C(Qr)
such that u, is a viscosity and weak solution of (1.1)-(2.2) and satisfies the assertions
in proposition 2.4 and theorem 2.7 for any € > 0. In the same manner, there exists
u € C(Qr) such that it is a viscosity solution of (1.1) with initial data u(z,0) =
Ulo*(m). X

Finally, since u, € LSC(Qr) and u(z,0) = up.(z) € LSC(R), for any 5 > 0 there
exist 6, > 0 and ¢, > 0 such that

u(y,s) > u.(y,s) > u.(z,0) —n = u(z,0) — 7,

forany z € R, y € Bg,-,,(a:)‘and 0 <t<t, Hence ue€ LSC(Qr)NC(Qr). In
particular, if up € LSC(R) then u(z,0) = uo.(z) = uo(z). O

Proof of theorem 2.2. Let ug. be the inf-convolution _(_)f_ Uox foranye > 0and 7' > 0
be arbitrary. Then, by theorem 1.3, there is u, € C(Qt) such that it is a viscosity
solution and of (1.1)—(2.2).

We set u(z,t) = sup u.(z,t). Then u € LSC(Q1)N LZ(Q7), u(z,0) = up.(z) for
e>0

z € RY. Perron’s method yields that u* is a viscosity subsolution of (1.1). Further,
by the comparison theorem for viscosity solutions under the SSH condition (Theorem
3.1 in [6]), we see that u, Tu ase | 0.



EXISTENCE OF VISCOSITY SOLUTIONS AND WEAK SOLUTIONS

Finally, we prove by the contradiction that u is a viscosity supersolution of (1.1).
Assume that there exists (zo,%) € Q7 and (a,p, X) € 'Pg';u(cco,to) such that

a — u(Zo, o) TrX + v|p|* < 0.
For p and v > 0, we set v
uu(z,t) = u(zo, to) + p + a(t — to) + (p,  — o)

1
+ 5(X (2 = 20), 2 = 20) — v(|z — 20| + |t — o).

Then u,, is a viscosity subsolution of (1.1) in B,(2o,%) and B,(2o,t) C Q7 for

small enough g, v and r > 0. Now, u, ,(z¢,%) = u(ze, o) + # > u(zo,%). And since
u(z,t) > u(zo,to) + a(t —to) + (p,z — o)

1

2

= wuu(2,t) = p4v(jz — zof* + [t — to]) + o(|z — of* + |t — to]),

+ —(X(z — z0),z — z0) + o]z — a:o|2 + |t — to])

if 7 > 0 is sufficiently small and g = %rz then there exists d > 0 such that

uu(z,t) +d <u(z,t) (z,t)€ B = B (x, tQ) \ B;/2(z0, o). (2.6)
Moreover, there exists €; > 0 such that
uu(z,t) < u(z,t) (z,t) € B.
Indeed, assume that for any € > 0 there exists (z.,?.) € B such that
Uy o (Te, te) > ue(ze, te).

We may also assume that there exist the subsequence {¢;} éonverging 0 asz — oo
and (zo,%p) € B such that (z.,,t;,) — (zo,%). Since u,, is continuous, by (2.6),
there exists €4 > 0 such that for any ¢; € (0,¢4),

u(:EO, tO) 2 u/.t,l/(wO)tO) + d

d
> up,u(xente.') +-> ufi(xﬁatei) +

2 9’

Since © € LSC(Qr), we have

| &

d
u(zo,t0) > liminf u, (z,,,t.,) + 3 > u(zo, to) +

This is a contradiction.
Then

U (:I) t) — ma,x{usl(a:,t),u,,,.,(x,t)} (x7t) € Br(mo,t0)>
A U, (z,1) otherwise,
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is a viscosity subsolution of (1.1) with initial data
u(z,0) = uge, (z) z €RY

and ue, < U,,. This is a contradiction since the comparison theorem for viscosity
solutions under the SSH condition holds valid. O

Proof of remark 2.3. Let u. be defined as in theorem 2.1 or 2.2. Then, since u.
is a weak solution and satisfies (i) and (ii) in proposition 2.4, there is a subsequence

{e;} such that
Vu,, = Vu  weakly in L} .(Q1),
ug, Vu,, — uVu weakly in L (Qr),
[Vu,|* — [Vul|* weakly in the sense of measure,

Au,, > Au  inD'.

as £; — 0. Hence, the proof of (ii) is complete. O

3. THE BEHAVIOR NEAR t =0

The purpose of this section is to establish the behavior for the viscosity (sub)
solutions of (1.1)-(1.2) near t = 0. The viscosity solutions constructed in section 2 is
lower semicontinuous at ¢ = 0 and satisfies u(z,0) = u.(z) for € RY. This implies
that for any y € RV

lirtn ionf u(y,t) > uo.(y).

