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Introduction

In connection with generalized Clarkson' s inequalities (Kato [4];
see also [11]), a high—dimensional version of Clarkson—-Boas—Koskela-
type inequalities (ef. [2], [11, [81), Tonge [13] presented random

Clarkson inequalities for Lp. On the other hand, the authors [6]

characterized those Banach spaces satisfying (p, p' )—Clarkson's ine-
quality as of (Rademacher) type p with type p constant one, and using
this, they [12] proved that if (p, p' )—Clarkson' s inequality holds in
a Banach space X, then the random Clarkson inequality also holds in X,
where the unknown absolute constant included in Tonge' s original ine-—
qualies was replaced by one. We point out here that there are fairly
many Banach spaces in which (p, p' )—Clarkson's inequality holds

(ef. [11, . [3]1, [9]; see also [11]).

In this note, we present a more general high—-dimensional version of
Clarkson—Boas—koskela—type inequalities for Banach spaces X of type p,
and using this, it is shown that if X is of type p, then Tonge-type
random Clarkson inequality including an absolute constant holds in X;

in this case we can take type p constant as such an absolute constant.
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1. Preliminaries
In the following, let p', ¢, r', ... denote the conjugate numbers

of p, q T,
1. 1. Clarkson' s inequalitites (Clarkson [2]): Vx, y € Lp

cr-1) (Ix+ ylI® +10x— vy PH"" < 2" x1® +1v12)'7%,

if 1

IA
A

P 2.

cr-2) (Ix + ylP+lx - yI®HY" < 2P <1 ® + 1y ®)7P

2

if 2 £ p £ oo.

Let 1 = p £ 2. We say that a Banach space X satisfies (p, p' )-
Clarkson' s inequality if (CI-1) holds in X. It is known (cf. [6]) that
X satisfies (p, p' )—Clarkson's inequality if and only if its dual X'
does. This shows that one of the inequalities (CI-1) and (CI-2) impl-
ies the others. We note here that Clarkson [2] proved the other seve-

ral inequalities for Lp, but those follow from (CI-1) or (CI-2).

Boas [1] and Koskela [8] considered some generalizations of Clar—
kson inequalities for a much wider class of parameters, which we call

Clarkson—-Boas—Koskela-type inequalities:

1. 2. Clarkson—Boas—Koskela' s inequalitites (Boas[1], Koskela [8]

for Lp; see also [5]): Let 1 = p, r, s = oco. Then, Vx, y € Lp

(CBKT) (Ix + ylIS+1x — v 5% < 2P e T+ 1y 5HV/E

3

~ where c(r, s;p) = max{1/r', 1/s, 1/r' +1/s—min(1/p, 1/p' )}.
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In the inequality (CBKI), let r = min{p, p'} and s = max{p, p'}. Then
we have the Clarkson inequalities (CI-1) and (CI-2). We note that if
p =1 or oo, then (CBKI) holds in any Banach space X; and if (CI-1) or
(CI-2) holds in X, then‘(CBKI) also holds in X. (In the next section,
this facts are claimed in more general forms. )

Now we introduce some generalizations of (CBKI) to higher dimensi-
ons.

1. 3. Littlewood matrices An = (eij ) (27X 2"):

(o) m= 2

1. 4. Generalized Clarkson' s inequalitites (Kaﬁo [4] for Lp):

Let 1 = p, r, s = oco. Then, Vx1, s X € Lp
2" 2" s 1/s ne(r, s:p) . e - 1/r
< 2 E]
(GCT) { S S as } < 2 AEN }
i=1 || J=1 J=1

where o(r, s;p) = max{1/r', 1/s, 1/r'+ 1/s — min(1/p, 1/p')1.

For n = 1, (GCI) coincides with (CBKI), and so (GCI) may be regarded
as a generalization of (CBKI) to higher dimensions; We note that (GCI)
can be slightly generalized for a much wider class of parameters r and
s. (For the details, see Maligranda and Persson [10].)

