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Asymptotic decay toward the planar rarefaction
waves of solutions for viscous conservation laws in
several space dimensions

Kazuo Ito ({FilEf —5) *
Graduate School of Mathematics
Kyushu University
Fukuoka 812, Japan

Abstract

This paper concerns the asymptotic decay rate toward the planar rarefaction
waves of the solutions for the scalar viscous conservation laws in two or more space
dimensions. This is proved by a result on the decay rate of solutions for one dimen-
sional scalar viscous conservation laws and by using an L2-energy method with a
weight of time.

1 Introduction and main result

In this paper, we present the asymptotic decay rate, toward the planar rarefaction waves,
of the solutions for scalar viscous conservation laws in two or more space dimensions. Since
the proof of the result for the case in more than two dimension will be identical to that for
the case in two dimension, we only discuss the equation of the following form:

us + (f(u)z + (9(w))y = tszs + Uy, (1)
U(O) Z, y) = UO(ma y)) (2)
where u = u(t, z, y) is a scalar function of time ¢ > 0 and position (z,y) € R?. We assume

that nonlinear flux functions f and g are smooth and also assume that f is convex i.e., for
a fixed constant o > 0,

f(w) Z a. (3)

*The author is supported by JSPS Reserach Fellowships for Young Scientists.




117

The initial condition satisfies
up(z,y) — uy as z — %00, (4)

where uy are constants satisfying u_ < u,.
A planar rarefaction wave is a weak solution of the following problem

re + (f(r)). =0, (5)
- r(0,z) = ro(z), | - (6)

where ro(z) is given by 7
ro(z) = { u_, forz <0, ()

Uy, forz>0.

Then r(¢, z) is given explicitly,

-, forz < a(u)t,
r(t,z) =< a Y(z/t), for a(u)t <z < a(uy)t, (8)
uy, for a(uy)t < =z,

where a = a(u) is defined by ,
| a(u) = f'(u). | (9)

Note
a'(u) > a>0. (10)

The stability of rarefaction waves was originally con51dered by II’in and Olelmk [3],
and has recently been studied by many authors [8; 5, 6, 7, 9, 10].

Harabetian [1] first studied the asymptotic decay rate toward rarefaction waves of the
solutions of the scalar viscous conservation laws in one space dimension. Hattori and Nishi-
hara [2] showed a more precise result on the decay rate toward rarefaction waves of solutions
to the one dimensional Burgers equation instead of the scalar viscous conservation law in
one space dimension. Xin [11] first proved the asymptotic stability of planar rarefaction
waves for the several dimensional scalar viscous conservation laws, but the paper [11] did
not refer to the decay rate of solutions to (1)-(2) toward rarefaction waves.

In this paper we give the asymptotic convergence rate toward the planar rarefaction
wave r(t,z) of the solution u(t, z,y) for (1)-(2) in L*(R,; L?(R;)). To state our result,
following Matsumura and Nishihara [6], we introduce the smooth rarefaction wave, which
is a smooth solution of the following problem:

we + (f(w))z =0, (11)
w(0, z) = wo(z), | (12)
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where wo(z) is defined by

wo(z) = i '2' Yo /0 (14 €)1, (13)

= (/O°°(1 + 52)_10,5)’1 .

We here introduce notations used throughout this paper. For 1 < p < oo, LP(RY) is
the usual Lebesgue space on RY. For positive integers m, W™P(R¥) is the space of all
functions whose weak derivatives up to m-th order belong to LP(RY). H™(RY) denotes
Wm™2(RY).

Now we are in position to state our main theorem.

where

Theorem 1 Suppose that ug — wy € (H2 N LY)(R?). Then, there exist positive constants
6o and & such that of

lluo — wollaz(rey < o and  |uy —u-| < &, (14)
then the problem (1)-(2) has a smooth unique global solution u(t, z,y) satisfying

sup [|u(t) — r®)|ls2(r,) < Ct™V4log(2+1) fort >0, (15)
yER

where C is a positive constant depending on uy and |uy — u_|.

It is possible to say that our method to prove Theorem 1 is valid for more space
dimensional case, for the proof is identical.

