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Introduction. In this paper I would like to propose a generalization $\mathrm{o}\mathrm{f}.\mathrm{p}\mathrm{o}\mathrm{w}\mathrm{e}\mathrm{r}$ series to
real several dimensions.

Weierstrass laid the foundation of the theory of analytic functions on power series and
analytic continuations. Elementary functions like $e^{z},$ $\sin z,$ $\cos z$ , and $\log(1+z)$ are all
represented by convergent power series

$f(z)= \sum_{n=0}^{\infty}a_{n^{Z^{n}}}$

with real coefficients $a_{n}$ . These real analytic functions are however much better under-
stood when we $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{S}\mathrm{i}\mathrm{d}\overline{\mathrm{e}}\mathrm{r}z$ as a complex variable rather than a real variable. One natural
thought might be to consider $z$ in the power series as a quaternion variable. This gives us
a generalization of power series to real four dimension. However this simpleminded gen-
eralization is not satisfactory for a couple of reasons. First it gives a generalization only
to four dimension. More importantly an essential difficulty arises when one tries analytic
continuations; a translation of the quaternion variable in a power series results in a series
which is not a power series any more since the quaternions are not commutative.

This difficulty of analytic continuations in a noncommutative situation lead me to con-
sider the use of a special kind of Jordan algebras which I denote by $\sqrt n$ . These Jordan
algebras $\sqrt n$ are explained in the first section.

In the second section I will give a short account of the Clifford algebras $Cl_{n}$ and state the
relationship between the Jordan algebra $\sqrt n$ and the Clifford algebra $Cl_{n}$ . This relationship
is in fact the reason why I started studying the Jordan algebras $\sqrt n$ . The generalization of
power series is actually formulated in terms of the Jordan algebras $\sqrt n$ only. In this sense one
can go without referring to the Clifford algebras at all. However without the perspective
of the Clifford algebras the understanding of the generalization would be one-sided.

A theory of nonassociative polynomials over the Jordan algebra $\sqrt n$ will be developed in
the third section, and the generalization of power series will be given in the forth section.
The main features of the generalization given in this paper are the following:

(1) Every complex power series canonically gives rise to a local analytic transformation
of the euclidean space of any dimension $n>2$ which extends the complex analytic
function defined by the power series on the embedded complex plane.

(2) Analytic continuations can be performed.
One of my original motivations for this work was to try to define a class of analytic

transformations of the $n$-dimensional euclidean space which is larger than the class of
conformal maps but is not as large as the class of all analytic maps. From this point of
view Theorem in the last section is a negative statement. It suggests that such a class
cannot be defined directly by the generalization of power series given here.
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1. The Jordan algebra $J_{n}$ . Most, if not all, of the materials presented in this and the
next sections are well-known to algebraists in lnore general forms. The purposes of the
first two sections are to provide notations suitable for the generalization of power series
given later in this paper and to make the subjects more accessible to the readers in other
fields of mathematics.

A real vector space $J$ equipped with a bilinear map $\mu:J\cross Jarrow J$ , which will be called
the multiplication, is a Jordan algebra if the following two conditions are satisfied:

$\{a, b\}=\{b, a\}$ , $(\forall a, b\in J)$ , (1.1)
$\{\{a, a\}, \{a, b\}\}=\{a, \{\{a, a\}, b\}\}$ , $(\forall a, b\in J)$ . (1.2)

Here $\{a, b\}$ denotes the image of $(a, b)\in J\cross J$ under the multiplication $\mu$ . The notion of
Jordan algebras was first introduced by P. Jordan in order to develop an algebraic theory
of Hermitian operators (see [4]), and has later been used to construct certain Lie algebras.
For a systematic treatment of Jordan algebras the reader is referred to [3].

The multiplication by an element $a\in J$ defines a linear transformation $T_{a}$ : $Jarrow J$ .
Namely

$T_{a}(x)=\{a, X\}$ . (1.3)

Using this notation the condition (1.2) can be written as $T_{a}\mathrm{o}T_{\{a}a,$ } $=\tau_{\{a,a\}^{\mathrm{O}}}\tau_{a}$ . Notice that
the multiplication is not assumed to be associative. Therefore the equality $T_{a}\mathrm{o}T_{b}=T_{\{a,b\}}$

does not hold in general.
The Jordan algebra $\sqrt n$ is defined as follows. The underlying space of $\sqrt n$ is simply $\mathbb{R}^{n+1}$

which we regard as the direct sum $J_{n}^{(0)}\oplus J_{n}^{(1)}$ of the set of real numbers $J_{n}^{(0)}=\mathbb{R}$ and the
$n$-dimensional euclidean space $J_{n}^{(1)}=\mathbb{R}^{n}$ . Every element $a$ of $J_{n}$ can be uniquely written
as $a=a^{(0)}+a^{(1)}$ , where $a^{(0)}\in J_{n}^{(0)}$ and $a^{(1)}\in J_{n}^{(1)}$ . We call the real number $a^{(0)}$ the
real part of $a$ , and the vector $a^{(1)}$ the imaginary part of $a$ . For $a=a^{(0)}+a^{(1)}\in J_{n}$ and
$b=b^{(0)}+b^{(1)}\in\sqrt n$

’ the multiplication of $\sqrt n$ is defined by

$\{a, b\}=(a^{(0)}b(0)-ab^{(1)}(1).)+(ob)b^{(0}+a^{(1)}(0)(1))$ , (1.4)

where $a^{(1)}\cdot b^{(1)}$ denotes the inner product of the two vectors $a^{(1)}$ and $b^{(1)}$ in the euclidean
space $J_{n}^{(1)}$ . One can immediately see that the multiplication satisfies the commutativity
condition (1.1). The condition (1.2) can also be verified directly by an easy computation,
but the relationship between $J_{n}$ and the Clifford algebra $Cl_{n}$ explained in the next sec-
tion will make it obvious. In any case $J_{n}$ is therefore a Jordan algebra. Note that the
multiplication by a real number $r\in J_{n}^{(0)}$ in the Jordan algebra $J_{n}$ is simply the scalar
multiplication by $r$ . In particular the real number 1 acts as the unit element of $J_{n}$ .

