Choquet integral models and the multiattribute utility theory

(Choquet 積分モデルと多属性効用理論)

Toshiaki MUROFUSHI (室伏俊明), Dept. Comp. Intell. & Syst. Sci., Tokyo Inst. Tech.

1 Introduction

Subjective evaluation models using fuzzy integrals with respect to fuzzy measures have been applied in various fields, and their effectiveness has been experimentally proved [2, 7, 8, 9, 10]. Some authors pointed out that the advantage of fuzzy integral models is derived from the non-additivity of fuzzy measures, and wrote such as "in contrast to a linear model, it is not necessary to assume independence in a fuzzy integral model" [7, 8, 9, 10]. In regard to the meaning of "independence" in this intuitive comment, the author [6] has shown from the viewpoint of the multiattribute utility theory that

the fuzzy measure is additive \Leftrightarrow the attributes are mutually preferentially independent in the case that the Choquet integral is adopted as a fuzzy integral. This paper summarizes the preceding results [4, 6] on the Choquet integral model. The proof of the main theorems are shown in Appendix, and the other proofs are omitted; the propositions are immediately derived from definitions and the corollaries are direct consequences of the corresponding theorem and its proof.

2 Fuzzy measures and the Choquet integral

2.1 Basic definitions and properties [5]

Let (Θ, \mathcal{F}) be a measurable space.

Definition 2.1 A fuzzy measure is a set function $\mu: \mathcal{F} \to [0, \infty]$ satisfying

- $(1) \ \mu(\emptyset) = 0,$
- (2) $A, B \in \mathcal{F}$ and $A \subset B \Rightarrow \mu(A) \leq \mu(B)$.

If $\mu(A \cup B) = \mu(A) + \mu(B)$ whenever $A, B \in \mathcal{F}$ and $A \cap B = \emptyset$, μ is said to be additive. If $\mu(\Theta) < \infty$, a fuzzy measure μ is said to be finite.

Throughout the paper we deal only with finite fuzzy measures.

Let μ be a finite fuzzy measure on (Θ, \mathcal{F}) .

Definition 2.2 The Choquet integral of a measurable function $f: \Theta \to \mathbf{R}$ over $A \in \mathcal{F}$ is defined by

$$(C) \int_{A} f \, d\mu \, \triangleq \, \int_{0}^{\infty} \mu(\{f > r\} \cap A) \, dr + \int_{-\infty}^{0} \left[\mu(\{f > r\} \cap A) - \mu(A) \right] dr,$$

where $\{f > r\} \triangleq \{\theta \mid f(\theta) > r\}$ and the two integrals on the right side are both ordinary ones. When the right side is $\infty + (-\infty)$, the Choquet integral is not defined. A measurable function f is said to be integrable iff the Choquet integral of f over Θ is finite-valued.

Proposition 2.1 The Choquet integral of a simple function

$$f = \sum_{j=1}^{m} a_j 1_{P_j}$$

is represented by

$$(C)\int_{\Theta} f d\mu = \sum_{j=1}^{m} a_j \cdot [\mu(A_j) - \mu(A_{j+1})],$$

where $\{P_1, P_2, \dots, P_m\}$ is a measurable partition of Θ , $-\infty < a_1 \le \dots \le a_m < \infty$, $A_j = \bigcup_{k=j}^m P_k \text{ and } A_{m+1} = \emptyset$.

The Choquet integral has the following properties.

Proposition 2.2 (1)

$$f \le g \implies (C) \int_{\Theta} f \, d\mu \le (C) \int_{\Theta} g \, d\mu.$$

(2) $(C) \int_{\Theta} (af + b) d\mu = a \cdot (C) \int_{\Theta} f d\mu + b \cdot \mu(\Theta) \qquad \forall a \ge 0, \ \forall b \in \mathbf{R}.$

(3) If μ is an ordinary measure

$$(C) \int_{\Theta} f \, d\mu = \int_{\Theta} f \, d\mu,$$

where the right side is the Lebesgue integral.

Definition 2.3 [1] $N \in \mathcal{F}$ is called a null set iff

$$\mu(A \cup N) = \mu(A) \quad \forall A \in \mathcal{F}.$$

Proposition 2.3 Let $N \in \mathcal{F}$. The following conditions are equivalent to each other.

