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\S 0. Introduction

We consider a Cauchy problem in the complex domain. It is assumed to be a
$charaCteri\mathit{8}tic$ problem in the sense that the characteristic points form a submanifold
$T$ (of codimension 1) of the initial hypersurface $S$ .

Since Leray, the studies on this subject dealt with the cases where the solution
is singular on a characteristic hypersurface tangent to $S$ along $T$ . See [L], [G-K-L],

[H], [D], [O-Y] and [Y].

In the present paper, we consider a totally different situation: all the character-
istic hypersurfaces issuing from $T$ are transversal with $S$.

First we give two examples to show that in this kind of characteristic Cauchy
problem, the solution can be singular on the above-mentioned characteristic hyper-

surfaces even when all the Cauchy data are regular. Next, we consider a (ramified)

Cauchy problem for a certain class of operators including the examples. We perform

a singular change of coordinates and reduce our problem to results of Wagschal.

\S 1. Examples with holomorphic data

In a neighborhood of the origin of $\mathbb{C}_{t}\cross \mathbb{C}_{x}\cross \mathbb{C}_{z}$ , let us consider Cauchy problems

for the operators $Q_{1}$ and $Q_{2}$ defined by

$Q_{1}=(xD_{t}+tD)xD_{t}$ , $Q_{2}=Q_{1}-xt^{2}D_{z}^{2}$ .
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We are going to solve, for $j=1$ or 2,

$\{$

$Q_{j}u(t, x, z)=0$

$u|s=- \frac{\pi i}{2}X2$

$D_{t}u|_{S}=iX$

$S=\{t=0\}$

On the initial hypersurface $S$ , the characteristic points form a submanifold $T=$

$\{t=x=0\}$ . The hypersurfaces $\{x=0\},$ $\{x=t\}$ and $\{x=-t\}$ are characteristic

hypersurfaces issuing from $T$ . They are transversal with $S$ . Although the data are

holomorphic in a neighborhood of the origin, the solution $u$ is singular on the three

characteristic hypersurfaces. In fact, we have

$u= \frac{x^{2}}{2}\{\frac{t}{x}\sqrt{(\frac{t}{x})^{2}-1}-\log(\frac{t}{x}+\sqrt{(\frac{t}{x})^{2}-1})\}$.

Since we are dealing with a multi-valued function, we have to clarify the definition

of the restriction on $S$ . Its precise meaning is that we choose a point $p$ of $S$ and

that the initial condition is satisfied by the germ of $u$ at $p$ .

We will prove for a class of operators including $Q_{1}$ and $Q_{2}$ that the sinqular

support of the solution is contained in this kind of characteristic hypersurfaces when

the data are arbitrary holomorphic functions. As a matter of fact, we can generalize

this result to the case of ramified data.

\S 2. Main result

In a neighborhood of the origin of $\mathbb{C}_{t}\cross \mathbb{C}_{y}\cross \mathbb{C}_{z}^{n}$ , let us consider a second order

operator $P(t, y, z;Dt, DD_{z})y$’ with holomorphic coefficients whose principal symbol

$\sigma(P)$ is factorized into the form

$\sigma(P)(t, y, z;\tau, \eta, \zeta)=i=\prod_{10},(\tau-\lambda i(t, y, Z;\eta, \zeta))$
,

where $\tau,$ $\eta$ and $\zeta=(\zeta_{1}, \ldots, \zeta_{n})$ are the dual variables of $t,$ $y$ and $z$ respectively.

We assume the following two conditions (1) and (2).

(1) $\{$

$\lambda_{0}(t, 0, z;1,0, \ldots, 0)=0$

$\lambda_{1}(t, y, z;1,0, \ldots, 0)=-qtq-1$ ,
$q$ is an integer $\geq 2$ .
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(2) For $i=0,1$ , the function $(\eta, \zeta)\mapsto\lambda_{i}(t, y, z;\eta, \zeta)$ is linear.

The most simple example is

$\lambda_{0}=0$ or $y\eta$ , $\lambda_{1}=-qt^{q-1}\eta$ .

Now we consider, in a neighborhood of the origin of $\mathbb{C}_{t}\cross \mathbb{C}_{x}\cross \mathbb{C}_{z}^{n}$ , an operator

$Q$ with holomorphic coefficients defined by

$Q(t, x, z;Dt, D_{x}, D_{z})=x^{2q-1}P(t, x, Zq;D_{t,x} \frac{1}{qx^{q-1}}D, D_{z})$.