We consider the estimates of limsup u(y,t) for any y € RY. To do it, we prove
t—0 .

Theorem 3.1. Let N > 1, v € R, v be locally Lipschitz continuous in RN and w be
a viscosity subsolution of (1.1). Then, if w(y,0) < v(y) fory € RV,

limsup w(y,t) < v(y) fory € RN, (3.1)
t—0
Thus, we have

Theorem 3.2. Let N > 1, v € R, up be locally bounded and u be a viscosity solution
of (1.1)~(1.2). Then,

limsup u(y,t) < uj(y) fory e RN. (3.2)
t—0

Proof. We set

i(e) = sup {uo(y) — 5le ~ ol?).

yERN

10
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Then, uf is locally Lipschitz continuous for any § > 0 and uj(z) | ug(z) as 6 | 0 for
z € RN. Hence, from theorem 3.1, we see that for any y € RV

limsup u(y, t) < ug(y)-

t—0

Letting § — 0, we have (3.2). O

Note that This theorem holds for all viscosity solutions of (1.1)-(1.2). Moreover,
for the viscosity solutions constructed in section 2, the following holds.

Corollary 3.3. Let N > 1, v € R, up be continuous and satisfy (2.1). Then, the
viscosity solutions u constructed in section 2 satisfy

%ij% u(y,t) = uo(y) fory e RV, (3.3)

i.e., u 15 continuous at t = 0. Moreover, if ug is piecewise continuous, (3.3) holds
almost everywhere in RV,

Proof. If ug is continuous at y € RV, ug(y) = uo.(y) = ui(y). O

Proof of theorem 3.1. We use the comparison theorem for viscosity solutions of
(1.1) on bounded domains which can be established in a exactly analogous way to [2]
and [6]. For sake of brevity, we don’t state it here in a precise form.

Let y e RN, rg > 0, ¢ € (0,T) be fixed. We set

2

L _
hye(z,t) =v(y) +e+ TOII y|* + et =1,
where L., = ||Vv|lL(B,, (), 0 <€ <1 and Ae > 0.
When v > N/2,
(hy,s)t — hy Ahye +7[Vhy[?

2L N 2L
(v( ) +ete 1)+ 2z —y[(2y - N)

= /\ee/\,; -

2L2
e\, — y) + 1)

Hence, if A, = 2L% ¢ 1Ar(l|v||Loo(Bro(y)) + 1), hy . is a classical supersolution of (1.1)
in B,,(y) x (0,T). Now, for z € 9B,,(y),

w(z,0) — hy(z,0) < v(z) — hy(z,0)

< (@) = o0)) — (¢ + “2J )

L2
< Lolo =yl = (e 4+ 22z —y[*) <0
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Let g0 = Lfortl)/zMO'l and r. = (eMo)'/2L;}, which Mo = |lwl|Leo(8,,(y)x[o,t0])- Then,
for any 0 < € < &; := min(eo, 1),

2

L
hye(,t) 2 o(y) +e+ 2 i 4 e -1

2 MO 2 U(CE, t)’

for (2,t) € 0By (y) x [0,t0). Moreover, Ah,, = 2L2e™'N < +4oo. Hence, by
comparison theorem for viscosity solutions on bounded domains, we see that w < h, .
in B,,(y) X [0,%o] for 0 < € < ;. This implies that

w(z,t) < 0<in<f hye(z,t) (z,t) € Br(y) x [0,20].
e<ey
In particular, for ¢ € [0, o],
w(y,t) < inf hy(y,t)

0<e<ey

=o(y) - 14 inf (c+ ).

0<e<eg

Therefore, we have (3.1).
When v < N/2,

(hy,s)t — hy Dby, + Vthy,elz
2L

2

(Mow) + 1)+ 2053V —29)].

Hence, if A. = 2L2 e [N(|[v||zoo(B,, (v)) + 1) + L2737 (N — 27)], hy, is a viscosity
supersolution of (1.1) in B,,(y) % (0,T). Therefore, in the same manner as the case
v > N/2, we can prove this theorem. [

> e [/\5 -

4. VISCOSITY SOLUTIONS AND WEAK SOLUTIONS

First, we give the definition of weak subsolutions and supersolutions of (1.1).