One would probably notice that the multiplication of $\sqrt n$ is exactly the multiplication of
the complex numbers when $n=1$ . In fact we can canonically identify $J_{0}$ with the field
of real numbers $\mathbb{R}$ , and $J_{1}$ with the field of complex numbers C. The multiplication of $J_{n}$

is therefore associative for $n=0$ and 1. However for $n>1$ the Jordan algebra $\sqrt n$ is not
associative.
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The Jordan algebra $\sqrt n$ is naturally equipped with a norm as the $(n+1)$-dimensional
euclidean space. Namely the norm of an element $a=a^{(0)}+a^{(1)}\in\sqrt n$ is given by

$|a|=\sqrt{a^{(0)}+2|a^{(1)}\}^{2}}.$. (1.5)

The following inequality is crucial in our generalization of power series.

PROPOSITION 1. $|\{a, b\}|\leq|a||b|$ for all a, $b\in\sqrt n$ .

PROOF: A straightforward computation by the definition (1.5) shows

$|a|^{2}|b|2-|\{_{\mathit{0}}, b\}|^{2}$

$=(a^{(0)2}+|a^{(1)}|2)(b(0)2+|b^{(1)}|2)-(a^{(0)}b^{(}0)-a(1)$ . $b^{()}1)^{2}-|a^{(0)}b(1)+b^{(0)}a|(1)2$

$=|a^{(1)}|2|b(1)|^{2}-|ab(1).(1)|^{2}$

$\geq 0$ ,

where the last is the Schwarz’s inequality.
We define the conjugate of an element $a$ of the Jordan algebra $J_{n}\mathrm{t}\mathrm{o}$ be $\overline{a}=a^{(0)}-a^{(1}$ ).

This is a direct generalization of the conjugation for complex numbers. We have $\{a,\overline{a}\}=$

$|a|^{2}\in \mathbb{R}$ for any $a\in\sqrt n$ .
Let us investigate the linear transformation $T_{an}$: $\sqrtarrow\sqrt n$ defined for $a\in\sqrt n$ by (1.3).

First assume that $|a|=1$ . Then the element $a$ is of the form

$a=\cos\theta+(\sin\theta)v$ , $(0\leq\theta\leq\pi, v\in J_{n}^{(1)}, |v|=1)$ .

Every element $z\in J_{n}$ can be written as

$z=z0+Z1v+w$ , $(z_{0}, z_{1}\in \mathbb{R}, w\in J_{n}^{(1)}, w\perp v)$ .

Then by an easy computation we obtain

$T_{a}(z)=(z_{0}\cos\theta-z1\sin\theta)+(z_{0}\sin\theta+z_{1}\cos\theta)v+(\cos\theta)w$ .

Geometrically this means the following. Let $P$ denote the 2-dimensional subspace of $\sqrt n$

spanned by 1 and $v$ , and $P^{\perp}$ its orthogonal complement so that $J_{n}=P\oplus P^{\perp}$ . Then the
linear transformation $T_{a}$ : $J_{n}arrow\sqrt n$ is the direct sum of the rotation of angle $\theta$ in $P$ and
the scalar multiplication by $\cos\theta$ in $P^{\perp}$ . In general every element of $\sqrt n$ can be written
as $ra$ for some nonnegative real number $r$ and for some $a\in\sqrt n$ with $|a|=1$ . The linear
transformation $T_{ra}$ is the composition of $T_{a}$ and the scalar multiplication by $r$ .

As a consequence of the above argument we obtain:

PROPOSITION 2. The linear transformation $T_{an}$: $\sqrtarrow J_{n}$ is
(1) $\mathrm{n}$on-singular if the real $p$art $a^{(0)}$ of $a\in\sqrt n$ is nonzero,
(2) of ran$k$ at most $t_{7V}\mathrm{o}$ if $a\in J_{n}^{(1)}$ .
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2. The Clifford algebra $Cl_{n}$ . The fields of real and complex numbers are both associa-
tive and commutative. In order to extend these fields to higher dimensional real algebras
we must give up one of the two properties. Giving up the associativity naturally leads to
the Jordan algebras $\sqrt n$ explained in the previous section. If we abandon the commutativity
instead we arrive at the concept of Clifford algebras.

In [1] Ahlfors initiated the use of Clifford algebras in the study of higher dimensional
M\"obius transformations, and I partially demonstrated its usefulness in [6] and [7]. The
general philosophy behind these works is to simplify computations involved in the n-
dimensional transformations by the use of an algebraic operation. And this is in fact
the origin of the current work.

The Clifford algebras have mainly been studied for the sake of the spin groups and their
representations. The readers interested in this aspect of Clifford algebras are refe.rred to
[2] and [5].

Consider the $n$-dimensional euclidean space $\mathbb{R}^{n}$ and the quadratic form $q:\mathbb{R}^{n}arrow \mathbb{R}$ defined
by $q(v)=-|v|^{2}$ for $v\in \mathbb{R}^{n}$ , where $|v|$ is the norm of the vector $v$ in the euclidean space $\mathbb{R}^{n}$ .
We denote by $Cl_{n}$ the Clifford algebra associated to $(\mathbb{R}^{n}, q)$ . In terms of an orthonormal
basis $\{i_{1}, \ldots , i_{n}\}$ for $\mathbb{R}^{n}$ , the Clifford algebra $Cl_{n}$ can be described as follows. The Clifford
algebra $Cl_{n}$ is the real associative algebra generated by the elements $i_{1},$

$\ldots$ , $i_{n}$ satisfying
the following fundamental relations.

$i_{j}^{2}=-1$ , $(j=1, \ldots, n)$ ,

$i_{j}i_{k}=-ikij$ , $(j, k=1, \ldots, n, j\neq k)$ .

For $n=0,1$ , and 2, the Clifford algebra $Cl_{n}$ can be naturally identified with the field
of real numbers $\mathbb{R}$ , the field of complex numbers $\mathbb{C}$ , and the skew field k# of quaternions
respectively.

Every element $a$ of the Clifford algebra $Cl_{n}$ can be uniquely written as

$a= \sum a_{I}I$ , $(a_{I}\in \mathbb{R})$ ,

where the sum is taken over all the products $I$ of generators of the form

$I=i_{j_{1}j_{T}}\ldots i$ , $(1\leq j_{1}<\cdots<j_{r}\leq n)$ .

In particular the Clifford algebra $Cl_{n}$ is $2^{n}$-dimensional as a real vector space. The number $r$

of generators in the product $I$ is called the degree of $I$ .
We denote by $Cl_{n}^{(r)}$ the subspace of $Cl_{n}$ spanned by the products $I$ of generators of

degree $r$ . Then we have the direct sum decomposition

$Cl_{n}=Cl_{n}^{(0)_{\oplus}}cl_{n}^{()_{\oplus\cdots\oplus C}}1t^{n}\backslash )n$ .

