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1. Introduction

We will study a system of differential equations satisfied by theta constants. In the
one dimensional case, there are some classical work of Jacobi or Halphen. In 1881
Halphen studied the equation

uy + uhy = 2uquy,
(1.1) uh + uf = 2uqgus,

! [
Ug + Uy = 2U3U1.

Halphen showed that (1.1) is satisfied by the logarithmic derivatives of null values
of elliptic theta functions ([1], [2], [4]). The author found a Halphen-type equation
which is satisfied by the logarithmic derivatives of modular forms with level three
(I3])-

In this note we will consider the several dimensional case. Differential rerations
between theta constants of genus two are studied by Tomae, Krause, Bolza and
Wiltheiss in nineteen’s century. The aim of this note is to find a holonomic equations
which is satisfied by theta constants of genus two. The most of part of this work is
due to M. Sato ([4]).

2. Definition

Let z =" (zo,zl, e ,zg_l) be a g-dimensional complex vector, and
Too To1 ‘e 7'0,9_1
T10 T11 e Tl,g—l
T = .
Tg-1,0 Tg-1,1 ... Tg-19-1

be a g x g-matrix, where 7;; = 7j; and 7 is positive definite. The theta function is
defined by
0(Z|T) ,= E e27ri(u,z)e7ri(l/,7‘ll).

VvEZI
We set N = 29. For any g-dimensional Abelian variety the number of points
of order two is N2. For each point of order two, there is a theta function with
characteristic.
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Definition 2.1. A g-characteristic is a 2 X g matrix of intergers, written

/\:[)‘,I,]:[)‘f’, *;H].
A VAT

The numerical character of a g-characteristic is |A| = (=1)**". A g-characteristic is

called even, resp. odd if and only if the numerical character is 1, resp. —1.

! !
The bilinear character of a pair of g-characters A = [:\\,,] and pu = L’j,,] is

l/\, Hl —_ (—1)’\1'#”+)\"~u"

A, i are syzygetic or azygetic according to |A, u| =1 or —1.

A reduced characteristic is a characteristic each of whose elements is zero or one.
The reduced characteristic is obtained from any characteristic by replacing each entry
by its residye modulo 2, which is called reduced representative.

There are 2% reduced characteristics. The number of even functions is 2971(29+1),
and the number of odd functions is 2971(29 — 1).

!
Definition 2.2. Theta function with characteristic A = [:\\,,] is

i) =0 [3] e = 55 et ),

VvEZI

We will study null value of theta functions

i) =0 3] )= 0[] o

The set G of reduced characteristics can be considered as a group isomorphic to
(Z/2Z)*. We consider a special subgroup of G.

Definition 2.3. A subgroup I of G is called syzygetic when its elemnts are mutually
syzygetic. A maximal syzygetic subgroup is called a Gopel group.

It is evident by the definition thata I' is a syzygetic subgroup if and only if the
generators of I' is mutually syzygetic. The number of generators of I is called degree
of I'. The degree of a Gopel group is g¢.

Proposition 2.1. Given a syzygetic subgroup I', we take the coset decomposition of

G
)\(0) + I, )\(1) +T,--- )‘(k) + T

If a coset has opposite character, it has as many characters of ones of the other
character. If T’ has degree n, there are 297""1(297™ + 1) coset whose elements are all
even and 297"71(297" — 1) coset whose elements are all odd.

By Proposition 2.1, there exist one and only one coset whose elements are all even
for any Gopel group I'. We will call this coset as the Gopel system.

97



3. Differential Relations

We set 9
Br i (1 =17),
%=110
297+ (z#7)
We will fix a vector a = (ap, @1, ,ay-1), and take a differential
6= Zk:ajakajk.
7,

8 corresponds to an infinitesimal transformation on the Siegel upper half plane:

T—-——)TO—{—ta-ta

QpQg [e7sYe%Y N Qolrg_q
a1 10 .o a10g_1
=70 +1
Qy_10p CQg_10q ... Qg 1041

We notice that the rank of the matrix « - '« is one. If we set
g—-1 P!
(9 = Z Qj—
j=0 (92]‘ ’
we lhave the heat equation

(3.1) 9*0(z|T) = 4mi60(z|7).
We will study N special values of theta functions for m € (Z/2Z)°:
m

Om(r)::0<2 T)
— E (_)(u,m) eri(u,ru).

vEZI

(Z/2Z)° is the simplest example of Gopel systems. We may take any Gopel system
instead of (Z/2Z)°

For e = (€0, ,€4-1), ¢€j = %1, we set

m __ ..mo mg—1
€ —_ 60 c Eg-—-l .
If we take
2
A=) ™02,
m
we get

r ™m 2
AL =" unbz,

where / is a differentiation with respect to §. We may consider this equation as a
definition of the new function A, . In the following we will deduce nonlinear equations
which are satisfied by theta constants

ty, = § (log 02,) = 26,

O
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We will use generalized Hirota derivatives. Instead of defining Hirota derivatives,
we only denote the notations which will be used in the followings.