The rest of the paper is organized as follows. In Section 2, we show that the original
planar rarefacion wave r(¢,z) in (8) are approximated by the smooth rarefaction wave
w(t,z) in (11) in L?>(R) at the asymptotic rate O(t™*/*) as ¢ — oco. In Section 3, it is
shown by using an L%-energy method with polynomial and logarithmic weight of time that
the asymptotic behavior of the smooth rarefaction wave w(t,z) in L?(R) is described by
the solution of the viscous scalar conservation law in one space dimension, that is, they
converge to each other in L?(R) at the asymptotic rate O(t~*/*logt) as ¢ — oco. Finally,
by making use of the result in Sections 2 and 3, we give the proof of Theorem 1. L2-energy
method with weight of time also plays an crucial role here.

2 Convergence of w(t,z) — r(t, z)

Throughout this paper, C denote generic positive constants.
The smooth rarefaction wave has the following properties.
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Lemma 1 ([5, 6, 7]) (i) u- < w(t, z) < uy, w.(t,z) > 0 for (¢,z) € [0,00) X R. -
(11) For all p with 1 < p < oo there is a constant C, such that

llwa(®)llzory < Cpmin(d, dt/Pe=1+1/7), (16)
|wez(t)|| Lrr) < Cpmin(d, d—(r=D/2pi=(+(p—1)/2p)) (17)
fort >0, where

d=uy —u_. | _ (18)
Furthermore we need the following lemma throughout this papér. '
Lemma 2 (i) For all p with 1 < p < 00, there is a constant Cp 4 such tha't .
| wews ()| Le(r) < Cpa(l+ t)=(+@e=Dizp) (19)

fort > 0. ‘
1) For all p with 1 < p < 00, there is a constant C, 4 such that
, P,

lw(t) = r(®)llzrry < Cpat =012, (20)
fort > 0. |

For the proof of Lemma 2, see [4].

3 Approximation of w(t,z) by a solution of one di-
- mentional scalar viscous conservation law

In this section we study the convergence rate between the smooth rarefaction wave w(t, z)
and a solution U(¢, z) of the scalar viscous conservation law in one space dimension:

U + (f(U))m = U.:c.%;
{ U(0, ) = Up(z). ‘ (21)

Our aim in this section is to obtain a detailed asymptotic behavior of U(¢, z) in large
time to be able to get the convergence rate toward r(¢, z) of solutions to the two dimensional
scalar viscous conseravation laws.

To do this, we decompose the solution as

Ut,z) = w(t,z) + v(t, z).
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Then, the problem (21) is redeced to

ve + (a(w)v)z + (F(w, v)v?); = Vpp + We, (22)
v(0, z) = vo(z) = Uo(z) — wo(z), (23)
where ,
Py = [ = [0) = @
v
Note that F' is a smooth and bounded function of (w,v). Thus, the problem we consider
from now on becomes (22)-(23). We begin by showing the local existence result.

(24)

Lemma 3 (local existence) Suppose that vg € H*(R) N L'(R). Then there is a positive
constant Ty depending on ||vo||w2(r)nri(r) and d = uy —u_ such that the problem (22)-(23)
has a unique solution v(t,z) satisfying

v € C°0,To); H*(R)) N C'([0, To); L*(R))
NL*([0, To); H3(R)) N C°([0, To); L' (R)), (25)
t'2v, € C°([0,Tp); L*(R)).

Lemma 3 is proved in the standard way, so we omit the proof.

Remark: It should be noted that ||v,(t)||L1(g) is integrable for the time variable even
in the neighborhood of ¢t = 0. The reason why that holds is v(¢, z) is obtaind as a fixed
point of a mapping

U (v)(t) = G(t) * vo — /Ot 0,G(t — 5) x [a(w)v + F(w, v)v? — w,](s)ds,

where G(t,z) is the Gauss kernel in one space dimension and * denotes the convolution
with respect to the space variable. It then follows from the expression of ¥ and tha lack of
the space-integrability of ,vo(z) that v,(t,-) has the order O(¢=/2) in L*(R), which shows
the claim mentioned above.

Next, we state a priori estimate of v.