Accordingly every element $a$ of the Clifford algebra $Cl_{n}$ is written as

$a=a^{(0)}+a^{(1)}+\cdots+a^{(n)}$ , (2.1)
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where $a^{(r)}\in Cl_{n}^{(r)},$ $(r=0, \ldots, n)$ . The subspace $Cl_{n}^{(0)}$ is in fact a subalgebra, and can be
naturally identified with the field of real numbers $\mathbb{R}$ . The subspace $Cl_{n}^{(1)}$ is nothing but
the euclidean space $\mathbb{R}^{n}$ . We can easily verify that

$uv+vu=-2u\cdot v$ , (2.2)

for any vectors $u,$
$v\in ct_{n}^{1)}\backslash$ , and in particular that $v^{2}=-|v|^{2}=q(v)$ .

The norm of an element $a= \sum a_{I}$ $I$ of $Cl_{n}$ is defined to be

$|a|=\sqrt{\sum a_{I}^{2}}$.

With respect to this norm the multiplication in the Clifford algebra $Cl_{n}$ satisfies the fol-
lowing inequality:

$|ab|\leq|a||b|$ , (Va, $b\in Cl_{n}$ ). (2.3)

In the Clifford algebra $Cl_{n}$ there are three standard involutions. The main involution $a\mapsto$

$a’$ is the automorphism of $Cl_{n}$ characterized by $v’=-v$ for $v\in C\beta_{n}^{1)}$ . The reversion $a\mapsto a^{*}$

is the anti-automorphism of $Cl_{n}$ which acts identically on $Cl_{n}^{(1)}$ . These two involutions
of $Cl_{n}$ commute with each other; their composition is called the conjugation and denoted
by $\overline{a}=a^{\prime*}=a^{*/}(a\in Cl_{n})$ . In terms of the direct sum decomposition (2.1) we have

$a’=a^{(0)}-a^{(1})+a^{(2)}-a(3)+\cdots+(-1)^{n}$a $(n)$ ,

$a^{*}=a^{(0)}+a^{(1)}-a(2)-a(3)+\cdots+(-1)^{\frac{n(n-1)}{2}}a^{(n)}$ ,

$\overline{a}=a^{(0)}-a(1)-a(2)+a^{(3)}+\cdots+(-1)^{\frac{n(n+1)}{2}}a^{(n)}$ .

For any element $a\in Cl_{n}$ the product $a\overline{a}$ is real and equal to $|a|^{2}$ if $n\leq 3$ . But $a\overline{a}$ is not
necessarily a real number in general; the real part $(a\overline{a})^{(0)}$ is always equal to $|a|^{2}$ .

Now let us consider the subspace $Cl_{n}^{(0)}\oplus Cl_{n}^{(1)}$ of the Clifford algebra $Cl_{n}$ . This subspace
is not a subalgebra of $Cl_{n}$ if $n>1$ . However the subspace is closed under the operation
$Cl_{n}\cross Cl_{n}arrow Cl_{n},$ $(a, b)\mapsto\{\mathit{0}, b\}$ defined by

$\{a, b\}=\frac{1}{2}(ab+ba)$ . (2.4)

The vector space $Cl_{n}^{(0)}\oplus Cl_{n}^{(1)}$ equipped with this bilinear operation is essentially the same
thing as the Jordan algebra $\sqrt n$ . In fact using (2.2) we see for $r,$ $s\in \mathbb{R}$ and for $u,$ $v\in Cl_{n}^{(1)}$

that
$\{r+u, s+v\}=\frac{1}{2}((r+u)(s+v)+(s+v)(r+u))$

$=(rs-u\cdot v)+(rv+su)$ .

Compare this with (1.4). It is therefore quite natural to identify $J_{n}^{(0)}$ with $Cl_{n}^{(0)}$ and $J_{n}^{(1)}$

with $Cl_{n}^{(1)}$ , and regard the Jordan algebra $\sqrt n$ as a subspace of the Clifford algebra $Cl_{n}$ . We
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can then think that the multiplication of the Jordan algebra $J_{n}=Cl_{n}^{(0)}\oplus ct_{n}^{1)}\backslash$ is defined
by (2.4) in terms of the associative multiplication of the Clifford algebra $Cl_{n}$ . Notice that
the property (1.2) of the Jordan algebra $\sqrt n$ is an obvious consequence of this observation.
The two notions of the norms coincide. Therefore Proposition 1 is in fact an immediate
corollary of (2.3) and the triangle inequality. Also the conjugation in the Jord.an algebra $J_{n}$

is nothing but the conjugation in the Clifford algebra $Cl_{n}$ restricted to $\sqrt n$ .
If two elements $a$ and $b$ of the Jordan algebra $\sqrt n$ commute with each other as elements

of the Clifford algebra $Cl_{n}$ then by (2.4) we have $\{a, b\}=ab.$ It follows that the k-th
power of an element $a\in\sqrt n$ is the same whether we use the multiplication of the Jordan
algebra $\sqrt n$ or the one of the Clifford algebra $Cl_{n}$ . We denote the k-th power of an element
$a\in J_{n}$ simply by $a^{k}$ .

Finally let us consider some low-dimensional cases. For $n=0$ and 1 we have $\sqrt 0=Cl_{0}=$

$\mathbb{R}$ and $J_{1}=Cl_{1}=\mathbb{C}$ respectively. The Clifford algebra $Cl_{2}$ is isomorphic to the skew field $\mathbb{H}$

of quaternions by the identification of $i_{1}$ with $i,$ $i_{2}$ with $j$ , and $i_{1}i_{2}$ with $k$ . Therefore in
terms of the quaternions the Jordan algebra $J_{2}$ may be thought of as the 3-dimensional
vector space

$J_{2}=\{a=a_{0}+a_{1}i+a_{2}j\in\ovalbox{\tt\small REJECT}|a_{012}, a, O\in \mathbb{R}\}$

equipped with the multiplication defined by (2.4).
The Jordan algebra $J_{3}$ is naturally identified with the 4-dimensional subspace $Cl_{3}\oplus c(0)(1l_{3})$

of $Cl_{3}$ . Actually one can express the Jordan algebra $J_{3}$ also in terms of the quaternions.
There is a homomorphism $\Phi:Cl_{3}arrow \mathbb{H}$ of real associative algebras determined by $\Phi(i_{1})=i$ ,
$\Phi(i_{2})=j$ , and $\Phi(i_{3})=k$ . This homomorphism $\Phi$ maps the subspace $Cl_{3}^{(0)}\oplus Cl_{3}^{(1)}$ of $Cl_{3}$

isomorphically as a vector space onto the quaternion algebra H. The restriction of the
linear map $\Phi$ to the subspace $Cl_{3}^{(0)}\oplus Cl_{3}^{(1)}$ preserves the Jordan multiplication defined
by (2.4). Therefore we can identify the Jordan algebra $\sqrt 3$ with the set #4 of quaternions
equipped with the multiplication defined by (2.4).

