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ABSTRACT. We consider the blowup problem for u: = Apu + lulP~2u (x € Q. t > 0)
under the Dirichlet boundary condition and p > 2. We derive sufficient conditions on
blowing up of solutions. In particular, it is shown that every non-negative and non-zero
solution blows up in a finite time if the domain 2 is large enough. Morcover. we show
that every blowup solution behaves asymptotically like a self-similar solution near the
blowup time. The Rayleigh type quotient introduced in Lemma A plays an important
role throughout this paper.

1. INTRODUCTION AND RESULTS

In this paper we mainly consider the blowup problem for the following initial bound-

ary value problem:

uy = Apu + |ul42u, r€eQ, t>0,
(1.1) u(xz,t) =0, redd. t>0.
u(x,0) = ug(x), . x € .
where p, ¢ > 2, Ayu = div(|Vu[P72Vu) and Q is a bounded domain in RY with

smooth boundary 9. Especially, we here study the case when p = ¢.

As for the existence and non-existence of global solutions of (1.1). the following
results are well known (see [14],[9],[5],[11]):
(i) When p > ¢, (1.1) has a global solution for any u, € W"Ol o’

(i) When p < ¢, for sufficiently small initial function ug € W'Ul 7 (1.1) has a global

solution, and if ug is large enough. the solution blows up in a finite time.
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(iii) When p = ¢, put Ay = inf{||Vu||B/|u||p : v € Wy?\{0}}. If A\; > 1, (1.1) has a
global solution for any u, € Wy ?.

Here, W,'? = W} ?(Q) denotes the usual Sobolev space with the norm Huﬂwg.p =
IVullp, and || - ||, denotes the LP(£2) norm.

From the above results, we see that the case p = ¢ is critical for the existence of
blowup solutions of (1.1). For the critical exponents of other equations and their role,
we refer to the survey paper by Levine [8]. Here, we should note that little is known
about the case when p = ¢ and A\; < 1. So, in what follows, we study (1.1) with the

case when p = ¢ > 2, that is, we consider the following problem:

up = Apu + |ulP"?u, r€eQ, t>0,
(P) u(z,t) =0, r eI, t=>0,
u(x,0) = uo(x), xr € Q.

Our first purpose in this paper is to derive sufficient conditions on blowing up of
solutions of (P) (Theorems B and C). The second purpose is to study the asymptotic
behavior of solutions of (P). Here, we note that we cqnsider not only the asymptotic
behavior of blowup solutions but also that of global solutions. In both cases, we
show that each solution of (P) behaves asymptotically like a self-similar solution of
(P). First, we derive blowup rate and decay rate of solutions of (P) for each case
(Theorem D). Next, we investigate the asymptotic profile of both blowup and global
solutions of (P) near the maximal existence time (Theorem E). These results for the
case p > 2 in (P) may be regarded as a natural extension of the linear case p = 2 in
(P).

To be more precise, we here recall the local existence results for (P). The lo-
cal existence of strong solutions of (P) is already studied by many authors (see
[5],[7],[10],[12]). Here, a function wu(a,t) is said to be a strong solution of (P) in
[0,T] if (i) u € C([0,T); Wy P(Q)), (i) us, Apu and |ul?~2u € L*(0,T; L*(Q)), and
(ii1) u satisfies (P). Assume that p > 2, and 2(p—1) < Np/(N —p) if p < N. Then, for

1. . .. :
any up € Wy'*, there exists a positive number T' such that (P) has a strong solution
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in [0, 7). Moreover, let T* be the maximal existence time of the strong solution u(t)

of (P). Then, if T* < 00, it follows together with (1.6) below that

im [lu(t)]], = li u(t)], = oc.
Jim [t =l [ Fu(t)], = oc

Furthermore, if we put E(u) = [|[Vul|} — [[u][}. we have
(1.2) O|lu(t)||5 = —2E(u(t)) a.e. in  [0.T").
(1.3) O E(u(t)) = —pl|lud(®)|3 ae. in [0.T).