Sometimes the exponent $2q-1$ is larger than necessary to erase negative powers

of $x$ . For example, if

$P(t, y, z;Dt, D_{y}, D_{z})=P(t, y;D_{t,y}D)=(D_{t}+qt^{q-1}D)yDt$ ,

then

$x^{q-1}P(t, x^{q}; \frac{1}{qx^{q-1}}D_{x})=(x^{q-1}D_{t}+t^{q-1}D_{x})Dt$ .

When $q=2$ , this is nothing but $Q_{1}$ which we studied before.

For the purpose of formulating a Cauchy problem, put $S=\{t=0\}\subset \mathbb{C}_{t}\cross \mathbb{C}_{x}\cross$

$\mathbb{C}_{z}^{n}$ , which is the initial hypersurface. It is easy to see that $T=\{t=x=0\}$ is formed

by the characteristic points of $Q$ on $S$. By the condition (1), the hypersurfaces

$I \mathrm{i}_{j}’=\{x=\exp(j\frac{2\pi i}{q})\cdot t\}(j=0, \ldots , q-1)$ , $I\mathrm{t}_{q}^{r}=\{x=0\}$

are characteristic hypersurfaces of $Q$ issuing from $T$ .

We then consider a ramified characteristic Cauchy problem in an open connected

neighborhood $\Omega$ of the origin of $\mathbb{C}_{t}\cross \mathbb{C}_{x}\mathrm{x}\mathbb{C}_{z}^{n}$ :

$(\mathrm{C}\mathrm{P})\{$

$Q(t, x, z;Dt, D, D)xzu(t, X, z)=0$ ,
$D_{t}^{h}u(t, X, Z)|_{S}=w_{h}(x, Z),$ $h=0,1$ .

Here we assume that there exists a point $p\in\Omega\cap(S\backslash T)$ such that for $h=0,1$ , the

function $w_{h}$ is holomorphic in a neighborhood (relative to $S$ ) of the point $p$ and

can be analytically continued along all the paths from $p$ in $\Omega\cap(S\backslash T)$ (that is, $w_{h}$

is holomorphic in the universal covering space of $\Omega\cap(S\backslash T))$ .

Since $p\not\in T$, the usual Cauchy-Kowalevski theorem is valid there. $(\mathrm{C}\mathrm{P})$ admits

a unique holomorphic solution $u$ in a neighborhood of the point $p$ .

We are going to prove the

207



HIDESHI YAMANE

Theorem 1.

There exists an open connected neighborhood $\Omega’$ of the origin of $\mathbb{C}_{t}\cross \mathbb{C}_{x}\cross \mathbb{C}_{z}^{n}$

such that the solution $u$ of $(CP)c$an be analytically continued to the $u\mathrm{n}\mathrm{i}$versal

covering space of $\Omega’\backslash \bigcup_{j=0^{\mathrm{A}_{j}’}}^{q}$ .

Of course this conclusion holds $t\mathrm{r}\mathrm{u}e\iota vh$ en all th $\mathrm{e}$ data are regul$\mathrm{a}r$ .

Proof.
Put $x=y^{1/q}$ . Then $D_{y}= \frac{1}{qx^{q-1}}D_{x}$ . Therefore

$Q(t, x, z;Dt, Dx’ D_{z})=y^{\frac{2q-1}{q}}P(t, y, z;Dt, DD_{z})y’$ .

We reduce $(\mathrm{C}\mathrm{P})$ to the following noncharacteristic ramified Cauchy problem,

which has been solved by Wagschal in [W2].

$(\mathrm{c}\mathrm{P}’)\{$

$P(t, y, z;D_{t}, D_{y’ z}D)u(t, y, z)1/q=0$ ,
$D_{t}^{h}u(t, y^{1/}, z)q|_{t}=0=w_{h}(y^{1/q}, z)$ , $h=0,1$ .

The function $w_{h}(y^{1/q}, z)$ is holomorphic in the universal covering space of

$\{(y, z)\in \mathbb{C}\cross \mathbb{C}^{n} ; 0<|y|\ll 1, |z|\ll 1\}$ ( $a\ll 1$ means that $a\geq 0$ is suffi-

ciently small).