Lemma 4 (a priori estimate) Suppose that v(t,z) is a solution of (22)-(23) belonging
to the class as in (25) with 0 <t <T.
(1) There holds

lv@)lrr) < llvollzr(ry + Calog(l + t), (26)

where Cy 1s a constant depending on the size of d = uy — u_.
(ii) There exists a constant §; > 0 such that if

N(T) = sup ||v(t)||z2r) < 61, (27)
0<t<T
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and d < §,, then v(t,z) satisfies
t
k k 2
1050 (@lEacmy + [ [ walokv(s, =) dsdz
t
+ [ 105 acads < ool +wld), for0<t<T, k=0,1,2, (28)
where w(d) is a constant satisfying

w(d) =0 asd—0.

Proof of Lemma 4. The H?(R)-bound of v (28) can be proved by a method as in [1 1]
as well as by applying Lemma 1, so we omit the proof of it.
Here we only show (26). Let 7s()) be the usual smoothing kernel in R, i.e.,

Js(\) = 6775(\/8), (29)

where j is a smooth function which has a compact support and satisfies [ ]()\)d)\ = 1. Let
¢s be the convolution of the sign function and js, i.e.,

$s(A) = (Js * sign)(}), (30)
and put \ ‘
() = [ ¢s(e)de. (3
Note ,
$5(A) = 2js5(A). (32)

Multiplying (22) by ¢s(v) and integrating it with respect to ¢t and z, we have

]Rq)&(v)da: + [)t/R ps(v){a(w)v + F(w,v)v*},dzds

/R@‘;('vo)d:c + /ot/R ds(v)vzedzds + /ot/R ¢s(v)wepdzds. (33)
Claim: There holds
OB t [ o) {a(w)v + P(w,0)0*}odeds — 0 (34)

as 6 — 0 for each ¢.

To see this, integrating by parts and making use of (32), we get
t
H(t) = —/ / 275(v) v {a(w)v + F(w, v)v*}dzds
= —2/ / (/ 7s( §)§d§) {a(w) + F(w,v)v}dzds

B 2/0 /R/(; Js(€)édE - {a'(w)w, + Fpwav + Fyu,v + Fu, }dzds. (35)



122

It follows from the definition of js

[ iserede| <6 [~ ieede < ce.
0 0

Then, the integrand in (35) does not exceed

Cé(wy + w|v| + |vvz] + |vsl),

which tends to 0 as § — 0 for almost every (¢,z), and integrable on (0,t) x R for each ¢
in view of Remark under Lemma 3. Thus the Lebesgue dominated convergence theorem
implies (34). The claim has been verified.

Noting t t
/()/Rqsé(v)vwdmds = -—/0 /Rcbfs(v)vida:ds <0,

and making use of Lemma 1, we let § — 0 in (33) and obtain the desired estimate (26).
The proof of Lemma 4 is complete.

Combining Lemmas 3 and 4, we obtain the global existence result.
Theorem 2 (global existence) Suppose that vo € H*(R) N L'(R). Then, if
max(||vo|| g2(r), @) < 1,
then the problem (22)-(23) has a unique global solution v(t, z) satisfying

v € C°([0,00); H*(R)) N C*([0,00); L*(R))
NC°([0, 00); L*(R)),
vz € Lz([oa oo); H*(R)),
12y, € C°([0,0); L}(R)),

and the estimates (26) and (28) hold for any T > 0.

Our main result in this section is the following decay estimate of v(t,z), which states
the convergence rate of U(t,-) toward the smooth rarefaction wave w(t,-) in H*(R).

Theorem 3 (decay estimate) Let v(t,z) be the solution of (22)-(23) obtained in The-
orem 2. Then, for any e > 0 there exists a constant C > 0 such that the following decay
estimates hold for v(t, z):

¢

1+ t)k“/zﬂllaﬁv(t)lliz(m + / (1+ s)k“/z‘”/ wy(s,z)|0%v(s, z)|*dzds
0 R
t
+ [ )2k () mds < CR(L+ 1) 4(0), (36)

where v = ||vol|(grnrryr) + Ca and px(t) = log2k+l—1(2 +1) for k=0,1,2.
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Corollary 1 (Convergence of U — r) There exists a constant C > 0 depending on Uy
and d such that
NU@t) — r()|lz2cry < Ct™H*1log(2 + 1) fort > 0. @)

Proof of Corollary 1. Combining Theorem 3 with Lemma 2, we can obtain (37). The
proof of Corollary 1 is complete. '

Proof of Theorem 3. We first show (36) w1th k = 0. When N (t) is small (N (t) is
defined by (27)), by applying the L2-energy method as in [11], we find

(38)

: dt||v(t)“L2(R)+ s [ wew 2dm+||vx(t)||L2(R) < c| [ vtaada].