We note that F(Au) = AP E(u) holds for any A > 0 and u € W, . which is a special
feature in the critical case. Our main idea in this paper is to introduce the Rayleigh

type quotient E(u)/||u||%. The following lemma is important in this paper.

Lemma A. Assume that ug € Wy \ {0}, and let u(t) be a strong solution of (P)

in [0,T*). Then, we have
O[E(u(t))/|lu®)]5] <0 ae. in  [0.T7).

Lemma A follows immediately from (1.2) and (1.3). but it plays an essential role
in the proofs of the following theorems. We should mention that a similar result to
Lemma A is obtained by Berryman and Hblland [1] for the fast diffusion («™'); = Au
with ¢ > 2. In [1] they study the asymptotic behavior of finite time extinction
solutions of it.

First, we derive two sufficient conditions that the solution of (P) blows up in a finite

time.

Theorem B. Let p > 2 and Ay < 1. Assume that uy € W’Ul"’ satisfies E(uy) < 0.
Then, the strong solution of (P) blows up in a finite time.

Theorem C. Let p > 2 and Ay < 1. Assume that uy € W, \ {0} is non-negative

in Q. Then, the strong solution of (P) blows up in a finite time.

Here, we recall that Ay = inf{||VullD/|[ul|b : u € W, "\ {0}}. and if Ay > 1. every

strong solution of (P) exists globally in time. Theorems B and C supplement the
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known results by many authors concerning the existence and non-existence of global
solutions of (1.1) by giving information about the case of p = ¢ > 2. In [2] Galaktionov
showed a similar result to Theorem C for u; = Au™ + «™ with m > 1 by using the
so-called Kaplan method [6]. We should mention that this method is not applicable
to our problem (P), and our proof of Theorem C is quite different from that of [2].
Next, we consider the asymptotic beherwior of strong solutions of (P). We begin

with deriving blowup rate and decay rate of strong solutions of (P).

Theorem D. Assume p > 2 and ug € W, \ {0}. Let T* be the maximal existence
time of the strong solution u(t) of (P). Put v, = limy_.p+ [E(u(?))/|u(t)|[}].

(1) IfT* < oo, we have v, < 0 and
(1.4) ;HI%}*[—*’)"*(]) —2)(T* — )M =D ||u(t)||, = 1.
(¢2) IHKT* = o0 and v, > 0. we have

(1.5) im [y (p — 2)8] @D |u(t)]) = 1.

t—oc

Remark 1.1. Put vy = inf{E(u)/|lul]} : w € W, "\ {0}}. Then. we see that 7, >
—o0. In fact, by the Gagliardo-Nirenberg and the Young inequalities. there exist

positive constants « € (0, p), €y and €5 such that

ult < CululE 2 IVl < (L/2)Vulll + Cllull w e TR
from which we have
(1.6) [Vullb < 2E(u) 4 2Cs|Jull. we Wy,

and we have y; > —C4. So, it follows from Lemma A and this fact that the limit
Yo = limy—p+ [E(u(?))/||u(t)]|5] exists and v, > 41 holds for any strong solution u(t)
of (P). We also note that from Theorem B. if T* = oc. we have 3, > 0. Moreover. we

see that v; < 0 [resp. 71 = 0, 71 > 0] if and only if Ay <1 [resp. Ay = 1. Ay > 1].
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Remark 1.2. A function u(x,t) = v(#)w(x) of variable separation type is called a

self-similar solution of (P) with ug(2) = v(0)w(z) if v and w € W, satisfy

(1.7) v = —y|v[P in R,

(1.8) ~Apw — WP ?w = qw in D'(Q)

for some v € R. From Theorem D, we see that the blowup rate and the decay rate of
; I >
general strong solutions of (P) in Theorem D are the same as those of the self-similar

solutions of (P).

Remark 1.3. In the case when p < ¢ in (1.1), the decay rate of small global solutions
of (1.1) is given by H. Ishii [5]. However, it seems that in [5] there are no results for
blowup rate of solutions of (1.1) when 2 < p < ¢. For the semilinear case p = 2 < ¢,

see Giga and Kohn [3] and references therein.