- (1) N is a null set.
- (2) If f and g are measurable functions such that $f(\theta) = g(\theta) \ \forall \theta \notin N$, then

$$(C)\!\int_{\Theta}f\,d\mu\ =\ (C)\!\int_{\Theta}g\,d\mu.$$

2.2 Positive sets, semiatoms, and inter-additive partitions [6]

Let μ be a finite fuzzy measure on (Θ, \mathcal{F}) .

Definition 2.4 For $A \subset X$, we define

$$\mathcal{F} \cap A \triangleq \{F \cap A \mid F \in \mathcal{F}\}, \qquad \mathcal{F} \setminus A \triangleq \{F \setminus A \mid F \in \mathcal{F}\}.$$

Definition 2.5 $P \in \mathcal{F}$ is said to be positive iff

$$\mu(A) < \mu(A \cup P) \quad \forall A \in \mathcal{F} \setminus P.$$

Proposition 2.4 Let $P \in \mathcal{F}$. The following conditions are equivalent to each other.

- (1) P is positive.
- (2) If f and g be measurable functions such that $f(\theta) = a \ \forall \theta \in P, \ g(\theta) = b \ \forall \theta \in P,$ $a < b, \ f(\theta) = g(\theta) \ \forall \theta \notin P, \ and \ either \ f \ or \ g \ is \ integrable, \ then$

$$(C) \int_{\Theta} f \, d\mu \ < \ (C) \int_{\Theta} g \, d\mu.$$

Definition 2.6 [1] $A \in \mathcal{F}$ is called a atom iff A is not a null set and, for any $B \in \mathcal{F} \cap A$, either B or $A \setminus B$ is a null set.

Definition 2.7 For $S \in \mathcal{F}$, we define

$$\mathcal{W}(S) \triangleq \{ A \in \mathcal{F} \cap S \mid \mu(A \cup B) = \mu(S \cup B) \ \forall B \in \mathcal{F} \setminus S \},$$

$$\mathcal{N}(S) \triangleq \{ A \in \mathcal{F} \cap S \mid \mu(A \cup B) = \mu(B) \ \forall B \in \mathcal{F} \setminus S \}.$$

 $S \in \mathcal{F}$ is called a semiatom iff S is not a null set and $\mathcal{F} \cap S = \mathcal{W}(S) \cup \mathcal{N}(S)$.

Definition 2.6 is a natural extension of the definition of atom in the classical measure theory. While an atom is a semiatom, a semiatom is not always an atom. If μ is additive, however, then every semiatom is an atom.

Proposition 2.5 If S is a semiatom, then, for every measurable function f,

$$(C) \int_{\Theta} f^S d\mu = (C) \int_{\Theta} f d\mu,$$

where

$$f^{S}(\theta) \triangleq \begin{cases} \sup_{A \in \mathcal{W}(S)} \inf_{\omega \in A} f(\omega) & \theta \in S \\ f(\theta) & \theta \notin S. \end{cases}$$

Definition 2.8 \mathcal{P} is called an inter-additive partition of Θ iff \mathcal{P} is a finite measurable partition of Θ and

$$\mu(A) = \sum_{P \in \mathcal{P}} \mu(A \cap P) \quad \forall A \in \mathcal{F}.$$

Proposition 2.6 Let \mathcal{P} be a finite measurable partition of Θ . Then the following two conditions are equivalent to each other.

- (1) \mathcal{P} is an inter-additive partition of Θ .
- (2) For every measurable function f,

$$(C)\int_{\Theta} f \, d\mu = \sum_{P \in \mathcal{D}} (C)\int_{P} f \, d\mu.$$

3 Preference relations and value functions [3]

The preference relation is one of the most important concepts in the utility theory. A preference relation \succeq is a binary relation on the set X of objects to be evaluated and $x \succeq y$ means that x is prefered or indifferent to y for a decision maker. A preference relation is assumed to be a weak order:

Definition 3.1 A binary relation \succeq on a set X is called a weak order iff it has the following two properties.

comparability: either $x \succeq y$ or $y \succeq x \ \forall x, y \in X$.

transitivity: $x \succeq y \ \& \ y \succeq z \ \Rightarrow \ x \succeq z \ \forall x,y,z \in X.$