3. $J_{n}$-polynomials. A $\sqrt n$ -algebra is a commutative, but not necessarily associative, real
algebra $A$ containing the unit element 1, together with a homomorphism $\epsilon_{A}$ : $J_{n}arrow A$ . By
a homomorphism I mean a linear map preserving $\mathrm{t}\mathrm{h}\dot{\mathrm{e}}$ multiplication and the unit element.
Let $A$ be a $\sqrt n$ -algebra. Then we can multiply an element $a\in A$ by an element $s\in\sqrt n$ ; we
define

$\{s, a\}=\{a, s\}=\{\epsilon_{A}(_{S}), a\}$

for $s\in J_{n}$ and $a\in A$ . In particular the multiplication by a real number $r$ is the same as
the scalar multiplication by $r$ in $A$ ; i.e., $\{r, a\}=ra$ for $r\in \mathbb{R}$ and $a\in A$ .

Let $A$ and $B$ be two $\sqrt n$ -algebras, and $\epsilon_{A},$ $\epsilon_{B}$ their associated homomorphisms. A homo-
morphism $\varphi:Aarrow B$ is called a $\sqrt n$-homomorphism if it commutes with the associated
homomorphisms; i.e., $\varphi 0\epsilon_{A}=\epsilon_{B}$ . This condition can also be written as

$\varphi(\{s, a\})=\{_{\mathit{8}}, \varphi(a)\}$ , $(\forall \mathit{8}\in\sqrt n’\forall a\in A)$ .

The above definitions are just a nonassociative analog of the definitions of commutative
algebras over a commutative ring with the unit element 1, and their homomorphisms.
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Now let us imitate the $\mathrm{c}\mathrm{o}\mathrm{n}$.struction of polynom.ials over a commutative ring, and define a
nonassociative version of $\mathrm{p}\mathrm{o}\mathrm{l}\dot{\mathrm{y}}\mathrm{n}\mathrm{o}\mathrm{m}\mathrm{i}\mathrm{a}\mathrm{l}\mathrm{S}$ .

Let $X$ be an arbitrary set; we are actually interested in the case where the set $X$ consists
of one element $z$ . We denote by $J_{n}[X]$ the free $J_{n}$ -algebra generated by $X$ . Namely $\sqrt n[X]$

is a $\sqrt n$-algebra containing the set.X which satisfies the following universal property:

(P) Every map $\varphi:Xarrow A$ of the set $X$ to any $\sqrt n$-algebra $A$ uniquely extends to a
$J_{n}$-homomorphism $\tilde{\varphi}:\sqrt n[X]arrow A$ .

Such a $\sqrt n$-algebra is easily proved to be unique up to $J_{n}$-isomorphisms. An element of the
free $\sqrt n$ -algebra $\sqrt n[X]$ is called a $\sqrt n$ -polynomial.

The $\sqrt n$-polynomials can also be defined in a constructive manner as follows:
(1) Every element of the Jordan algebra $\sqrt n$ is a $\sqrt n$-polynomial.
(2) Every element of the set $X$ is a $J_{n}$-polynomial.
(3) If $f$ and $g$ are $\sqrt n$-polynomials then the product $\{f, g\}$ is also a $J_{n}$-polynomial.
(4) If $f$ and $g$ are $J_{n}$ -polynomials then the sum $f+g$ is also a $\sqrt n$-polynomial.

Only those explicitly shown to be $J_{n}$ -polynomials by (1)$-(4)$ above are called $\sqrt n^{-}\mathrm{P}^{\mathrm{O}}1\mathrm{y}-$

nomials. The product $\{f, g\}$ in (3) and the sum $f+g$ in (4) are formal expressions, unless
both $f$ and $g$ are elements of $J_{n}$ in which case they are respectively the product and the sum
of $f$ and $g$ in the Jordan algebra $J_{n}$ . For any real number $r$ and for any $J_{n}$ -polynomial $f$ ,
we identify the product $\{r, f\}$ with the scalar multiple $rf$ . Also the product $\{f, g\}$ is
formally considered to be symmetric and bilinear. Namely we identify $\{f, g\}$ with $\{g, f\}$ ,
$\{rf, g\}$ with $r\{f, g\},$ $\mathrm{a}\mathrm{n}\mathrm{d}\{f+g, h\}$ with $\{f, h\}+\{g, h\}$ for any $J_{n}$-polynomials $f,$ $g,$

$h$ , and
for any real number $r$ .

The set $\sqrt n[X]$ of $J_{n}$-polynomials constructed this way is in fact a free $\sqrt n$ -algebra. First
of all $J_{n}[X]$ is a commutative, nonassociative, real algebra in an obvious fashion. The
unit element $1\in\sqrt n$ considered as a $\sqrt n$-polynomial is the unit element of $J_{n}[X]$ , and the
inclusion map $\epsilon:J_{n}arrow J_{n}[X]$ given by (1) is obviously a homomorphism. Therefore $J_{n}[X]$

is a $\sqrt n$ -algebra. Let $A$ be any $\sqrt n$-algebra with the associated homomorphism $\epsilon_{A}$ : $J_{n}arrow A$ ,
and $\varphi:Xarrow A$ an arbitrary map of the set $X$ to the $J_{n}$-algebra $A$ . We can extend the
map $\varphi$ to a $\sqrt n$ -homomorphism $\tilde{\varphi}:\sqrt n[X]arrow A$ recursively by the following:

(1) If $s\in J_{n}$ then $\tilde{\varphi}(s)=\epsilon_{A}(s)$ .
(2) If $x\in X$ then $\tilde{\varphi}(x)=\varphi(x)$ .
(3) If $f$ and $g$ are $\sqrt n$-polynomials then $\overline{\varphi}(\{f, g\})=\{\tilde{\varphi}(f),\tilde{\varphi}(g)\}$ .
(4) If $f$ and $g$ are $J_{n}$ -polynomials then $\tilde{\varphi}(f+g)=\tilde{\varphi}(f)+\tilde{\varphi}(g)$ .