The following theorem states that the asymptotic profiles of solutions of (P) are

given by the solutions of (1.8).

Theorem E. Assume that p > 2 and uy € Wy ? \ {0}. Let T* € (0,] be the
maximal existence time of the strong solution u(t) of (P). Then. for any sequence

{t;} satisfying t; — T*, there exist a subsequence {t;;} of {t;} and w € W,"" such

that
(19} ll(fjl)/“U('[]/)Hz — w 1'11 [;{,701-1’.
(1.10) —Apw = |w|PTPw = yow in D'(Q), llwlle =1,

where v, = lim;_ 7« [E(u(t))/]|u(t)||5].
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Remark 1.4. It is natural to ask in Theorem E whether the limit u(#)/||u(?){]2 exists
or not in T/V()l P as t — T*. At the present, we do not know the answer, even if the
solution u(t) of (P) is non-negative. Of course, if non-negative solution w € Wy ? of
(1.10) is unique, then it follows immediately from Theorem E that u(t)/||u(?)]l2 — w
n VVO1 P as t — T* for any non-negative and non-zero solution u(#) of (P). However,
as we show in Section 3 for the case N = 1, non-negative solution of (1.10) is not

unique in general.

The plan of this paper is as follows. In Section 2, we give the proofs of Lemma
A and Theorems B, C, D and E. Lemma A will play an important role throughout
this paper. Theorems B and D (i1) follow immediately from (1.2) and Lemma A. In
order to prove Theorems D (i) and E, we use the rescaling arguments together with
Lemma A. Theorem C is proved by contradiction, using Theorem E. In Section 3, we
discuss the uniqueness and non-uniqueness of non-negative solutions of (1.10) for the

case N = 1.

2. PrROOFS OF THEOREMS

In this section, we give the proofs of Lemma A and Theorems B. C. D and E. First,

we give the proof of Lemma A.

Proof of Lemma A. From (1.2) and (1.3). we have

O[E(u(t))/[[u(t)lI5] = {[lu()I50:E(u(t)) — E(u(t)ellu(t)|5}/[lu(t)[l5"
= {=pllu®l5 w3 + (2/9)Bel a3 a5 BullulOI5}/ u(H)]]5”
= P{@illu()3)* = 4l lue(OIZ} /{4l (D)5

a.e. in [0,7*). By the Cauchy-Schwarz inequality, we obtain Lemma A. O

Next, we prove Theorems B and D (ii), using (1.2) and Lemma A only.
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Proof of Theorem B. By Lemma A, we have

E(u(t))/lu®)ll; < E(uo)/lluolly. t€[0.T7).

Put cg = —FE(ug)/|luo|lh. Then, from (1.2) and our assumption E(ug) < 0. we have
cp > 0 and
(2.1) O||u(t)|3 = —2E(u(t)) > 2co||u(t)]]}. € [0, T%).

Since we consider the case p > 2, it follows from (2.1) that T* < oc. U

Proof of Theorem D (ii). From Lemma A, for any ¢ > 0 there exists a T, > 0

such that
(2.2) Yo € Bu(®)/ut|} < 7e+e. € [Tooc).
By (1.2) and (2.2), we have

(23) =2y +uD} < Bllu < ~2lu(]f. 7€ [Teoe).

From (2.3), we get

Ne(THl3 P + (e + )(p = 2)(t = T.)] /=2

< Jul3 < [Tl "™ 4 3ulp = 20~ Tt e (L),

&

from which we have

e/ (e + 2]V 072 < Timinf [y (p — 20072 [Ju(®)]]2

< lim sup[y«(p — 28] =B (1], < 1.

t—oC

Since ¢ > 0 is arbitrary, we obtain (1.5). O
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Remark 2.1. When T* = o0, it follows from Theorem B that 4, > 0. Conversely,
if v, > 0, we have T* = oo. In fact, suppose that v, > 0. Then, it follows from
the definition of v, that E(u(t)) > 0 for any t € [0,7*). From (1.2). we see that
lu(t)]lz < |juo|l2 for any t € [0,T*), from which we have T* = oo. In the case when

% = 0, from the proof of Theorem D (ii), we see that there exists a positive constant

Cy such that |[u(t)]|s > C1(1+1)7Y/®=2) for any t € [0. 00).
Next, we prove Theorems D (i) and E, using the rescaling arguments.
Proof of Theorem D (i). First, from Remark 2.1, we see that 7, < 0. Inbordelj to
show (1.4), we introduce the rescaled function #(x. 7) defined by
u(x,7) = (T — HY =2y (2 1), t=T%—¢"7.
= e:_T/(p_z)u(f:r?T* —e 7).