Definition 4.1. u € L2 (Qr) is a weak subsolution (resp. supersolution) of (1.1)
in Qr if Vu € L2 (Qr) and it holds that

/Q [— wihy + uVu - Vob + (7 + 1)|Vu|2¢] dzdt < 0,

(resp. /Q:r [— uh; + uVu - Vo + (v + I)IVulng]d:z:dt >0,)

for every ¥ € C3(Qr) so that 3 > 0.
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Theorem 4.2. Let N > 1. Ifu € L2(Qr)NUSC(Q7T) is a viscosity subsolution of
(1.1), Vu € L (Qr) and satisfies

| . :
Au > -7 viscosity sense,

then u is a weak subsolution of (1.1).

Theorem 4.3. Let N > 1. Ifu € L2(Qr)NLSC(Qr) is a viscosity supersolution
of (1.1), Vu € L} (Qr) and satisfies

Au < f  in wscosity sense,
for some nonnegative functions f € L}, (Qt), then u is a weak supersolution of (1.1).

Proof of theorem 4.2. Let Q be a bounded subset of Q7 with @ CC Q1. We choose
A > 0 and € > 0 so that Qx = {(z,1);dist((z,%),Q) < A} C Qr and A > 2(eL)'/?,
where L = sup|u|. We may assume that @ C RN x[6,T) for some § > 0, u € L=(Q»),
o
Vu € L*(Q) and

1
Au > ~3 in viscosity sense on Q. - (4.1)

Let u® be the sup-convolution of u, i.e.

w(e,)= sup {uly,s) = 5o =yl +1t =)}

(ny)GQ)\
Then there exist M¢ € L}(Q; S(N)) and S(N)-valued measure I'* on @) such that -
Viues=Me+T¢, T¢*>0 inTD, (4.2)
(ué(z,t), Vu(z,t), M*(z,t)) € P¥*u(y%,s°) ae. in Q, (4.3)
€
u (e, ) = u(y®, o) — S(IVe(z, ) + |ui(2, 1)), (4.4)

where y° = y°(z,1) = z + eVu(z,t), s* = s°(z,t) = t + euf(z,t) and S(N) is a set
of N x N symmetric matrices (see [5] and [7]). Since u is a viscosity subsolution of
(1.1), for almost all (z,t) € @,

ug(z,t) — u(y®,s*)TrM (z,t) — 7|Vu’5(:v,t)l2 <0.

For the sake of simplicity we omit the independent variables (z,t) henceforth. Let
¥ € C(Q) so that ¢ > 0. Since, ['* > 0 in T,

/Qufi/) dzdt — (u(y®, s°)Au®,9) + "//Q |Vue|? dzdt < 0.
Here, we remark that Au® is Radon measure for any € > 0. Moreover, we have

€12 I £ l £\2
/QIVulwdxdt_v (u Au,¢)+2/Q(u)A¢d:cdt.
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Hence,
/Q (—uYpudedt — ((u(y", &) + 7uS) A, ) + 1 /Q ()2 A dzdt < 0. (4.5)

Moreover, by (4.1),
Au® > TrM* > —% in D', (4.6)

We choose A’ > 0 so that Qx = {(z,t);dist((z,t),Q@x) < N} C @Qr and fix any
¢ > 0 so that X' > 2(¢'L')Y/?, where L' = sup|u|. Since u® is locally Lipschitz
' o
continuous, u® (y*,s¢) — u® uniformly in Q as ¢ — 0. This implies that for any
n >0, u(y5,5°) < uf +7in Q for small enough €. Then, since u®(z,t) < u(y®, s°)
and v < v in Qy,if v >0,

((u(y®,s%) + yu®)Au, )

1
= (e, ) + A+ 2).9) - % /Q (u(y®, 5°) + yus )b dad
< DB+ ) =t [ up deds
< 1+ +n)Aus, ¥) + HT7 Q(uﬁ’ + 7 — u) dzdt.

Hence, by Au® — Au in D’ and (4.5),

/Q(——uz/)t)dmdt (4 +7)Au ) + %/QuzAz,b dzdt

1t

e _ < 0.
5 Q(u +n—u)pdrdt <0

By letting n — 0 and &’ — 0,
- _( X 2 <
/Q( uy) dadt — (1 + 7) (ubu, ) + 3 /Q u?Avp dedt < 0.