In the context of type and cotype for Banach spaces, the authors [6 ]
considered some generalizations of the Clarkson inequality (CI-1) to
higher dimensions, and proved that a Banach space X satisfies (p, p' )-
Clarkson' s inequality, 1 = p £ 2, if and only if X is of (Rademacher )

type p and its type p constant is one.
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1. 5. Type inequalitites: Let 1 = p = 2. A Banach space X is said

to be of (Rademacher) type p if there is a constant K > 0 such that

1/p

for all x1, XZ’ cees X

The smallest constant K satisfying (TplI) is said to be type p constant

and denoted by Tp(X). (The notion of type p is also defined by usual

Rademacher functions, but it is the same as the above definition. )

2. Clarkson—-Boas—Koskela—type inequalitites and Rademacher type
for Banach spaces
In this section, we present a high—-dimensional version of Clarkson-

Boas-Koskela-type inequalites for a Banach space X

2. 1. Clarkson-Boas—Koskela-type inequalitites with n elements:

let 1 = p, r, s £ co. Then V x, X

1 or e xn e X
2 s /s n/s e(r,s;p)—1/s 2 r V/r
(nCBKI) ( 6.x. ) < /S0t S5P 2 Il <. |l
o=t || §=1 JJ =1 ,

where c(r, s;p) = max{1/r', 1/s, 1/ +1/s—min(1/p, 1/p' )}.

2.2. Theorem Let 1 < p < 2. Then for a Banach space X, the
following statements are equivalent.

(i) (p, p')—Clarkson's inequality holds in X.

(ii) X is of type p and its type p constant is one.

(fi) For each r and s with 1 = r, 8 £ oo, (nCBKI) holds in X.
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2. 3. Corollary (Maligranda and Persson [10]). Let 1 = p £ oo.

Then for each r and s with 1 < r, s = oo, (nCBKI) holds in Lp.

2. 4. Remark. Corollary 2.3 is also true in the case r < 1 (r # 0)
or 0 < s < 1. In this case, c(r, s;p) is replaced by c(u, v;p), where
u = max{r, 1} and v = max{s, 1}, see [10]. We can show that Theorem 2.2

is also true for such cases.

Now we introduce (nCBKI) including an absolute constant, and give

a generalization of Theorem 2. 2.

2.5 Theorem Let 1 < p = 2. If a Banach space X is of type p,

and its type p constant Tp(X) = K, then (nCBKI) with the constant K

holds in X, that is, for each r and s with 1 = r, s = oo, and

for all x1, x2, cees X

1/r

n/s c(r, s;p)—-1/s n r
(nCBKT) K 2/ Sy 0 S5P (2 I =, |
J=1

-2
IA

holds, where c(r, s;p) = max{1/r', 1/s, 1/r' +1/s—1/p' L.

2.6. Remark. In Theorem 2.5, it is easy to see that if (nCBKI)

with an absolute constant K holds in X, then Tp(X) = K ((put r=p
and s = p' ). This means that Tp(X) coincides with the smallest const-

ant K satisfying (nCBKI); the constant K depends on X and p, but it is
independent of r, s and n. We note that Theorem 2.5 is also true in
the case r <1 (r+# 0) or 0 < s < 1. In this case, c(r, s;p) is repla-

ced by c(u, v;p), where u = max{r, 1} and v = max{s, 1}.
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3. Random Clarkson inequalitites and Rademacher type
for Banach spaces

In [13], Tonge presented random Clarkson inequalities for Lp.

For a Banach space X, these inequalities are stated as follows:
3. 1. Random Clarkson inequalitites: Let 1 < p < 2and 1 < r, s

= oo. Let A = (aij) be an nXn matrix, where aij are independent

identically distributed random variables taking the values + 1 with

equal probability 1/2. Then, E denoting mathematical expectation, for

any x1, x2, eey xn in X.
n n s 1/s c(r‘S'p) n r 1/r
RCI E a..x. = Kn 77 . ,
(RCT) N DIEHES ) (_anJu )
1=1| 3j=1 J=1
where c(r, s;p) = max{1/r', 1/s, 1/r' +1/s—1/p'}, and K is a positive

absolute constant depending only on p and X.

3. 2. Remark. In [13], Tonge proved that (RCI) holds in Lp. The

authors [12] recently generalized this result for more general Banach
spaces X, and proved that if X satisfies (p, p' )-Clarkson inequality,
then (RCI) holds in X, where the unknown absolute constant K was
replacéa by one.

ﬁsing Theorem 2. 5, we caﬁ easily prove the’féllowing Tonge—-type

random Clarkson inequality for Banach spaces of type p-

3.3. Theorem Let 1 = p =< 2. If a Banach space X is of type p,

and its type p constant‘Tp(X) = K, then (RCI) with the constant K

holds in X; and conversely, if (RCI) holds in X, then X is of type p.
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3.4 Remark. If X satisfies (p, p' )-Clarkson inequality, then it

is of type p with type p constant one (see Theorem 2. 2). Hence, the

authors' result [12] mentioned above follows from Theorem 3. 3. (For

the details, see Kato and Takahashi [7]).
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