Let $p’\in(\{0\}\cross \mathbb{C}_{y}\cross \mathbb{C}_{z}^{n})\backslash \{y=0\}$ be the point corresponding to $p$ . Then

$(\mathrm{C}\mathrm{P}’)$ admits a unique holomorphic solution $u(t, y^{1/q}, z)$ near $p’$ . According to [W2],

$u(t, y^{1/q}, Z)$ can be analytically continued to the universal covering space of

$\{(t, y, z)\in \mathbb{C}\mathrm{x}\mathbb{C}\mathrm{x}\mathbb{C}^{n}; |(t, y, z)|\ll 1\}\backslash (\{y=0\}\cup\{y=t^{q}\})$ .

We finish the proof by coming back to the $(t, x, z)$-space. $\square$

Example.

We saw before that $Q_{1}$ was not quite the same as $Q$ , but this does not cause any

difficulty. The equation $Q_{1}u=0$ is equivalent to $x^{2}Q_{1}u=0$ . The operator $x^{2}Q_{1}$ is

nothing but $Q$ .

This example suggests that the choice of the exponent of $x$ in the definition of

$Q$ is not essential.

Remark 1.
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For convenience, put $y=z_{0},$ $\eta=\zeta_{0}$ . Then, by virtue of Remarque 3.1 of [W2],

(2) can be replaced by the following condition:

(3) There exists an integer $k,$ $0\leq k\leq n$ , such that for $i=0,1$ , the function
$\lambda_{i}(t, z_{0,;}z\zeta_{0}, \ldots, \zeta_{k}, 0, \ldots, 0)$ is linear in $(\zeta_{0}, \ldots, \zeta_{k})$ and does not depend on the

variables $(z_{k+1}, \ldots, z_{n})$ .

This enables us to treat $Q_{2}$ . In fact, when $n=1,$ $q=2$ , put

$P(t, y, z;Dt, Dy’ D)z=D_{t}^{2}+2tD_{t}D_{y}-t^{2}D^{2}z$ .

Then

$\sigma(P)=\mathcal{T}^{2}+2t\tau\eta-t^{22}\zeta$

$=(\tau+t\eta)^{2}-t^{2}(\eta+\zeta 22)$

$=\{\tau+t(\eta+\sqrt{\eta^{2}+\zeta^{2}})\}\{\mathcal{T}+t(\eta-\sqrt{\eta^{2}+\zeta^{2}})\}$ ,

$Q_{2}=xP(t, X^{2}, z;D_{tz}, \frac{1}{2_{X}}Dx’ D)$ .

Remark 2.

A singular change of coordinates was useful in some papers mentioned in the

introduction ([L], [D], [O-Y] and [Y]). One introduces a new variable $w$ by setting
$w=(t-x^{\iota})1/l$ for some positive integer $l$ . In the present paper, we have performed

a different kind of singular change of coordinates.

\S 3. Inhomogeneous problem

If we choose a special class of $P$ , we can treat an inhomogeneous problem. As-

sume that

$\sigma(P)(t, y, z;\tau, \eta, \zeta)=\tau(\tau+qtq-1\eta)$ .

We employ the same notation as in \S 2. Let us consider:

$(\mathrm{C}\mathrm{P}^{i})\{$

$Q(t, x, z;Dt, Dx’ Dz)u(t, X, z)=v(t, x, z)$ ,
$D_{t}^{h}u(t, X, z)|g=w_{h}(X, Z),$ $h=0,1$ .

Here we assume that the function $v$ is holomorphic in a neighborhood of $p$ and can

be analytically continued along all the paths from $p$ in $\Omega\backslash \bigcup_{j=0}^{q}I\backslash _{j}^{r}$ (that is, $v$ is

holomorphic in the universal covering space of $\Omega\backslash \bigcup_{j=0^{I}}^{q}\mathrm{i}_{j}’$ ). Then we have
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Theorem 2.

There exists an open connected neighborhood $\Omega’$ of the origin of $\mathbb{C}_{t}\cross \mathbb{C}_{x}\cross \mathbb{C}_{z}^{n}$

such that the solution $u$ of $(CP^{i})$ can be analytically contin$ued$ to the universal

covering space of $\Omega’\backslash \bigcup_{j=0}^{q}Ii’j$ .

Of course this conclusion holds true when all the data are regul$\mathrm{a}x$ .

Proof.
We have to solve

$\{$

$P(t, y, z;D_{tz}, D_{y}, D)u(t, y^{1/}, z)q=y^{-}v( \frac{2q-1}{q}t, y, z)1/q$ ,
$P=D_{t}(D_{t}+qt^{q-1}D)y+1\mathrm{o}\mathrm{w}\mathrm{e}\mathrm{r}$ ,
$D_{t}^{h}u(t, y^{1/}, z)q|_{t}=0=w_{h}(y, z)1/q$ , $h=0,1$ .