The strong preference relation \succ and the indefference relation \sim are defined respectively by

$$x \succ y \iff \text{not } y \succeq x, \qquad x \sim y \iff x \succeq y \& y \succeq x.$$

When the objects are characterized by n attributes, the set X is assumed to be given by $X = \prod_{i=1}^n X_i$. Each index i (or each factor X_i) is called an *attribute*. We write $I \triangleq \{1, 2, \dots, n\}$, and $X_J \triangleq \prod_{j \in J} X_j$ for any non-empty subset J of I. Since $X_{\{i\}} = X_i$, we sometimes denote $\{i\}$ by i for convenience, and $I \setminus i$ means $I \setminus \{i\}$. For any non-empty proper subset J of I, we denote by x_J the projection of $x = (x_1, x_2, \dots, x_n) \in X$ to X_J , and write $x = (x_J, x_{I \setminus J})$.

Definition 3.2 An attribute i is said to be essential iff there exist $x_i, y_i \in X_i$ and $x_{I\setminus i} \in X_{I\setminus i}$ such that $(x_i, x_{I\setminus i}) \succ (y_i, x_{I\setminus i})$. An attribute which is not essential is said to be inessential.

Definition 3.3 Let $\emptyset \neq J \subsetneq^{\subset} I$. We say J is preferentially independent of $I \setminus J$ (or X_J is preferentially independent of $X_{I \setminus J}$) iff, for every pair x_J and y_J of elements of X_J ,

$$(x_J, x_{I \setminus J}) \succeq (y_J, x_{I \setminus J})$$
 for some $x_{I \setminus J} \in X_{I \setminus J} \Rightarrow (x_J, x_{I \setminus J}) \succeq (y_J, x_{I \setminus J})$ for all $x_{I \setminus J} \in X_{I \setminus J}$.

The attributes in I (or X_1, X_2, \dots, X_n) are said to be mutually preferentially independent iff, for every non-empty proper subset J of I, J is preferentially independent of $I \setminus J$.

Definition 3.4 A function $u: X \to \mathbf{R}$ is called a value function (or an ordinal utility function) if

$$x\succeq y \ \Leftrightarrow \ v(x)\geq v(y) \qquad \forall x,y\in X.$$

Definition 3.5 A value function v is said to be additive iff for each $i \in I$ there exist a real-valued function v_i on X_i and a nonnegative real number k_i such that

$$v(x) = \sum_{i \in I} k_i \cdot v_i(x_i) \quad \forall x \in X.$$

4 Choquet-integral value functions

Definition 4.1 A Choquet-integral value function is a value function v which can be represented by

$$v(x) = (C) \int_{I} v_i(x_i) d\mu \qquad \forall x \in X, \tag{1}$$

where v_i is a real-valued function on X_i , $i \in I$, and μ is a finite fuzzy measure on the power set 2^I of I. Note that the integrand is the function $v_{(\cdot)}(x_{(\cdot)}): i \mapsto v_i(x_i)$.

By Proposition 2.2(3), if μ is an ordinary measure, a Choquet-integral value function coincides with an additive one (Definition 3.5); $k_i = \mu(\{i\}) \ \forall i \in I$.

In this section, we assume that the preference relation \succeq has a Choquet-integral value function (Eq. (1)), and use the following conditions.

- (C1) For any $J \subset I \setminus \{i\}$, there exist $x, y \in X$ and $r, s \in \mathbf{R}$ such that $J = \{j \in I \mid v_j(x_j) > r\}$ and $J \cup \{i\} = \{j \in I \mid v_j(y_j) > s\}$.
- (C2) The intersection $\bigcap_{i \in I} v_i(X_i)$ of the ranges of v_i 's contains at least two distinct points.
- (C3) The intersection $\bigcap_{i \in I} v_i(X_i)$ of the ranges of v_i 's is not nowhere dense.

Note that the relationship between Conditions (C1-3) is given as follows:

$$(C3) \Rightarrow (C2) \Rightarrow (C1).$$

Theorem 4.1 [4] If either $v_i(x_i) = \text{const.} \ \forall x_i \in X_i \ or \{i\} \ is \ a \ null \ set$, then the attribute i is inessential. Moreover, if Condition (C1) is satisfied, the converse holds: if the attribute i is inessential, then either $v_i(x_i) = \text{const.} \ \forall x_i \in X_i \ or \{i\} \ is \ a \ null \ set$.