Then, w(x, ) satisfies

o 1
(2.4) Uy = Ayt + )P — 51 T € (=logT*. oc).
p— <

Multiplying (2.4) by u(a, 7) and integrating over 2. we have

2 5

(2.5) o-llu()3 = —2E(u(r)) - .

Since we have lim, . [E(u(7))/||a(m)||5] = lmy—«[E(u(#))/[Ju($)||}] = 7. for any

¢ > 0 there exists T, > 0 such that

Yo S Blu(r)/a(r)ll; <9+ 7€ [Th0).
From (2.5), we have
(2.6) fellamlz) < o-lla(n)llz < folllu(n)l3). 7€ [Te. ).

Here we put fs(s) = —2(7. + 8§)s?/? — (2/(p — 2))s for & = 0 and z. To conclude the

proof, we have only to show that

(2.7) Ao < Ja(r)|f € Ao T € [T o).
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where As = [—(7*4—6)(})—2)]_2/“’_2) and fs5(As) = 0. In fact. since ¢ > 0 is arbitrary,
(1.4) follows from (2.7) and the definition of @(x, 7). We prove (2.7) by contradiction.
First, suppose that there exists 7y € [T:, 00) such that ||ii(79)||5 < 4¢. Then. from the
second inequality of (2.6), we see that there exists a positive constant Cy such that
la(m)||z < Coe™27/(P=2) for any 7 > 7. Since ||a(7)||3 = e~ /=27 ||u(T* — e77)||3,
we have ||u(T* — e~ 7)||3 < Cy for any 7 > 79. However. this contradicts the fact that
lim;—.7+ ||u(t)]l2 = co. Thus, we obtain the first inequality of (2.7). Next. suppose
that there exists 7y € [T, o0) such that |[i@(7)||2 > A.. Frow the first inequality of
(2.6), we see that there exists Ty € (71, 00) such that lim, 7 | 7)||3 = oc. However,
this contradicts the fact that @(7) exists for all 7 € (—logT*.oc). Thus. we obtain

the second inequality of (2.7), and the proof of Theorem D (i) is completed. [J

Proof of Theorem E. For the solution u(x.t) of (P)in [0. 7). we define the rescaled

function @(x, 7) as follows:
! 2
i) = w0/ Jules (0= [ ul s
Jo
Then, from Theorem D and Remark 2.1, we see that 7(T*) = o> and u(7) satisfies

First, we show that for any sequence {7;} satisfying 7; — oo there exist a subsequence

{7j:} of {r;} and w € W,"* such that
(2.9) a(ry) —w  in L),

and w satisfies (1.10). Since ||u(7)]|z = 1 for 7 € [0. 00). multiplying (2.8) by u(x.7)

and integrating over ), we have

(2.10) 0, E(i(7)) = —pllir ()3, T € [0.50).

~d

From (2.10) and

(2.11) lim E(i(r)) = tl_ijlﬁ[E('z_/(f))/[|-z,t(t)|]£] = Yu

T—oC
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we have [ ||i-(7)||3dT < co. Here, following the proof of Lemma 4 of ()pani [11],
we set 4;(0) = (7 + o) for 0 < o < 1. Then, we see that {i;} C C([0,1}; W})l P(Q)),
and u; satisfies

(2.12) Opiij = Ayity + [u; [Py + E(iy)ig, o €[0.1].

It follows from [ ||i-(7)||3dT < oo that

(2.13) 105;|22(0,1:L2(2)) — 0.