D(f®g)=1fg-fd
D*(f@yg)=f"g—2f9d + fd"
D*(f@g®@h®k)=(f"ghk+ fg"hk + fgh"k + fghk")
—2(f'g'hk + flgh'k + f'ghk' + fg'h'k + fg'hk + Fgh'K').
Theorem 3.1. u,,,0,, satisfy the following three systems of differential equations,
which are equivalent to each other.

FEquation (1)

1
();n = 'Q_Um()m
, 11 m(Ap)?

“m =N 2 T4,

-
D? ((E ™0, ® Hm) ) =0 for all €.

det (AE A ) 0 for all e.

FEquation (1I)

Equation (III)

Remark. Here we denote differential equations related to order two points. But in
the case of special values of theta functions at general divided points, since there
exist some algebraic relations, we may deduce differential equations.

In the rest of this section, we will show the proof of the Theorem 3.1. At first, we
will show the three equations (I), (II) and (III) are equivalent.

It is easily verified that (II) and (III) are equivalent from the definition of Hirota
derivatives. Since

D*(fef)=2(f"f-f")
D*(fefogeg) =2(f"fé* + 1d"g) —2(f0* + f*9" +4fd f9),

®2
2 ((Z Em()m ® 0171) )

=43 (67 000,,62) — 43 e™e™ (61,02 + 20,,0,0,,0,)

myn m,n

=44,y & (01,0, a;,ﬁ) —85 €™c"0.,0 0, bn

m

=2 (AE D? (Z ™0, @ 0m> - A’f) :

m

we have
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which is the determinant appeared in (III).

In the next step, we will deduce the equation (I) from (III).
By the formula

fu_f/2 _ D2(f®f)
f? 7

D? (Z e™0n ® Om) = Zsmum'ﬁfn.

Therefore we can rewrite (III) as follows.

2 (log f)' =2

we have

2

AI
102 £

E €™, ', = T
m £

We will take a sum on e:

A/2
m—1ing n2 __ mo "€
Zze um()m_ze A :
e m £ €
Since
N m =20
Sen =
- 0 otherwise,
we obtain
A’
Nuy'02 =3 emo =
13 AE

which is the second equation of (I). Since the first equation of (I) is evident from the
definition of wy,, (I) is deduced from (III).

We can deduce (III) from (I) by the converse calculations above. Hence we can
show the three equations are equivalent to each other.

Now, we will deduce the equation (III).
We will consider the theta function of degree two
0(z + 2'|7)0(z — 2'|7)
as a function of z. If we substitute
Zr— z+mn, Z+—— z+Tn,
the automorphic factors are independent of z’. Therefore the dimension of the linear
space
< 0(z + 2i|7)0(z — Zj|7) >;
is 29(= N). If we set
O(z,2") := 0(z + 2'|7)0(z — 2'|7),

the rank of the matrix
@(ZO, 26) O(ZO> Zi)
@(Zl,zé) O(z, Zi)

is at most N,



For m € (Z/2Z)° we set
On(z,2") 1= 0,,(z + 2'|7)0,. (2 — 2'|7).
We will take the N x N-matrix

(Omtm(2,2) mmrezyazys -

Since
Omsm(2,2") = O (2 + 2 )0mpmi (2 — 2') -

' m 4+ m/
5 )

m+m

=0(z+27 +

Y0(z — 2" +

!

_ moo,m
—@(z+2,z+ 2),

the rank of the matrix (©,,4m/(2,2’)) is at most N, even if we consider the more
larger size of matrixes taking z, 2’ as many values.