Theorem 4.2 [6] Let $\emptyset \neq J \subsetneq I$. If either J is a positive semiatom or $\{J, I \setminus J\}$ is an inter-additive partition of I, then J is preferentially independent of $I \setminus J$. Moreover, if Condition (C3) is satisfied, then the converse holds: if J is preferentially independent of $I \setminus J$, then either J is a positive semiatom or $\{J, I \setminus J\}$ is an inter-additive partition of I.

Corollary 4.1 Let i be an essential attribute in I. If $\{i\}$ is positive, then i is preferentially independent of $I \setminus i$. Moreover, if Condition (C2) is satisfied, then the converse holds.

- Corollary 4.2 (1) Assume that the set I of the attributes has exactly two essential attributes i and j. If $\{i\}$ and $\{j\}$ are both positive, then the attributes are mutually preferentially independent. Moreover, if Condition (C2) is satisfied, then the converse holds.
 - (2) If μ is additive, then the attributes are mutually preferentially independent. Moreover, if the set I has at least three essential attributes, and if Condition (C3) is satisfied, then the converse holds.

5 Conclusion

In this paper, we have investigated preference relations which have Choquet-integral value functions. The main result is that, under a natural condition, the attributes are mutually preferentially independent iff the fuzzy measure is additive. Therefore, since a fuzzy measure is not assumed to be additive, we can say "it is not necessary to assume *preferential* independence in a Choquet integral model."

References

- [1] R.J. Aumann and L.S. Shapley, *Values of Non-Atomic Games*, (Princeton University Press, Princeton, 1974).
- [2] K. Ishii and M. Sugeno, A model of human evaluation process using fuzzy integral, Int. J. Man-Machine Studies 22 (1985) 19–38.
- [3] R.L. Keeney and H. Raiffa, Decisions with Multiple Objectives: Preferences and Value Tradeoffs, John Wiley & Sons, 1976.
- [4] T. Murofushi and M. Sugeno, Multiattribute utility functions represented by the Choquet integral, *Proc. 6th Fuzzy System Symposium* (1990) 147–150 (in Japanese).
- [5] T. Murofushi and M. Sugeno, A theory of fuzzy measures: representations, the Choquet integral, and null sets, J. Math. Anal. Appl. 159 (1991) 532–549.
- [6] T. Murofushi and M. Sugeno, Non-additivity of fuzzy measures representing preferential dependence, Proc. Second International Conference on Fuzzy Logic and Neural Networks, vol.2 (1992) 617–620.
- [7] T. Onisawa, M. Sugeno, Y. Nishiwaki, H. Kawai, and Y. Harima, Fuzzy measure analysis of public attitude towards the use of nuclear energy, Fuzzy Sets and Systems 20 (1986) 259–289.

- [8] M. Sugeno, Fuzzy measures and fuzzy integrals a survey, in: Fuzzy Automata and Decision Processes, Eds. M. M. Gupta, G. N. Saridis, and B. R. Gains, (North-Holland, 1977) 89–102.
- [9] M. Takuma, A. Yano, and M. Higuchi, Acquisition and model representation of machining know-how using fuzzy algorithm, J. Japan Society of Precision Engineering 55 (1989) 1211–1216 (in Japanese).
- [10] K. Tanaka and M. Sugeno, A study on subjective evaluations of printed color images, Int. J. Approximate Reasoning 5 (1991) 213–222.

Appendix

Proof of Theorem 4.1. If v_i is constant, obviously the attribute i is inessential. If $\{i\}$ is a null set, the result follows directly from Proposition 2.3.

We now prove the converse. Assume that v_i is not constant, and let $J \subset I \setminus \{i\}$. It is sufficent to prove that $\mu(J \cup \{i\}) = \mu(J)$. By Condition (C1), there exist $x, y \in X$ and $r, s \in \mathbf{R}$ such that $J = \{j \in I \mid v_j(x_j) > r\}$ and $J \cup \{i\} = \{j \in I \mid v_j(y_j) > s\}$. For $j \in I \setminus \{i\}$, we define

$$z_j \triangleq \left\{ \begin{array}{ll} x_j \lor y_j & j \in J \\ \\ x_j \land y_j & j \not\in J \cup \{i\}, \end{array} \right.$$

where \vee and \wedge are binary operations on X_k , $k \in I$, defined respectively by

$$x_k \vee y_k \triangleq \begin{cases} x_k & v_k(x_k) \ge v_k(y_k) \\ y_k & v_k(x_k) < v_k(y_k), \end{cases} \qquad x_k \wedge y_k \triangleq \begin{cases} x_k & v_k(x_k) \le v_k(y_k) \\ y_k & v_k(x_k) > v_k(y_k). \end{cases}$$