Since $v(t, x, z)$ is holomorphic in the universal covering space of $\Omega\backslash \bigcup_{j=0^{I\mathrm{s}^{r}}j}^{q}$ , the

function $y^{-^{\underline{2}}\Delta_{\frac{-1}{q}}}v(t, y, z)1/q$ is holomorphic in the universal covering space of

$\{(t, y, z)\in \mathbb{C}\cross \mathbb{C}\mathrm{x}\mathbb{C}n;|(t, y, z)|\ll 1\}\backslash (\{y=0\}\cup\{y=tq\})$ .

This noncharacteristic inhomogeneous problem has been solved in [W1]. $\square$

\S 4. Geometry

What distinguishes the present study from conventional ones is the absence of

singularities on a hypersurface tangent to the initial hypersurface S. It is explained

by the following

Proposition.

Under the assu$\mathrm{m}$ption (1), there is no characteristic hypersurface of $Q$ that is

tangent to $S$ along $T$ .

Proof.
We have

$\sigma(Q)(t, x, z;\mathcal{T}, \xi, \zeta)=x^{2}\prod_{0}q-1i=,1\{\tau-\lambda i(t, x, zq;\frac{1}{qx^{q-1}}\xi, \zeta)\}$

$=x \prod \mathrm{f}x^{q-1}\tau-\lambda i(t, x, z;\frac{1}{q}q\xi, x^{q}-1\zeta)\}$ .
$i=0,1$
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It is easy to see that $S$ itself is not a characteristic hypersurface. A hypersurface

$\neq S$ which is tangent to $S$ along $T$ has an expression of the form:

$\varphi=t+x^{N}\psi(x, Z)=0$ , $N\geq 2$

where $\psi$ is a holomorphic function with $\psi(0, Z)\not\equiv \mathrm{O}$ .

We have

$\sigma(Q)(t, x, z;\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}\varphi)$

$=x \prod[x^{q-1}-\lambda i(t, X, z;\frac{1}{q}qN_{X}N-1\psi(x, Z)+\frac{1}{q}xD_{x}N\psi, xN+q-1D_{z}\psi)]$ .
$i=0,1$

For a generic $z$ we have $\psi(0, Z)\neq 0$ . We fix such a $z$ . Obviously $\psi(X, \mathcal{Z})\neq 0$ holds

if $|x|\ll 1$ . Then it follows that

$\sigma(Q)(t, x, z;\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}\varphi)$

$=x \prod[x^{q-1}-\frac{1}{q}Nx^{N-}\psi_{\lambda_{i}}1(t, x^{q}, z;1+\frac{x}{N\psi}D_{x}\psi, \frac{qx^{q}}{N\psi}Dz\psi)]$

$i=0,1$

$=x \prod_{i=0,1}[xq-1-\frac{1}{q}Nx^{N-1}\psi(1+\frac{x}{N\psi}D_{x}\psi)\lambda i(t, x, z;1q, (1+\frac{x}{N\psi}D_{x}\psi)^{-}1\frac{qx^{q}}{N\psi}D_{z}\psi)]$ .

The assumption (1) implies that as $x$ tends to zero

$\lambda_{0}(t, x^{q}, z;1, (1+\frac{x}{N\psi}D_{x}\psi)-1_{\frac{qx^{q}}{N\psi}}Dz\psi)=^{o()}Xq$

$\lambda_{1}(t, x^{q}, z;1, (1+\frac{x}{N\psi}D_{x}\psi)^{-1_{\frac{qx^{q}}{N\psi}D_{z}\psi}})=-qt^{q-1}+O(x^{q})$ .

Therefore by restricting them on the hypersurface $\{\varphi=0\}$ , we obtain

$\lambda_{0}(t, X, z;1q, (1+\frac{x}{N\psi}D_{x}\psi)^{-1_{\frac{qx^{q}}{N\psi}}}Dz\psi)|\varphi=0=o(x^{q})$

$\lambda_{1}(t, X, Z;1q, (1+\frac{x}{N\psi}D\psi x)^{-}1\frac{qx^{q}}{N\psi}Dz\psi)|_{\varphi=0}=-q(-x\psi N)q-1O+(X)q(=^{o}x)q$ .

Hence $\sigma(Q)|_{\varphi=0}$ is different from zero if $0<|x|\ll 1$ . Thus $\{\varphi=0\}$ is not a

characteristic hypersurface. $\square$
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