The identifications of $\sqrt n^{-}\mathrm{p}_{\mathrm{o}\mathrm{l}\mathrm{y}}\mathrm{n}\mathrm{o}..\mathrm{m}$ials we make cause no difficulty since the multiplication
by a real number $r$ is also the scalar multiplication by $r$ in $A$ , and the multiplication in $A$

is symmetric and bilinear. The map $\tilde{\varphi}:\sqrt n[X]arrow A$ thus obtained is linear and preserves
the multiplication by (3) and (4). The map $\tilde{\varphi}$ also satisfies $\tilde{\varphi}0\epsilon=\epsilon_{A}$ by (1), therefore is
a $J_{n}$ -homomorphism. On the other hand any $J_{n}$ -homomorphism which extends the map
$\varphi:Xarrow A$ necessarily satisfies the above conditions (1) $-(4)$ . Therefore it must coincide
with the $\sqrt n$ -homomorphism $\tilde{\varphi}$. This shows the uniqueness of the $J_{n}$ -homomorphism $\tilde{\varphi}$ .

A $\sqrt n$ -polynomial is called a $J_{n}$ -monomial if it can be obtained from (1) and (2) by
multiplication (3) only. Every $\sqrt n$-polynomial can be “expanded” into a finite sum of $\sqrt n^{-}$

monomials. The number of times elements of the set $X$ appear in a $J_{n}$-monomial $f$ is
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called the degree of $f$ , and is denoted by $\deg f$ . Formally the degree of a $J_{n}$-monomial $f$

is recursively defined by (1) $\deg s=0$ for $s\in J_{n}(s\neq 0)$ , (2) $\deg x=1$ for $x\in X$ , and
(3) $\deg\{f, g\}=\deg f+\deg g$ . We do not define the degree of the $\sqrt n$ -monomial $0$ ; namely
$\deg 0$ is indefinite.

We note that if $n\leq m$ then $\sqrt n$-algebras and $J_{n}$ -homomorphisms can be naturally con-
sidered as $\sqrt m$ -algebras and $\sqrt m$ -homomorphisms respectively. And a $J_{n}$ -polynomial can be
canonically thought of as a $\sqrt m$ -polynomial.

Now let us restrict ourselves to the case where the set $X$ consists of one element $z$ . In
this case the set $J_{n}[X]$ of $\sqrt n$ -polynomials is simply denoted by $\sqrt n[z]$ . Elements of $\sqrt n[z]$

are called $\sqrt n$ -polynomials of $z$ . We use a symbol like $f(z)$ , as well as $f$ , to denote a
$J_{n}$-polynomial of $z$ .

Let $A$ be any $J_{n}$-algebra. Then a $J_{n}$ -polynomial $f\in\sqrt n[z]$ canonically determines a
transformation of $A$ which we denote by the same symbol $f:Aarrow A$ . The image $f(a)$ of an
element $a\in A$ by $f$ is given by “substituting” the variable $z$ by $a$ . Formally $f(a)$ is defined
as follows. Define the map $\varphi:\{z\}arrow A$ by $\varphi(z)=a$ . By the universal property (P) this
map $\varphi$ uniquely extend to a $\sqrt n$-homomorphism $\tilde{\varphi}:\sqrt n[z]arrow A$ . Then we define $f(a)=\tilde{\varphi}(f)$ .
If $f$ is a $\sqrt n$-monomial of degree $d$ then we have $f(ra)=r^{d}f(a)$ for all $r\in \mathbb{R}$ and for all
$a\in\sqrt n$ .

The composition of two $\sqrt n$ -polynomials $f$ and $g$ is defined similarly. Define the map
$\psi:\{z\}arrow J_{n}[z]$ by $\psi(z)=g$ . Using the $\sqrt n$-homomorphism extension $\tilde{\psi}:J_{n}[Z]arrow J_{n}[z]$ , we
define the composition $f\mathrm{o}g\in\sqrt n[z]$ to be $\tilde{\psi}(f)$ . It can be easily verified that $f\mathrm{o}g(a)=$

$f(g(a))$ for all $a\in A$ .
As a special case of the above every $J_{n}$-polynomial $f(z)\in J_{n}[z]$ gives rise to a map

$f:J_{n}arrow\sqrt n$ . It should be noted that different $\sqrt n$-polynomials may give the same map. For
instance the two $J_{1}$ -monomials $z$ and $\{\{z, i_{1}\}, -i_{1}\}$ both give the identity map of $J_{1}$ since
the Jordan algebra $J_{1}$ is associative. However these $J_{1}$ -monomials give different maps of
$\sqrt n$ to itself for $n>1$ ; while the $\sqrt n$-monomial $z$ gives the identity map of $J_{n}$ the other
$J_{n}$-monomial defines a linear transformation of $\sqrt n$ of rank at most two by Proposition 2. A
more suggestive example is the following. The $J_{2}$ -monomial $\{\{\{z, i_{1}\}, i_{2}\}, i_{1}\}$ as considered
as a map of $\sqrt n$ to itself is constantly zero for all $n\geq 2$ .

These exalnples make it clear that we have to distinguish between form and matter; the
$J_{n}$-polynomials and the transformations represented by the $J_{n}$ -polynomials. Our stand-
point is to deal with the “outer shells” rather than the “guts.”

4. $J_{n}$-series. As stated in the previous section every $\sqrt n$-polynomial is a finite sum of
$\sqrt n$-monomials. In this section we consider an infinite sum

$f(z)=k \sum^{\infty}fk=0(_{Z)}$ (4.1)

of $\sqrt n$ -monomials $f_{k}(z)(k=0,1, \ldots)$ . Such an infinite sum is called a $J_{n}$-series of $z$ ,
and the $\sqrt n$ -monomial $f_{k}(z)$ is called the k-th term. The set of $J_{n}$ -series of $z$ is denoted
by $J_{n}[[z]]$ . Note that we make no assumptions about the degree of the terms $f_{k}(z)$ . In fact
we allow infinitely many terms of the same degree to appear in a $\sqrt n$-series; this generality
is necessary for analytic continuations discussed later.
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In order to talk about convergence of a $J_{n}$ -series we first define the norm $||f||$ of a
$\sqrt n$-monomial $f$ of $z$ by

(1) $||a||=|a|$ for $a\in\sqrt n$
’

(2) $||z||=1$ , and
(3) $||\{f, g\}||=||f||||g||$ for any $\sqrt n$ -monomials $f$ and $g$ .