Since v_i is not constant, there exists a $w_i \in X_i$ such that $v_i(x_i) \neq v_i(w_i)$, and we define

$$z_i \triangleq x_i \wedge w_i, \qquad z'_i \triangleq x_i \vee w_i.$$

Moreover, we define $v_k \stackrel{\triangle}{=} v_k(z_k)$, $k \in I$, and

$$M = \{j_{1}, j_{2}, \dots, j_{m}\} \triangleq \{j \in I \mid v_{i} < v_{j} < v_{i}(z'_{i})\}, \text{ where } v_{j_{1}} \leq v_{j_{2}} \leq \dots \leq v_{j_{m}},$$

$$v_{j_{0}} \triangleq v_{i},$$

$$v_{j_{m+1}} \triangleq v_{i}(z'_{i}),$$

$$M_{j_{m+1}} \triangleq \{j \mid v_{j_{m+1}} \leq v_{j}\},$$

$$M_{k} \triangleq \{j_{k}, \dots, j_{m}\} \cup M_{j_{m+1}}, \quad k = 1, 2, \dots, m.$$

The inessentiality of i implies that $(z_i, z_{I \setminus i}) \sim (z'_i, z_{I \setminus i})$, and hence that

$$v(z_i', z_{I \setminus i}) - v(z_i, z_{I \setminus i}) = 0.$$

Since v is a Choquet-integral value function (Eq. (1)), it follows from Proposition 2.1 that

$$\sum_{k=1}^{m+1} (v_{j_k} - v_{j_{k-1}}) [\mu(M_k \cup \{i\}) - \mu(M_k)] = 0.$$

By the definition of z, there exists an integer k such that $v_{j_k} > v_{j_{k-1}}$ and $M_k = J$, and therefore $\mu(J \cup \{i\}) - \mu(J) = 0$.

Proof of Theorem 4.2. If J is a positive semiatom, J is preferentially independent of $I \setminus J$ by Propositions 2.4 and 2.5. If $\{J, I \setminus J\}$ is an inter-additive partition of Θ , the desired result follows from Proposition 2.6.

We prove the converse. Suppose that $\bigcap_{i\in I} v_i(X_i)$ is not nowhere dense and that J is preferentially independent of $I\setminus J$. We first prove that $\{J,I\setminus J\}$ is an inter-additive partition of Θ when J is not a semiatom. If J is a null set, then $\{J,I\setminus J\}$ is an inter-additive partition of Θ , so we assume that J is not null. By Condition (C3) and Proposition 2.2 (2) we can assume that $[0,1]\subset \overline{\bigcap_{i\in I} v_i(X_i)}$ and $[0,1]\subset \overline{\bigcap_{i\in I} v_i(X_i)}$ and $[0,1]\subset \overline{\bigcap_{i\in I} v_i(X_i)}$. Let $[0,1]\subset \overline{\bigcap_{i\in I} v_i(X_i)}$ and $[0,1]\subset \overline{\bigcap_{i\in I} v_i(X_i)}$.

 $a, b \in \bigcap_{i \in I} v_i(X_i)$, and 0 < a < b < 1. Then there exist $x, y, z \in X$ such that

$$v_{i}(x_{i}) = \begin{cases} 0 & i \in J \setminus K \\ b & i \in K \\ 1 & i \in L \\ 0 & \text{otherwise,} \end{cases} v_{i}(y_{i}) = \begin{cases} a & i \in J \\ a & i \in L \\ 0 & \text{otherwise,} \end{cases} v_{i}(z_{i}) = 0 \quad \forall i \in I.$$