By Lemma 1, the right hand side of (38) is estimated as follows:

l/ YWy AT
R

Multiplying (38) by (1 +¢)}/?*¢ and taking into account of (39), we have

< Cllv®llz=mllwee(Ollzimy < Callo®)llzeocmy(1+1)7" (39)

1d

£ 1 &€
S (Lo (®)l[Fany + g1+ )2 /w v

(1 + )Vl (D12 )
< C1+t)” Y2rello(8)]132cmy + Ca(l + )7 2|0 (t)|| 2oocr) |
< Clv@®llpsry + Ca) (1 + )72 |[u(t)|| Loo(ry- (40)

Making use of (26) and Sobolev inequality

I llzcry < CUFIES pll Fell 2ty (41)

we compute in (40):

2ﬁu+wmwwmwm+%M+tmﬂ/wvx

+(1 4 )+ o)1)
Cllv®)llrm + Ca) + ) 2oL gl (O 150 5y
CJlvollzr(ry + Ca) /> (1 + )7 2¥ 1og** (2 + 1) |ua (1) |52
C(||lvollrr(ry + Ca)?(1 + )1+ log? (2 + ¢)
5 (04 D)y

IA

IA A
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that 1is,
d . .
SO ey + ol + )2+ [ wiotds
H(+ Y2 0a ()| sy < Clllsollorm + CaP(1+ 1)+ log?2+1).  (42)

Integrating (42) with respect to time from 0 to ¢, we get (36) with £ = 0. In particular, we
obtain

lo()||z2cry < Cro(1+1)*log(2 +1). (43)

Next we derive (36) with k = 1. Making the L2-energy equality on v, and multiplying
it by (14 1)3/?*¢, we have

2 O Oy + (1407 [ va(a(w)0)ands
+(1 4 t)3/2*e /va(F(w,U)vz)mdw + (14 )% uae ()l32¢m)
1 € &
= —2—(3/2+€)(1~+ £)31 2% oa ()] F2my + (1 + )37 /vawxmdm. (44)
We first study the second term in the left hand side of (44). Integration by parts gives
(14 1)%/2+ /R vp(a(w)v)eadz
= —(1+ 0% [ vd(w)wavds — (146 [ a(w)o,v.de. (45)
R R

The first term of the right hand side in (45) is estimated by making use of Lemma 1 as
follows:

l(l 4 1)3/%*e szza'(w)wxvdm

IA

1 . .
L4 O e Ol + OO+ O s Oll sy [ wa0d
1
< QP e Ol + Call + 7 [ waatds. (46)

On the other hand, integrating by parts, we find that the second term of the nght hand
side in (45) is estlmated as

-1 +t)3/2+E/Ra(w)vmvmdx

1
= —2-(1 4 1)3/2+e /Ra’(w)wxvidm > —;—a(l +t)3/2+€/ wevidz. (47)
: R
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Secondly we estimate the third term in the left hand side of (44). Integration by parts
gives ». .

l(l + t)3/2+‘s LUI(F(w, v)v?), dz

= l_(1+t)3/2+¢/ Voo (F(w, v)v?),dz
R o

= I—-(l + t)3/2+5 / Ve (Fpwzv? + Fyuv? + F - 2vy,)dz
R ,

IN

1 & | €

SO s (O)lscmy + O+ 02 [ wlvtda

+C(1 +t)%/?+ /R v*vidz + C(1+ t)3/2+‘/ v2vidz
R

1 &
= g(l + )32 vy (DG 20y + J1 + T2 + s (48)
We estimate the last three terms. For J;, from the Lemma 1, (41), and (28), we compute:
< OO+ 0 Ol ) gy [, wer?d
< C(1+t)1/2+’/wavzdm. (49)