Then we have:

PROPOSITION 3. If $f$ is $a$ $\sqrt n$ -mon$o\mathrm{m}\mathrm{i}al$ of $z$ then

$|f(a)|\leq||f|||a|\deg f$ (4.2)

for all $a\in J_{n}$ .

PROOF: (1) If $f\equiv b\in\sqrt n$ then $||f||=|b|$ , and $|f(a)|=|b|=||f|||a|^{0}$ . (2) If $f\equiv z$ then
$||f||=1$ , and $|f(\mathit{0})|=|a|=||f|||a|^{1}$ . (3) Suppose that the $\sqrt n$ -monomial $f$ is written as a
product $\{g, h\}$ for some $J_{n}$-monomials $g$ and $h$ of $z$ which satisfy the condition (4.2). Then
by Proposition 1 we obtain

$|f(_{\mathit{0}})|=|\{g(a),$ $h(_{\mathit{0})\}}|$

$\leq|g(a)||h(a)|$

$\leq||g|||a|\deg g||h|||a|^{\mathrm{d}}\mathrm{e}\mathrm{g}h$

$=||\{g, h\}|||a|^{\mathrm{d}}\mathrm{e}\mathrm{g}\mathit{9}+\deg h$

$=||f|||a|\deg f$ .

This completes the proof of Proposition 3.
We define the radius of norm convergence of the $\sqrt n$-series $f= \sum_{k=0}^{\infty}fk$ to be

$R(f)= \sup\{_{\Gamma\in \mathbb{R}_{+}}|\sum_{k=0}^{\infty}||fk||r^{\mathrm{d}\mathrm{g}f_{k}}\mathrm{e}<+\infty\}$ .

The following is an immediate corollary of Proposition 3.

COROLLARY 4. Suppose that the radius of $\mathrm{n}o\mathrm{r}\mathrm{m}$ convergence $R(f)$ of a $J_{n^{-}}serie\epsilon f(z)=$

$\sum_{k=0}^{\infty}f_{k}(Z)\in J_{n}[[Z]]$ is positive. Then the series $\sum_{k=0}^{\infty}f_{k}(\mathit{0})$ converges absolutely for all
$a\in J_{n}$ with $|a|<R(f)$ .

A $\sqrt n$-series with positive radius of norm convergence is said to be norm convergent. The
norm convergence is a strong notion of convergence. For instance the $\sqrt n$ -series

$f(z)= \sum_{=k0}^{\infty}$ { $\{\{_{Z},$ $i_{1}\},$ $i2\},$ il}

is easily seen to have the radius of norm convergence $0$ , hence is not norm convergent.
However this series considered as a series of maps of $J_{n}$ is convergent for all $z\in\sqrt n$ in the
strongest possible sense, since each term is constantly zero. This example also shows that
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the notion of norm convergence explicitly depends on the formal expression of a $\sqrt n$ -series
rather than the transformation represented by the $\sqrt n$-series.

Analytic continuations are formulated as follows. Let

$f(z)= \sum_{0k=}^{\infty}f_{k}(z)$ (4.3)

be a norm convergent $\sqrt n$ -series and $R(f)$ its radius of norm convergence. Suppose that $a$ is
a point in $\sqrt n$ such that $|a|<R(f)$ . Now let $z=a+w$ in the $J_{n}$-series (4.3) and expand
the terms $f_{k}(a+w)$ with respect to the variable $w$ so that

$f_{k}(a+w)= \sum^{k}f_{k}/\iota(wl=1m)$ ,

where each $f_{kl}’(w)$ is a $\sqrt n$ -monomial of $w$ . Thus we obtain a new $J_{n}$-series

$f’(w)= \sum_{0k=}^{\infty}\sum_{\iota=1}^{k}fkl(/)mw$ . (4.4)

PROPOSITION 5. The $r\mathrm{a}$dius of norm convergence of the $\sqrt n$ -series (4.4) is at least $R-|a|$ .

We first prove a lemma.

LEMMA 6. Let $f(z)$ be a $\sqrt n^{-}\mathrm{m}$ onomi$\mathrm{a}l$ of $z$ and $a$ an element of $J_{n}$ . Suppose that the
$J_{n}-P^{O}lYn\mathrm{o}m\mathrm{i}\mathrm{a}\mathrm{J}f(a+u))$ of $w$ is $exp$anded as

$f(a+w)= \sum_{l=1}^{m}f\iota’(w)$

into the sum of $\sqrt n$ -monomials $f_{l}’(w)(l=1, \ldots, n\mathrm{z})$ . Then

$||f||(|a|+ \Gamma)^{\mathrm{d}f}\mathrm{e}\mathrm{g}=\sum_{=l1}^{m}||fl’(w)||\Gamma\deg f\iota’$ (4.5)

for any positi $ve$ real number $r$ .

PROOF: (1) If $f$ is a constant $b\in\sqrt n$ then $m=1,$ $f_{1}’=b$ , and the formula (4.5) obviously
holds. (2) If $f\equiv z$ then both sides of (4.5) are equal to $|a|+r$ . (3) Suppose that the
$J_{n}$ -monomial $f$ is written as a product $\{g, h\}$ of two $\sqrt n$-monomials $g$ and $h$ for which the
lemma has been proved. Namely assume that there are expansions

$g(a+w)= \sum_{k=1}g_{k}’(w)p$ ,

$h(a+w)= \sum_{l=1}^{q}h_{l(}^{;}w)$ ,
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and that we have

$||g||(|a|+r)^{\mathrm{d}\mathrm{g}g} \mathrm{e}\sum_{k1}^{p}=||gk|/|\Gamma=’\deg g_{\acute{k}}$ ,

$||h||(|a|+r) \deg h\sum_{l=1}=q||h_{l}’||r^{\mathrm{d}h_{1}’}\mathrm{e}\mathrm{g}$ .