Therefore we obtain

$$(x_{J}, x_{I \setminus J}) \stackrel{\succeq}{\neq} (y_{J}, x_{I \setminus J})$$

$$\Leftrightarrow v(x_{J}, x_{I \setminus J}) \stackrel{\gtrless}{\neq} v(y_{J}, x_{I \setminus J})$$

$$\Leftrightarrow b\mu(K \cup L) + (1 - b)\mu(L)$$

$$\stackrel{\gtrless}{\neq} a\mu(J \cup L) + (1 - a)\mu(L)$$

$$\Leftrightarrow (b - a)[\mu(K \cup L) - \mu(L)] \stackrel{\gtrless}{\neq} a[\mu(J \cup L) - \mu(K \cup L)].$$

Similarily we have

$$(x_J, y_{I \setminus J}) \stackrel{\succeq}{\prec} (y_J, y_{I \setminus J}) \Leftrightarrow (b - a)\mu(K) \stackrel{\geq}{\prec} a[\mu(J \cup L) - \mu(K \cup L)],$$
$$(x_J, z_{I \setminus J}) \stackrel{\succeq}{\prec} (y_J, z_{I \setminus J}) \Leftrightarrow (b - a)\mu(K) \stackrel{\geq}{\prec} a[\mu(J) - \mu(K)].$$

The preferential independence implies that the three inequalities above are equivalent to one another. From the assumption that $[0,1] \subset \overline{\bigcap_{i \in I} v_i(X_i)}$ it follows that, for any $K \subset J$ and $L \subset I \setminus J$,

$$[\mu(K \cup L) - \mu(L)] : [\mu(J \cup L) - \mu(K \cup L)]$$

$$= \mu(K) : [\mu(J \cup L) - \mu(K \cup L)]$$

$$= \mu(K) : [\mu(J) - \mu(K)].$$
(A.1)

Since J is neither a semiatom nor a null set, there exist $K_0 \subset J$ and $L_1, L_2 \subset I \setminus J$ such that $\mu(L_1) < \mu(K_0 \cup L_1)$ and $\mu(K_0 \cup L_2) < \mu(J \cup L_2)$. From Eq. (A.1) and the inequality $\mu(L_1) < \mu(K_0 \cup L_1)$ it follows that $\mu(K_0) > 0$. Similarly it follows from the inequality

 $\mu(K_0 \cup L_2) < \mu(J \cup L_2)$ that $\mu(J) - \mu(K_0) > 0$. Let L be an arbitrary subset of $I \setminus J$. Since $\mu(K_0) > 0$ and $\mu(J) - \mu(K_0) > 0$, by Eq. (A.1) we obtain that

$$\mu(K_0 \cup L) - \mu(L) = \mu(K_0),$$

$$\mu(J \cup L) - \mu(K_0 \cup L) = \mu(J) - \mu(K_0),$$

and hence that

$$\mu(J \cup L) = \mu(J) + \mu(L). \tag{A.2}$$

Now consider an arbitrary $K \subset J$. If $\mu(K) = 0$, it follows from Eq. (A.1) that $\mu(K \cup L) - \mu(L) = 0$, and hence that $\mu(K \cup L) = \mu(K) + \mu(L)$. If $\mu(K) > 0$, it follows from Eq. (A.1) that

$$\mu(J \cup L) - \mu(K \cup L) = \mu(J) - \mu(K),$$

and therefore from Eq. (A.2) that $\mu(K \cup L) = \mu(K) + \mu(L)$. This proves that $\{J, I \setminus J\}$ is an inter-additive partition.

We now prove that J is positive when it is a semiatom. Since J is not a null set, there exists an $L \subset I \setminus J$ such that $\mu(L) < \mu(J \cup L)$. Let $M \subset I \setminus J$. Then we can choose $x, y \in X$ such that

$$v_i(x_i) = \begin{cases} 1 & i \in J \\ 1 & i \in L \end{cases}$$
 $v_i(y_i) = \begin{cases} 0 & i \in J \\ 1 & i \in M \\ 0 & \text{otherwise.} \end{cases}$

Since $v(x_J, x_{I \setminus J}) = \mu(J \cup L) > \mu(L) = v(y_J, x_{I \setminus J})$, it follows that $(x_J, x_{I \setminus J}) \succ (y_J, x_{I \setminus J})$. Hence the preferential independence implies that $(x_J, y_{I \setminus J}) \succ (y_J, y_{I \setminus J})$, and therefore that $\mu(J \cup M) = v(x_J, y_{I \setminus J}) > v(y_J, y_{I \setminus J}) = \mu(M)$.