Moreover, since ||i;(0)||z = 1 for o € [0, 1], it follows from (1.6) and (2.10) that
(2.14) sup 20l Lo 01w 7 (0)) < 20

By (2.11)-(2.14), the monotonicity of —A,, and the standard compactness argument,
we see that there exist a subsequence {i;} of {#;} and w € L>(0.1; W, 7(£2)) such

that

aj —w in C([0.1]; L*(Q)).

and w(0) satisfies (1.10) for each o € [0,1] (see the proofs of Theorem 1 of [14] and
Lemma 4 of [11]). Putting w = w@(0), we see that there exists a subsequence {r;}
of {r;} satisfying (2.9) and w satisfies (1.10). Finally. we show that there exists a

subsequence {7;»} of {7;/} such that
(2.15) u(Tj) = w in I’VUI Q).

In fact, since {i(7;:)} is bounded in W}, it follows from (2.9) that there exists a

subsequence {7} of {7;:} such that
(2.16) () — w weakly in W'Ol P(Q) and strongly in  L?(Q).

Since w satisfies (1.10), it follows from (2.11) that E(u(7;7)) — 7.« = E(w). Moreover,

it follows from (2.16) that |la(7;»)[|5 — |lw]|h. Thus. we have

(2.17) ' IVa(r)|[2 — [|[Vwl?.
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Since Wy ? is a uniformly convex Banach space, (2.15) follows from (2.16) and (2.17).

This completes the proof of Theorem E. [
Finally, we prove Theorem C. To prove it, we need to prepare one lemima.

Lemma 2.2. Let p > 2. \; <1 and v > 0. Suppose that w € W}}'P is non-negative

in Q, and satisfies —A,w — |w|[?~*w = yw in D'(Q). Then. we have w =0 in .

Proof of Lemma 2.2. Suppose that w # 0 in §2. Then, by the standard argument
(see, e.g., [13, p.418]), we see that w € C1Ho(Q) for some o € (0.1) and w is positive
in . Let © be a positive solution of —A,¢ = Aq|e|P ™2 in D'(Q). Since w satisfies
—A,w > |w|P~2w in D'(Q), in the same way as in the proof of Theorem II of [4]. we

get © = 0 in Q. This is a contradiction. Hence, we have w =01in Q. 0O

Proof lof Theorem C. We prove by contradiction. Let u(t) be a global solution
of (P) such that u, € W,"? \ {0} is non-negative in Q. Then. by the maximum
principle as in [14], u(t) is non—nega.tive in Q for t € [0.oc). From Theorem B. we
have v, = limy—oo[E(u(t))/||u(t)]|5] > 0. Moreover, from Theorem E. there exist a

sequence {t;} satisfying t; — oo and w € W, ? such that
(2.18) w(tp)/lut)llz = w  in WP

—Ayw — lw|P™%w = y,w in D'(N).

Since u(t) is non-negative in Q for t € [0,00), from (2.18), we see that w is also
non-negative in Q. Thus, it follows from Lemma 2.2 that w = 0 in . However. this

contradicts ||w||; = 1. Hence, we obtain Theorem C. O

3. EIGENVALUE PROBLEM (1.10) FOR NV =1

In this section, we consider the eigenvalue problem (1.10) for the case N = 1.

Especially, we are interested in the set of all non-negative solutions of (1.10) with
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v+ < 0, which is related to the asymptotic profiles of non-negative blowup solutions
of (P).
First, we consider the following boundary value problem:

(31) { —(|'u,'lp~2'u’,(-'l'))' _ ]‘ll.»|”_2u,(:r') = —u(z), x €N,

u € WyP(Q), u(z) > 0,20, =€ Q.
Here, the symbol ' denotes the differentiation with respect to a. Let S; be the set
of all solutions of (3.1) for Q@ = (—I.1). Then, the structure of S; is determined as

follows.