Since Vu € L*(Q), we conclude that

/Q ( —uthy + uVu - Vz/J + (v + 1)|Vu|2z,b) dzdt < 0. (4.7)

When v < 0, let 0 < € < ¢'. Then, since u* < u®,
((u(y®, s°) +yu)Aus, )

< (1 + ) +n)(Aut + %),1/,) 147

5 o u® dzdt,

14
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for small enough €. Therefore, by the same manner as the case of v > 0, by letting
e — 0,7 — 0 and ¢ — 0, we have (4.7). This completes the proof. 0O

Proof of theorem 4.3. Let @, A, €, X' and €’ be defined as in the proof of theorem
4.2.

Let u, be the inf-convolution of u, i.e.

: 1
t)= inf )+ —(le—yl*+ ]t - 2}.
w(et) = inf {u(y,9)+ (e —s + 1t = o)

Then there exist M, € L'(Q; S(N)) and S(N)-valued measure I'; on Q such that

Viu, =M. +T,, T.<0 inTD,
(uet(z, t), Vue(z,t), Mc(z,t)) € PP u(ye, s.) ae. in Q,

ue(2,1) = ulpe 50) + SV, O + uae, D),

where y. = y.(z,t) = z — eVu.(z,t), se = se(z,t) = t — eu(z,t). Since u is a
viscosity supersolution of (1.1), for almost all (z,t) € @,

uet(z,t) — u(Ye, 8e) Tr M, (z,t) — 7|Vu5($,t)12 > 0.

We omit (z,t) henceforth. Let ;Z)FE C&(Q) so that ¢ > 0. Then,
/Q(—us)z/)tdmdt = ((u(¥e, Sc) + Yue)Aue, ) + g—/Q(ue)2A1/) dzdt > 0.

Now, if v > -1,

((u(ye, se) + vue) Aug, ¥) |
= ((u(ye; se) +vue)(Aue — f), ) + /Q(u(yuss) + yue) f1p dudt

(1 + ’Y)(U(A’us - f),'()b) + (1 + 7)</Qu(y€,v3€)f¢ dody
- /Q(u — u(Ye, 5¢)) [ dzdt,

v

where f = max(f,0). By letting ¢ — 0,

/Q (—uihy) dedt — (1 +9)(ulu, ) + 3 /Q W?Ap dedt > 0. (4.8)

15
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If v < —1, since for any n > 0, ug(ye, Se) = uer — 1 for small enough ¢,

((u(ye,se) + 7“5)Aue, ¢)
= ((uye 56) + 7u)(Aue — £), ) + /Q (w(¥e, 5¢) + Yue) fb dadt

(14 + ) (B = 1),8) + (1) [ wfodude

+7/€2(u — u(Ye, 8¢ )) [ dzdt.

v

Hence, by letting ¢ — 0, n — 0 and ¢’ — 0, we have (4.8). This completes the
proof. 0O

We have the reverse assertion of theorems 4.2 and 4.3 as follows.

Theorem 4.4. If the comparison principle for weak solutions holds, then the weak
subsolution (resp. supersolution) of (1.1) is a viscosity subsolution (resp. supersolu-
tion). ‘

Proof may be done in the same manner as in the proof of theorem 4.5 in [6].

Theorem 4.5. Let Q be an open set such that Q CC RN x (0,T) and let u and v be
a weak subsolution and supersolution, respectively. Assume that u < v on 0Q).

(1) When v > —2/3, if v and v satisfy the SSH condition, then u < v in Q.
(ii) When v < —2/3, if u and v satisfy that Au, Av > -1/t in D', then u < v in
Q.

Proof. Let w =u —v and { = u + v. As in the proof of lemma 4.6 in [6], we have
A 1
[ [ 5+ 5017047 = 53+ 3) At 7] ¥ dod <,

for any A € R.
In the case (i), since A{ < K for some K > 0, we have

/Q(w+)2e’\t dzdt <0, (4.9)
for A < —(2y 4+ 3)K. This implies that u < v in Q.

In the case (ii), we can assume that A{ > —2/6 for some § > 0. Hence, we have
(4.9) for A < 2(2y+3)/6. O
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Remark 4.6. We say that Au > —3 holds in viscosity sense on @Q if u is a viscosity

1 ; A
subsolution of —Au — — = 0 in . Then, if it holds in viscosity sense, it holds in
distribution sense. Indeed, by (4.2) and (4.3),

1
Au® > TrM*® > —3 inD'.

. . 1. e .
Therefore, since Au® — Au in D', Au > —= in D’. Moreover, if u is continuous,

the converse statement holds. Similarly, we define that Au < f holds in viscosity
sense on @ if u is a viscosity supersolution of —Au + f = 0 in Q. Then, if it holds
in viscosity sense, it holds in distribution sense. Moreover, if u is contmuous the
converse statement holds.
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