For J,, as in J;, we estimate:
Jy < C(1+1)3e Sup o ()12 oy 1o (@)1 72 o 102 ()| 200 )
< C(L+ )P |u(t)lFacry - Nve(O)llacallvee ()l L2 - (50)
Furthermore, we apply (43) in the right hand side of (50). Then,

J: < C(1+t)"*1og’(2+ 1) - ||lva (Bl 2 l|ve= ()] 2(r)
C(1+ t)l“t's-(e'/m,)/2 log?(2 + t)||vs ()| 2cry - (1 + )22 |0y ()| Lacry

& 1 €
< C(1+ ) 1og! (2 + )llva () [Zacr) + At + 122 a0 (1) |22y (51)

J3 is majorized by the same bound as that of J,, that is,
Js < C(1+ )% log" (2 + ) ||va (t)|17a(ry + %(1 + %124 ||vge (1) 132y - (52)
Collecting (49), (51) and (52), we arrive at the estimate
(14 )32+ /R v (F(w, v)v?)gedz

< C+t) /R wyv’dz + C(1+ )2+ 1og*(2 + 1) ||va(t)] 32

1 &
1+ P o) oy (5
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Finally, we estimate the second term of the right hand side in (44). Integration by parts
and Lemma 1 gives

(14 22725 [ vorade
R

= ‘—-(1+t)3/2+‘/ Vpp W AT
R

IN

1 &
g(l +1)*2* | vae ()32 my + C(1 + £)32%¢ | we (t) |21y
1 £ "— &
< g(l 4 t)*2¥¢ oo ()32 m) + Ca(L + )71 (54)

Collecting all the estimates (46)-(54), we arrive at

1d
——(1+ t)3/2+el|vm(t)||%z(m + %(1 + 1)3/2te /R wevidz

2dt
3 € 1 &
F(1+ 0 o Ol < 53/2+ )1+ D O)lErce
4O(1+ 2% [ wpde + O+ 0177 10g! (2 + )l (O)lacey + Call + )71
Integrating (55) with respect to ¢ and making use of (36), we get
t t '
@+ P @y + [ (14 5)2* [ wpndeds + [[(14 8+ loae®) )
< |lvoelZacry + (1 + 1) log?(2 +t) + (1 +¢)° log®(2 +1) + Ca(1 + t)°.
Clearing up the above inequality, we arrive at (36) with £k = 1. In particular, we have
lloz(®)llz2cry < 1 (1+8) 7 *log?(2 + 1). (55)
Finally we show (36) with k£ = 2. Similar procedure to derive (44) also gives

1d

1+ 312+ lu. ()12 1 t5/2+e/ - . d
L ol + (1D [ ()0

H(1 407 [ (P (0, 0)02)szade + (140" a0y
1
= 5(5/24 )1+ O uaaO)Facry + (L + 0 fR VasWazesda. (56)

First we study the second term of the left hand side in (56). Integration by parts gives

(1 +1)%/%* /R Ve (@(W)V) 222 dT
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= —(+ 0 [ vpua(w)ulvds
—(1 4 1)5/%+¢ /Rvmxa’(w)wmvda:
-2(1 +t)5/2+5/Rvaa'(w)wxp,dm |
-(1+ t)“’/“e/ Ve O(W) Ve d
= K+ K, +K31-2|- K,. ‘ (57)
K is estimated by using Lemma 1 as follows:
K1l < CL+ 02 *[vaaa Ol samllwiv (@) zacry
T e () By + OO+ 0 () oy [ w0

IA

IA

1 ,
L+ O ey + OO+ 7% [ waade. (55)
‘Computing K, as above,
1 -
II(2I < ig(l + t)5/2+8|lvzxw(t)ni?(ﬂ) + C(l + t)5/2+a L wzzz}?dm.