The expansion of $f(a+w)=\{g(a+w), h(a+w)\}$ into the sum of $J_{n}$ -monomials of $w$ is
given by

.. ..
$f(_{\mathit{0}+}w)=k \sum\sum_{==1}^{q}Pl1\{g’k(w), h_{l}’(w)\}$ .

Then we have
$||.f||(|_{\mathit{0}}|+r)^{\deg f}$

$=||\{g, h\}||(|a|+\Gamma)\deg g+\deg h$

$=||g||(|a|+\Gamma)\deg g||h||(|a|+r)^{\mathrm{d}\mathrm{g}h}\mathrm{e}$

$=(_{k=1} \sum^{P}||gk|/|rk)\deg \mathit{9}^{l}(\sum_{1l=}^{q}||h/l||r\deg h_{l}’)$

$= \sum_{k=1}^{p}\sum_{l=1}||gk|’|||h’\iota||r^{\mathrm{d}}q\mathrm{e}\mathrm{g}\mathit{9}’k+\deg h’\iota$

$= \sum_{1k=}^{p}\sum^{q}||\{gk’ h_{l}’\}||\Gamma l=1’\deg \mathrm{t}^{g_{kl}\}}’,h’$ .

This completes the proof of Lemma 6.
Now it is easy to prove Proposition 5. Let $r$ be an arbitrary real number such that

$|a|+r<R(f)$ . By the definition of the radius of norm convergence of $f(z)$ we have

$\sum_{k=0}^{\infty}||f_{k}||(|a|+\Gamma)\deg f_{k}<+\infty$ .

By Lemma 6 this is equivalent to

$\sum_{k=0}^{\infty}\sum_{l=1}||mkfk’l||r^{\mathrm{d}}\mathrm{e}\mathrm{g}f_{k}\prime l<+\infty$ .

Therefore the radius of norm convergence of the $\sqrt n$-series (4.4) is at least $r$ . Since $r$

was an arbitrary real number such that $r<R(f)-|a|$ this means that the radius of
norm convergence of the $\sqrt n$ -series (4.4) is at least $R(f)-|a|$ . This completes the proof of
Proposition 5.

Let us look at some examples. Let

$f(z)= \sum_{0k=}^{\infty}$ akzk (4.6)
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be a convergent power series in the usual sense. First assume that the coefficients $a_{k}$

are all real numbers. The standard power series expansions of functions like $e^{z},$ $\sin z$ ,
$\cos z,$ $\log(1+z)$ are all of this type. Such a power series is automatically a $\sqrt n$ -series for
all $n=0,1,$ $\ldots$ The radius of norm convergence $R(f)$ of the $\sqrt n$ -series is simply the radius of
convergence of the power series (4.6) in the usual sense. Therefore the $\sqrt n$-series canonically
gives a family of maps

$f_{nn}$: $\sqrtarrow J_{n}$ , $(n=0,1, \ldots)$

defined at least in the inside of the ball of radius $R(f)$ . The map $f_{0:}J_{0}arrow J_{0}$ is simply
the real analytic function given by the power series (4.6), and the map $f_{1}$ : $J_{1}arrow J_{1}$ is
its extension to the complex plane. For higher dimensions the map $f_{n}$ is obtained by
“rotating” the map $f_{1}$ around “the real axis.”

Suppose next that the coefficients $a_{k}$ of the power series (4.6) are complex numbers.
While the power $z^{k}$ naturally makes sense in $J_{n}$ , multiplying $z^{k}$ by anything other than a
real number using the Clifford multiplication does not make a good sense in the Jordan
algebra $\sqrt n$ . The natural thing to do here is to replace the usual multiplication of $a_{k}$ and $z^{k}$

by the Jordan multiplication $\{a_{k}, z^{k}\}$ . Namely we consider the $J_{n}$-series

$\sum_{k=0}$ {a $k,$
$z^{k}$ } (4.7)

as the generalization of the power series (4.6). Since the Jordan nlultiplications in $J_{0}$ and $J_{1}$

coincide with the usual multiplications of $\mathbb{R}$ and $\mathbb{C}$ respectively the $J_{n}$-series (4.7) is in fact
a direct extension of (4.6).

5. Polynomial maps. As we saw in the sections 3 and 4 $\sqrt n$-polynomials and norm
convergent $J_{n}$ -series are not in one to one correspondence with the transformations of
the space $\sqrt n$ represented by them. Therefore the following problem is of fundamental
importance in the study of the subject. Let $n$ be a non-negative integer.

PROBLEM 1. Characterize the $\sqrt n$ -polynomials (norm convergent $J_{n}$ -series) which define
the zero map of $\sqrt n$ to itself.

Or more strongly:

PROBLEM 2. Give the normal forms of $\sqrt n$ -polynomials ($J_{n}$ -series).

Problem 1 for $\sqrt n$-polynomials can be given an answer as follows. Suppose that $f(z)$ is
a $J_{n}$-polynomial. Consider $z$ and $w$ specifically as variables in $J_{n}$ and let

$w=f(z)$ . (5.1)

Write the variables $z$ and $w$ as

$z=z_{0+}z1i_{1}+\cdots+z_{n}i_{n}$ ,
$w=w_{0}+w_{1}i_{1}+\cdots+w_{nn}i$ ,
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using the real variables $z_{0},$ $z_{1,\ldots,n}z$ and $w_{0},$ $w_{1},$ $\ldots,$ $wn$ . Then the relation (5.1) gives a
family of polynomials $f_{0},$ $f_{1},$

$\ldots,$
$f_{n}\in \mathbb{R}[z0, z_{1}, \ldots , z_{n}]$ in the usual sense so that

$w_{j}=fj(z0, Z1, \ldots, zn)$ , $(j=0,1, .$. $-, n)$ .

Then the answer to Problem 1 is the following: The $J_{n}$ -polynomial $f(z)\in J_{n}[z]$ defines
the zero map $f:\sqrt narrow J_{n}$ if and only if these polynomials $f_{0},$ $fi,$ $\ldots$ , $f_{n}\in \mathbb{R}[z_{0}, z_{1}, \ldots , z_{n}]$

are all zero.
However this answer to Problem 1 is somehow against the basic idea of “simplifying

computations involved in the $n$-dimensional transformations by the use of an algebraic
operation.” What we really want is a characterization which does not refer to the coordi-
nates.