Since (0,,44m/(2,2')) is a matrix related to the group (Z/2Z)°, we can diagonalize
that by the NV x N-matrix

P=("),m= ((—1)m+m’)m,mle(z/2Z)g '

If we set

Az, 2) = Ze’”()m(z +20,.(z — 2,

™m
we have

P (G)m+m'(z7 ZI)) P_l = dia'g (Ae(z> z,))s "

For example, we consider the case ¢ = 2. We have

Qo0 ©10 Oo1 O1:

(@) = | @10 Qoo O Oo
e 60,1 61,1 E')0,0 E‘)1,0 ’

61,1 @O,l 61,0 OO,O

1 1 1 1 1 1 1 1
-1 1 -1 41, 111 -1 1 -1
P‘11~—1—1’ P‘ZP—le—l—l

1 -1 =1 1 1 -1 -1 1

Therefore we obtain
Apo) Age Aoy Aay
Ao —A A —A )
@m " P = (0,0) (1,0) (0,1) (1,1) — P dia AE .
( + ) A(o,u) A(l,o) _A(O,l) _A(l,l) 1ag( )s
Apo) —Aay —Aey Ay

Since the rank of the matrix (0,,4+m(2,2’)) is at most N even if we change 2, 2/, t,
the rank of the matrix

Ae(an Z(I)) AE(ZO’ Z{)

Ae(zla 26) Ae(zla Zi)
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whose matrix elements are the diagonalization element of (0,,4,./), is 1 (it is not 0!).
If we take a limit z; — z;, the rank of the matrix

A (z,2") DAz, 7) Az, 2")
0A(2,2") 00'A(z,2) 00%A.(z,2')
O*A(2,7') 00 A(z,2') 0*0A.z,7)

is also 1. Especially we have

’ 12
(32) det (afﬁ(sz(;fz)') a?a'fjl(j,:'z)'» -
Since each function 0,,(z) is even,
020, (2 + 2)0u(2 — 2')|sm0,2120 =20,10,m,
0 (2 + 2")0m (2 = 2')] 2202120 =200,
0200, (2 + )0 (2 — 2)scomrm0 =2 0 mbhm — 202,

where " is a derivatives with respect td d. By (3.1),
0,0, = 470! 0,0,
GO = (0,)* = (47i)? (02,0, — o;j) .
Therefore we get
0" Ac(2,2')|sm0,01=0 =4miAL
A2, ') o im0 =ATiAL

826'2145(2, 2")| 20,210 = (474)* D? (Z "0, ® Om) .
Substituting the above into (3.2), we obtain
A, 4miAL _
det (m‘A; (470)2 D (3, ™0, @ Hm)) =0,

which is just the same as (III).

4. The Case of Genus Two
In this section we will consider the equations in Theorem 3.1 when g = 2. When
9=2,
(Z/2Z)* = {00,01,10,11}
We will denote
Uy = Ugp, U = Ugy, Uy = Ug, U3 = Uyq-
" Then Equation (II) is equivalent to the following equation.

3

1
(4.1) Z (5uk + §uz) = Z UjUk.

k=0 i<k



(4.1) is represented by logarithmic derivatives of theta constants.

It is easily shown that there are fifteen Gopel group when g = 2. For each Gopel
group, there is one and only one Gopel system. If we take a Gopel system instead
of (Z/2Z)°, we obtain the same type of the equation as (4.1). Since there are ten
even theta functions when g = 2, we have fifteen differential equations between ten
functions.

Proposition 4.1. The fifteen differential equations between logarithmic derivatives
of even theta constants are linearly independent. Fssentially there are ten nonlinear
differential eqautions and five algebraic equations. Moreover there is one algebraic
relation between these five algebraic equations.

By Proposition 4.1, we get a differential ring which is generated by ten elements.
From now on will write these generators u,, for m = 0,1,...,9. The algebraic dimen-
sion of this ring is six. Thus we have a Halphen-type system of nonlinear differential
equations whose solutions are given by logarithmic derivatives of theta constants.

We will study generic solutions of this Halphen-type equations. Let ¢ be a complex
number and B be a symmetric matrix whose size is two. We set

a1\ _ [l4eryy  —cry a
)  \ —erz l4em) \ag)’
6= &0y + G1@012 + G500
Proposition 4.2. If u,(7) (m = 0,1,...,9) is a solution of the Halphen-type equa-
tions for g = 2, then functions
s iy, ((r+ B)(1+¢(r + B))™) B c(e? + o) + (a1éq + azds)
" det(l +¢(r + B))* det(1 4 ¢(7 + B))
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give a solution of the Halphen-type equations for any c and B. Here we should take

6 instead of 8.

By Proposition 4.2, we obtain six parameter family of solutions of the Halphen-type
equations.
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