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§0. Introduction.

The purpose of this talk is to report that our conjecture on multiple-scale solu-
tions of Painlevé equations (Py) (J = L1II,.-.,VI; cf. Table 0.1 below) with a
large parameter n has been proved; each 2-parameter multiple-scale solution of
(Py) is locally reduced to a suitably chosen 2-parameter multiple-scale solution

of the first Painlevé equation (Pr). (See Theorem 2.1 for the precise statement.)
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This is a natural generalization of the result on O-parameter solutions. ([KT1,

Theorem 2.3.])
The details of this report will appear in [KT3].

Although we use the same notations as in [AKT], we list up basic equations
and related symbols for the sake of definiteness. In what follows, J ranges over

{I,I1,- - -, VI} unless otherwise stated.

Table 0.1. Painlevé equations with a large parameter 0.
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Table 0.2. Painlevé Hamiltonian systems with a large parameter 1.

d\ _ 0K

dat = " or
(HJ)

dv — BI{J

& ="1n

where K j is tabulated below:

K = % [V2 — (4}\3 + 2t)\)] .

Ky = —;— [1/2 — ()\4 +t>\2 + 20!)\)] .

TR )3 h

2
) _ 9 4V g A+ 2t
I(IV—2)\[V -—n —X—(ﬁ—l—al—k( 4 .

(A1)
St

1 1
2 -1
X[V n ()\+)\—1)V
_ ﬂ_*_ aqt? 4 ant + Qoo
A2 (=1 (=12 (A-1)2/]|

AN = 1)(A —t)
1t — 1)

1 1
2 . —-1( = .
Xlr/ n ()\+)\—1>V

B (%W—l)? U(A—n*(x—t)z)]‘

i} 2)2 _13v apt?  alt ol t
.an—;lﬁ—nl—— (0 4+ -+ 4= +%Jﬂ].

Ky

Ky =

Table 0.3. Relevant Schrodinger equations with a large parameter 1).
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where @ is given below. (See the preceding Table 0.2 for the symbol K ; used

there.)
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Table 0.4. Deformation equations.
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We note that (SLy) and (D) are in involution (i.e., compatible) if (A, v)

obeys the Hamiltonian system (H ), which is known to be equivalent to (Py).

§1. A canonical form of (SL;) and (D) near the double turning point.

Let us consider the following pair of equations (Can) and (D, ay), where p and

o are functions of ¢ and n:
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One can readily verify that equations (Can) and (Dcan) are in involution if p

and o satisfy the following equation:

(Hean)
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For the sake of clarity of notations, we use the symbol (pcan, 0can) to denote a
solution of (Hcap); note that pean and ocan are hyperbolic functions.

As is shown in Proposition 1.3 of [KT1], the top term A¢(¢t) of a multiple-
scale solution of (Py) gives rise to a double turning point of (SL ). An important
fact proved in Theorem 1.1 of [KT1] is that Soq4, the odd part of a solution S
of the Riccati equation associated with (SL ), is holomorphic near z = A\¢(t) as
far as we are concerned with O-parameter solutions. Furthermore this regularity
result leads to a very simple canonical form of the equation near the double
turning point. (Cf. Theorem 1.2 of [KT1].) Although such a clear-cut result
cannot be expected for 2-parameter multiple-scale solutions, we can still confirm
the following Proposition 1.1 concerning the structure of simultaneous equations
(SLy) and (D) near the double turning point @ = Ag(¢). The relation (1.8.a)
below is the counterpart of the canonical form for 0-parameter solutions, and
the proposition plays a crucially important role in the proof of Theorem 2.1.
For the sake of clarity of presentation we put ~ over the variables and functions
relevant to (SLj), like #,%, etc., in the proposition. We also fix a point Z, at a
generic point as in Proposition 1.1 of [KT1], and we choose and fix sufficiently

small neighborhoods U and V of & = X\o(f,) and #,, respectively.

Proposition 1.1. For each J = LII,..., VI there exist holomorphic func-
tions :cj/2(:%,t~, n) and tj/z(f, n) (5 =0,1,2,---;(3,%) € U x ‘7) which satisfy the
following relations:

(1.3) zo and ty are independent of n,

(1.4) %%) never vanishes on U x V,

(1.5) zo(Mo(£),#) = 0 holds on V,

(1.6) to(¥) = ¢5(1)/2 holds on V, where
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5. )= [ \/ OF) (50(5),5)ds

with 7 being a turning point for 5\80) and with F denoting the co-
efficient of n* in the equation (Pj),

(1.7) :101/2(5:,{, n) and t;2(f,n) identically vanish,

(1.8) If we set z(%,1,n) = E z;/2(%,%,m)n~9/? and

t(t,n) = Zt]/z(t,n)n ’/2 then
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(1.9) zjso and tj); (j > 2) respectively have the form
j—2 oo j—2 .
Z yk(i,{)ekd”(t)" and Z sk(f)ekd”(t)”;:
k=—(5—2) k=—(j—2)

that is, xj/, and tj/, (j > 2) consist of k-instanton terms with |k| <
J—2.
Note that (1.8.b) and (1.8.c) implicitly give relations between constants

contained in (pcan,can) and (5\, i7), although they cannot establish a unique

correspondence between them.
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Actually, after introducing z(%,%,n) by that given in Theorem 3.1 of [AKT],

we try to construct ¢(¢,n) by first requiring

(110) pza,n - 402

can

v
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6_5}( ’ 777) (%( ’ an))