Applying (43) as well as (41) and Lemma 1 to the last integral,

Jwivtde < o ®mllOlsmll®lae
< YA+ A4+ og(24+1) - (1 +1)"*1log? (2 + 1)
< Y1+ t)~71? log*(2 + ).
Hence,
K| < %6(1 + )2 | vaga(t)[72(r) + V(1 + 1) log* (2 + 1). (59)

For K3, in a similar way,

; 1
|B3| < ’1'6(1 +t)5/2+€”Ua:x:c(t)”%2(R)
+HC(1+ 1)1 |l wo () | Zoo 102 () [F2 )

1 . e
e + 1) g (O)|72r) + C(1+ 1) 2¥|ua ()32 (60)

For K,, we integrate by parts to get

<

1
Ky > Ea(l + t)5/2+5/ wyvl dz. (61)
R
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Next we estimate the third term of the left hand side in (56). Estimating it as before,
we obtain

(42 [ 0 F(w, 0)0")azale

(1 2o (Ml (F 12, 0)0P) e

U P Oy + C+ O 2o 0) oy
FO(1 4+ et () ry + CO+ 7 el
FO(1 4+ O [0 gy + O+ 07wt aca

+C(1+ 1)+ |[ved|[Gary + C(1 + )/ ** (|2l Zacmy + C (1 + )% lvvsa|| T2 )
1

= E(l + 132 | vaua (8|32 m) + K5 + Ko + K7 + Kg + Ko + K10+ K11 + Kio.

The estimates of K5-K;, can be done in a similar way for the estimates of the second term
of the left hand side in (56). We present only the results of them:

IA

IA

Ks < C”Uz(t)“%ﬂ(R)’ (62)
K¢ < C(1+t)5”%(t)“%2(}2)) (63)
Kr < Clloa)llZacry, (64)
Ks < Cllua(®)l|3smy + C(1+ t)s”zﬂ“%m(t)”?',ﬂ(m’ (65)
Ky < CA+8*|luaa(t)32m), (66).
Kio < %M1+ + C(1+ 1) ||0ae(t)||75(r), (67)
Kin < CO+ ) |jo (8|32 log? (2 + 1) + C(1+ )% |loge ()ll7a(ry,  (68)
1
Ki; < E(l+t)5’2+5||0m(t)||%2(m+C’(l+t)3/2+ellvm(t)lliz(a)108;4(2+t)- (69)

Collecting (62)-(69), we get the estimate

|(1 + )52+ / Ve (F(w, 0)0%)naadz
R
< O+ ) lua(acmy + C(L+ )22 | Jvae(t)[Za(ry + ¥ (1 4+ )7
+C(1+ t)1/2+‘||vx(t)||iz(R) log'?(2 + t)
+C(1+ t)3/2+5”vw(t)“i2(ﬂ) 1084(2 +1) (70)

Finally we estimate the second term of the right hand side of (56). Making use of Lemma
2, |

‘(1 + t)5/2+5/ Ua:xwxx:m:dx
R
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51+ vaa(®)lZary + C(1+ ¥ ||wae ()| Zar)

1 | . |
< E(l+t)5’2+silvm(t)ll%2(n)+Cd(1+‘t) e (71)

Now, collecting the estimates (58)-(61), (70), and (71), we obtain

1d

& ‘ ’ o : & ;
5 U+ O o OllEamy + S0+ 072 [ woelda

+C(1 + t)5/2+ellvm:v(t)”%2(ﬁ)
S C(l+t)—1/2+e/ wa2d$+Cd(1+t)_1+e
R .
+C(1+ )2 ||vg ()22 (ry Log™(2 + 8) + C(1+ 1)/ 2+ |ue (£) 2Ry log* (2 + 1).

Integrating the above inequality with respect to time from 0 to ¢ with the aid of (36) with
k= 0,1, we arrive at (36) with £ = 2. The proof of Theorem 3 is complete.

We close this section to state one more property of U(t, z) obtained by Xin [11], which
plays an essential role in the next section.

Lemma 5 ([11]) Suppose that Us(z) has the following properties:

%Ug(x) >0 and |%U0(m)| < C%Uo(:ﬁ), (72)
for any z € R. Then, U(t,z) satisfies
| U:(t,z) >0 fort>0 and z € R, | (73)
and
|Uze(t,2)] < CU,(t,z) fort>0 andz € R. (74)

Note that if we choose vg(z) = 0 in (23), then Up(z) in (21) satisfies (72).