Proposition 3.1. Let [, be the positive number such that
M=ty 1) = it {8/ ull} - v € Wy (=1,.0,). u #0} = L.

and m, = pl,/(p — 2).
(1) If1 < 1,, then S; is empty.
(2) Ifl, <1 < m,, then there exists a unique positive solution ®; of (3.1) and

Sr={®:}.
(3) If I > m,, then S; = [Ali T I's k. where [I/m,] denotes the largest integer not
exceeding [/m,, and S," = {Z?:l D, (- —yj) =L <y —my. y; +2my, <

Yj+1,» 7 = 17 e 7]{7 - 17 Yk + my S Z}
As a corollary to Proposition 3.1, we have the main result in this section.

Theorem 3.2. Let v < 0 and X(v) be the set of all solutions of

{ —(Ju'|P2u! (2)) = |u)P"2u(ax) = yu(a). o€ (=L1).
we Wer(=L1D),  Jull.=1,  u(x)>0. 2e(=L10.

(1) When | <1,,, £(v) is empty for any v < 0. ‘
(2) When I, < 1 < m,, let vy = E(®))/]|®4]]}. Then 4, < 0 and S(7;) = {i)l}

where ®; = ®;/||®1||2. and T(7) is empty if v # ¥1.
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(3) When I > my, for k = 1. 2,--- . [I/m,]. let v = k'"P/2E(®,, )/||®m, ||}
Then 71 < 72 < -+ < Yym,) < 0 and T(q) = {Z;‘f:l ‘i)m.,,(' —y;) -1 <

Yy1—mp, Y +2my <yjp, g=1,-- k=1, yp +my, <1}, and () is empty

1f7 é {713 Y2, 7')/[1/1111,]}'

Theorem 3.2 follows immediately from Proposition 3.1. We note that +7 defined
in Remark 1.1 coincides with that in Theorem 3.2 in this case. In order to prove

Proposition 3.1, we consider the following initial value problem:

(P20 (2)) = u(x) — JulP"2u(a), o > 0.
(32) { £1|(0§ =« (> z)) u'((())): }Ol o g

Lemma 3.3. Let a, = (p/2)/®=2) and F(s) = (p/(p — 1))(|s|>/2 — |s|?/p). and let
To =00 if @« < ap, and ro = foa[F(s) — F(a)]'l/P(ls if « > a,. For a > 0. there
exists a unique solution ¢, of (3.2) in (0.2, ). and ¢, is positive in (0. x, ). Moreover,
when a > «), v4 < 00 and g, satisfies po(@a) = 0. pl(2,) < 0 if & > «,, and

ol(za)=01ifa= Qp.

Proof of Lemma 3.3. Let u(x) be a solution of (3.2). Then. we have

(3.3) [u' P72 (x) = / [u(y) — Jul?2u(y)]dy. « > 0.
0

When o = 1, it follows from (3.3) that u(x) = 1 for + > 0. When o # 1. from (3.3) we
see that there exists xy > 0 such that (o — 1)u'(2) < 0 for 0 < 2 < @g. Thus. u(x) is
twice differentiable in (0, z). Multiplying the equation of (3.2) by v’ and integrating

over (0, x) yields
(3.4) lu'(2)|? = F(u(z)) — F(a). 2 >0.

From (3.3) and (3.4), we see that there exists a unique solution ¢, of (3.2) in (0.24),
and 4 1s positive in (0,24). In particular, when o > ap, u = pq(r) is given as the
inverse function of = ["[F(s) — F( a)]71/Pds. So, we see that v, < oc and g,

satisfies (o) =0, L (2a) < 0if a > ap, and ¢ (2,) =0if o = ap- O
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Remark 3.4. By an elementary computation, we see.that x, is strictly decreasing
with respect to a > «,. It is known that I, = (p — HY*B(1/p.1 —1/p)/p = [r(p—
1)Y/7]/ [p sin(7/p)], where B(-,) is the beta function. Another elementary calculation

ylelds limg oo 2o = Ip and 24, = my.

Proposition 3.1 follows from Lemma 3.3 and Remark 3.4. In particular, ®; 1s given

by .
Ca(n(T), for 0<a<L.
Pany(—2), for —I1<uz2<0.

®(x) = {
where a(l) € [ap, 00) is the unique number such that I = x.().
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