=1 —4nz(X,1,7)%;
Surprisingly enough, both sides of (1.10) are independent of #, and requiring
(1.10) amounts to requiring relations among constants contained in (pcan, Tcan)
and (), 7). (See the proof of Lemma 1.1 of [KT2].) The construction of t(t,n)
is, then, achieved by the induction on j making full use of (1.10). We note that
in the course of our argument ¢;/, (j: an even integer > 2) is determined only
modulo an additive constant. This freedom of ¢;/5 is effectively used in our proof
of Theorem 2.1. Still more important is the fact that fixing ¢/, leads to a unique
correspondence between the constants contained in (pcay, 0can ) and (5\, 7); this is
a key relation for the description of the connection formula for general Painlevé
transcendents. (See [AKT], [KT3], and [T] fér details. )

Although Proposition 1.1 is concerned with the relation between (SL ;) and

(Can), we can further verify the following:

Proposition 1.2. Let ¢(z,t,n) be a WKB solution of (Can) that satisfies
(Dean) also, and let ¢(&,%,n) denote

L —1/2
(1.11) (Z52) v bt

Then v(%,%,n) satisfies both (SLy) and (D) near the double turning point
&= Xo(f).
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The proof of this proposition is attained by verifying

~ Oz Oz ot
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one can readily verify (1.12) guarantees that i satisfies not only (SL 7) but also
(Dj). (Cf. the proof of Proposition 2.2 of [KT1].)

Remark 2.1. Although t(%,7) cannot be uniquely determined by (1.8) when 2-
parameters of (5\, /) vanish, #(#,n) can be uniquely determined by the limit as
the 2-parameters tend to 0. Proposition 1.2 continues to hold for the choice of

t(,n) in this degenerate case.

§2. Local equivalence of 2-parameter multiple-scale solutions.

The local equivalence of the simultaneous equations (SLjy) and (Dj) and the
simultaneous equations (Can) and (D.,,) established in the precedent section
automatically entails the local equivalence of (SLj) & (Dy) and (SL;1) & (D)
near the double turning point. As one may naturally expect in view of the results
in [KT1], this local equivalence can be “matched” with the local equivalence
between (SLy) and (SL1) near the simple turning point (that merges with the
double turning point at the turning point for S\(f) in question). The ‘matching’
is achieved this time by making use of the freedom in the choice of t(%,7) in
Proposition 1.1. Once such a semi-global equivalence is constructed, it gives rise
to the required local reduction of X to A1. To state the result in a precise manner,
let us clarify the geometric situation in which we analyze the problem. (Cf. §2
of [KT1].) Let . be a point in a Stokes curve for 5\80) emanating from a simple
turning point 7 for S\(JO). In what follows, we assume %, # 7. Then there exist a
simplé turning point (%) and a Stokes curve 7 of (SL ;) such that ¥ joins a(?)
and the double turning point Ao(#). (See Corollary 2.1 of [KT1].) Having this
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configuration in mind, we obtain the following Theorem 2.1, which is a natural

generalization of the local equivalence of 0-parameter Painlevé transcendents

(Theorem 2.3 of [KT1]):

Theorem 2.1. ~ For each 2-parameter formal solution (X7, 7;) of (Hj) that is
obtained by multiple-scale analysis ([AKT, §1]), there exists a 2-parameter for-
mal solution (A1, v1) of (Hy) for which the following holds: There exist a neigh-
borhood U of 7, a neighborhood V of ,, and holomorphic functions z;/5(%,%,7)
and t;,(8,7) ( =0,1,2,- -+, & € U andieV ) which satisfy the following:
(2.1) The functions zq and to are independent of 7,
(2.2.1)  zo(Aso(f), ) = Ao(te(?)),
(2241)  zo(a(?),8) = —2X1,0(t0(?)) (= alto(1))),
(2.3) 920 never vanishes on U x 7,
(2.4) $5(F) = ¢r(to(?)),
(2.5) 21/2 and ty ), vanish identically,
(2.6) Setting ©(%,1,m) = Y zjj2n7/* and t(t,n) = ¥ tj/en~9/?, we find
the following: =0 =0
- 2
(262) Qa5 = (95) @1 (a(&,En), tEn),m) — dn~a(@,E,); 5,

(26b) x(S‘J({v 77)757 77) = :\I(t(t: 77)777)

The relation (2.6.a) implies the transformation (%,%) — (z(%,%,7),t(%,n))
brings (SLy) into (SLy), and the transformation gives rise to the required trans-
formation of Painlevé transcendents as is stated in (2.6.b). See [KT2] for the

core idea of the proof. The detailed proof will appear in [KT3].
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