4 convergence of u(t,z,y) — r(t,z)

In this section we prove Theorem 1. Throughout this section, vo(z) = 0 is adopted.
First, as in the work of Xin [11], we decompose the solution u(t,z,y) as follows:

u(t,z,y) =U(t,z) + V(¢,z,v9),
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where U(t, z) is the solution of (21) obtained in Section 3. Then, the problem (1)-(2) is
reduced to

{ Vi+ (F(U)V)e + (F(U,V)V?)a + (¢'(U)V)y + (GU, V)V?)y = Voz + Vi, (75)
V(O:m’y) =%($,y) Euo(m’y)—wo(x), |

where F(U,V) is in (24) and G(U,V) is defined by
o(U +V) = o(U) — g(U)V

G(U,V) = V2 (76)
From now on, we study the problem (75).
Our main purpose in this section is to derive the decay estimate for V.
Throughout this section, we use the notation 8* as in the meaning
k_ i a
=3 8.0 (77)

t+y=k
For the problem (75), Xin [11] showed the following global existence result.
Theorem 4 (global existence [11]) There ezists a constant 65 such that if ||Vo||ga(rey <
65, then the problem (75) has a unigque global solution V(t,z,y) satisfying
t
WV @l + [ [, U225, 2)dzdyds

t
+ [0V Ol aeyds < ClVolliacrmy (78)
for allt > 0.
Furthermore, when the integrability of V; is imposed, we have

Lemma 6 (L'-estimate) Suppose further in Theorem 4 that Vo € L'(R?). Then, the
solution V(t,z,y) also satisfies

IV (@)llcrcrey < Vollzr ey (79)

The proof of Lemma 6 can be done in a similar way as in having derived (26).
Our main result in this section is the following decay estimate of V.

Theorem 5 (decay estimate) Let V(t,z,y) be the solution of (75) obtained in Theorem

4 and Lemma 6. Then, for any € > 0 there exists a constant C > 0 such that the following
estimate holds:

t .
(L )NV Olfsany + [ (14 5)1* [[ U104V Pdadyds
t
[ U 0 (5) agands < Call + 1 Velsnwrmsy,  (80)

where Go(t) = 1, 6:(t) = log®(2 + t) and 6,(t) = log®/*(2 + 1).
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Here, admitting Theorem 5 temporarily, we prove Theorem 1.

Proof of Theorem 1. First we write
sup lu(t) — r(t)llL2re) < sup llu(t) — U )|l gy + 1UE) = r(t)l]2r)- (81)
v y .

It follows from Corollary 1 that the second term of the right hand side in (81) does not
exceed Ct~1/*log(2+1). So, we only estimate the first term of the right hand side of (81).
Note that the follwing Sobolev inequality holds:

supl|llzacre) < O woy | foll oty (82)
Yy
for functions f = f(z,y). Then, it follows from (80) and (82)

sup [V @)l < CIV OIS Ve Ol a2y
Y
< C(+41t)10g®t(2 4+ 1),

which means
sup [lu(t) — U)llzqany < C(1+ )"/ 1og?4(2 + 1), (83)
yER

From the above, we arrive at

sup [u(t) — r(t)ll2(a < OF/*log(2 +1),
Y

which gives (15). The proof of Theorem 1 is complete.
| It remains to prove Theorem 5.

Proof of Theorem 5. By using the L?-energy method as treated by Xin [11], we get

d 2
IV Ollzea) + //RZ U.V2dzdy + Cll0"V (t)l|72(r2) < 0- (84)
Multiplying (84) by (1 + t)'**, we have
d
SOV Ol ey + 1+ [[ 0 V2dady
+C(1+ )0V ()| Zacrr) < C(L+ ) IV (O IZ2(m2y. (85)
With the aid of (79) and Sobolev inequality

£ llzoogrzy < CUFILE pey 10 Fll oty for f = f(z, 1), (86)
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we continue the computations: -

&4 OV @y + (40 [[ U2 dady

+C(1+ 1)+ )10' V()22 |

C(1 + t)*||Voll i an) 10"V ()| z2(r2)