In any case the transformation $f:\sqrt narrow J_{n}$ given by a $\sqrt n$-polynomial $f(z)\in\sqrt n[z]$ is after
all a polynomial map in the usual sense. If $n\neq 1$ then the converse is also true.

PROPOSITION 7. If $n\neq 1$ then $e$very polynom$\mathrm{i}al$ transformation $f:\sqrt narrow\sqrt n$ can be repre-
sented by a $J_{n}$ -polynom$\mathrm{i}alf(z)\in J_{n}[z]$ .

PROOF: If $n=0$ then the statement is obvious; let us assume that $n>1$ . Every element
$z\in\sqrt n$ can be uniquely written as

$z=z_{0}+Z_{1}i_{1}+\cdots+z_{nn}i$ , $(_{Z_{0},z_{1},\ldots,z_{n}}\in \mathbb{R})$ .

Therefore the real part $z_{0}$ and the coefficients $z_{j}$ of $i_{j}(j=1, \ldots, n)$ can be considered as
real valued functions on $\sqrt n$ . First we show that these real valued functions are representable
by $\sqrt n$-polynomials. Let us consider $z_{j}$ $(j=1, \ldots , n)$ . We can take an index $k$ different
from $j$ since $n>1$ . Then by an $\mathrm{e}\mathrm{a}s\mathrm{y}$ computation we get

$\{z, i_{j}\}=-Z_{j}+z_{0j}i$ ,
$\{\{z, i_{j}\}, i_{k}\}=-zji_{k}$ ,

therefore
$\{\{\{Z, i_{j}\}, ik\}, ik\}=Z_{j}$ .

Similarly we obtain
$\{\{\{\{z, i_{1}\}, i_{1}\}, i2\}, i_{2}\}=z_{0}$ .

Since the Jordan multiplication coincides with the usual multiplication of the real num-
bers, we can multiply these $\sqrt n$-polynomials together with a real number to get a $\sqrt n^{-}$

monomial which represents any monomial of $z_{0},$ $z_{1,\ldots n},$$z$ in the usual sense. We then add
some of these $\sqrt n$ -monomials to get $\sqrt n$-polynomials $f_{0},$ $f_{1},$

$\ldots,$
$f_{n}\in\sqrt n[z]$ which represent

arbitrary polynomial functions. Finally let

$f(z)=f\mathrm{o}+\{f_{1}, i1\}+\cdots+$ { $fn’$ in}.

This way we can find a $J_{n}$ -polynomial which represents any desired polynomial map.
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For $n=1$ the Jordan algebra $J_{1}$ is the field of complex numbers and the transformations
$f:J_{1}arrow J_{1}$ given by $J_{1}$ -polynomials are just complex polynomial functions. Since such maps
are always conformal, not all polynomial maps on $J_{1}$ are representable by $J_{1}$ -polynomials.
Contrary to the similarity of outside appearances, the str.uctur.e.s of the $\sqrt n$-polynomials are
quite different for $n=1$ and for $n>1$ .

Analytic maps are just the limits of polynomial maps. As a corollary of the above we
have the following:
THEOREM. If $n\neq 1$ then $e$very real analytic map $f:J_{n}arrow J_{n}$ defined on a neighborhood
of the origin $c$an be represented by a norm converge$\mathrm{n}tJ_{n}$ -series $f(z)\in J_{n}[[z]]$ .

PROOF: Let $f:J_{n}arrow J_{n}$ be any real analytic map defined on a neighborhood of the origin.
Write $w=f(z)$ in terms of the coordinates as

$w_{j}=f_{j}(z_{0}, \ldots, z_{n})$ , $\cdot$ . $(j=0, \ldots, n)$ .

Then expand each function $f_{j}$ as a power series in $n+1$ variables $z_{0},$ $\ldots$ , $z_{n}$ ;

$fj(z0, \ldots, zn)=\sum_{k0=0\cdot n}^{\infty}\cdots\sum_{k=0}$ Cjko
$\cdots k_{n}z^{k}\infty 0^{0}\ldots$

nzn,

where $\mathrm{t}\mathrm{l}\mathrm{L}\mathrm{e}$ coefficients $c_{jk0\cdots kn}$ are real numbers. Since the power series is convergent in a
neighborhood of $0\in J_{n}$ there is a positive real number $r$ such that

$\sum_{k_{0}=0kn0}^{\infty}\cdots\sum_{=}\infty|c_{j}k0\cdots kn|rk_{0}+\cdots+k_{n}<+\infty$ , $(j=0, \ldots, n)$ . (5.2)

As in the proof of Proposition 7 we can express each term $z_{0}^{k_{0}}\cdots z_{n}k_{n}$ as a $\sqrt n$ -monomial
$g_{k_{0}\cdots k_{n}}(z)$ of degree $k_{0}+\cdots+k_{n}$ satisfying $||g_{k_{0}\cdots k_{n}}||=1$ . The $\sqrt n$ -series

$f(z)= \sum_{k0,\ldots,k_{n}=0}^{\infty}c0k_{0\mathrm{n}}\ldots kgk_{0}\cdots k_{n}+\sum_{j=1}^{n}\sum_{k_{0},\ldots,k_{n^{=0}}}c_{j}k0k_{n}\{g_{k}0kn’ i_{j}\}\infty\ldots\ldots$

is norm convergent because

$\sum_{k0,\ldots,k_{n}=0}^{\infty}||C0k_{0}\cdots kngk.0\cdots k_{\mathrm{n}}||r^{\deg}gk_{0}k_{n}$

$+ \sum_{j=1}^{n}\sum_{0,\ldots,\mathrm{n}0}^{\infty}.||cjk.0\cdots k_{n}\{g_{k\cdots k_{n}}0i_{j}k\kappa=’\}||_{\Gamma}\deg\{\mathit{9}k_{0}k_{n},i_{j}\}$

$=k_{0}, \ldots,\mathrm{t}_{1}.,=\sum_{0}^{\infty}|_{C|_{\Gamma}}0k0\cdots knk_{0}+\cdots+k_{n}+\sum_{1j=}^{n}\sum_{k0,\ldots,kn0=}|C_{j}k0k_{n}|_{\Gamma}\infty.\cdots k_{0}+\cdots+k_{n}$

$<+\infty$

by (5.2). The nornl convergent $J_{n}$ -series $f(\approx)\in\sqrt n[[z]]$ thus obtained obviously represents
the given real analytic map $f$ . This completes the proof of Theorem.
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