C(1+ 1)~V aey - (14 )P0V ()] oo

< Crt 14 )T Vol ey + (1 + )0V (Ol Ze(m2ys (87)

where r is a positive constant sufficiently small. Integrating (87) with respect to time from
0 to ¢, we obtain

t
A+ OV Ol + [ 1+ 9 [[ V-V dudyds
t .
40 [+ VO Eacaorts < Wollgaey + O+ ol
which gives (80) with £ = 0.
Secondly, we derive (80) with k = 1. L2-energy method gives
d .
ZNOV W oy + [[, Vol V Pady + OOV Ol
< OOl (], U2V 2ddy + 10V Ol en)
+CIIV (O)llZ )10V () 232 (88)
Multipluing (88) by (1 + ¢)®*¢, we have

d
S+ POV Ollfaay + (14 0% [[ V2|0V Pdady

! +C(1+ )10V ()| Z2rry < C(L+ )10V (E)IZ2(y
FO+ 0P Vel ( [, VoV dady +110°V (1) Bacan)
+C(1+ ™[V Z2a) 10"V (Ol T2 (2 (89)
It should be noted that the following estimate holds:
1Uz()l| ooy < Ca(1 + )7 log>(2 +1). (90)
This can be obtained by using Lemma 1 and Theorem 3 in the equality

U, = w; + v,.
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Then, integrating (89) with respect to time from 0 to ¢ and making use of (90), we estimate:
(1 + 020V () acary + | ‘(14 5)2* J[, V10"V (5)Pdedyds

+ [+ PV () s
1" Vollaca + € [ (1+ )10V ()lFnyds
+Cs [+ s+ log(@2+ ) [ UaV2dady + 110V (9)lfscary) ds
O [+ IV l0V () s

Taking account of (80) with k = 0 and L2-bound of 82V (t), we get

A+ PNV O + [ (1457 [[ 0 01V (9)Fdadyds

+ [+ PPV () acands
< 10"VollZaey + C(1 + ) IVolltzanrryazy + Ca(1 + t) log®(2 + t)”VO”(L?nLI)(R?)

Cleanng up the right hand side of the above inequality, we get (80) with k£ = 1.
Finally, we derive (80) with k = 2. L%-energy method gives

d
&,-t-Hazl/(t)”%z(m) + //122 Ux|62V|2da}dy + C“83V(t)“%2(32)

< OIS W) + g'(U))ee )V ()| Z2(rsy + CNS'(U) + g'(U))=($)"V ()2 (aay .
+C||O*(F (U, VIV)|Zo(may + ClIO*(GU, VIV L2 ra)- (91)

Multiplying (91) by (1 +¢)**¢ and integrating it with respect to time from 0 to ¢, we have
3+¢el1 92 2 t 3+e 21712
(L 1PV Olfaay + [ (148 [[ V.10V Pdedyds
t
+C [[(1+ 9 10°V (3)l[Fa(anyds
t
10%VollEagasy + C [ (1+ 8Y*10°V (3)l[Facanyds
t .
+C [[(14 NS0 + §(0))aa()V (3)l[Fa s
t
+C [[(1+ )™ (FU) + g (U)ol V (DlfEa(ryds

+C [+ (1 (F U, VIV Baqaty + 10°(GU, VIV aga)ds. (92
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We here only estimate the term

A®) = [ (4 9 1Uaa(6)V (5)Bacards

which arises from the first term of the right hand side in (92). The rest terms in (92) can
be treated as before. Note

1Waa )V (M < WUy up [ V (52, 0)’dy
< e rcanllV (e IVa(s) ey

It then follows from Lemma 1, (36) with £ = 2, and (80) with £ = 0,1

t : : ’
A®) < [0+ NaalMBaapllV Ol IVals) 2o

: t
Cd“VOH%HlnLl)(Rz)/O (1+ 5)"1*10g®/2(2 + 5)ds
= Cd“%”?glnu)(Rz)(l + t)s lOg33/2(2 -+ t),

IA

A

which gives the right hand side of (80) with k = 2. The proof of Theorem 5 is complete.
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