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Abstract

In [7], we showed that a proof net of MNCLL(Multiplicative fragment of Non-
Commutative Linear Logic) can be characterized by means of the notion of strong:
planity of a marked Danos-Regnier graph, as well as the notion of a certain long-trip
condition, called the stack-condition, of a marked Danos-Regnier graph, the latter of
which is related to Abrusci’s balanced long-trip condition ([1]). In this note, we shall
also apply our methods to Intuitionistic Linear Logic, and obtain characterization
theorems for Intuitionistic Multiplicative Non-Commutative Linear Logic, in terms
of signed Danos-Regnier graphs.

1 Non-Commutative Proof Nets for Intuitionistic
System.
In this note, we denote Multiplicative Commutative Linear Logic by MLL. It is well-

known that the proof nets of MLL are characterized by a simple and elegant graph-
theoretic condition, saying that any Danos-Regnier graph is a proof net of MLL if and only
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if it is acyclic and connected under any choice of par-link switching (cf. Danos-Regnier
[2]). This condition is sometimes called as the (Danos-Regnier) switching condition. This
characterization is a simplified version of a famous result of Girard [3], which is called the
long-trip condition. . : o

In [7], we introduced a system of Non-Commutative Linear Logic MNCLL, which is
logically equivalent to the multiplicative fragment of Cyclic Linear Logic introduced by
Yetter [10]; and we gave several correctness conditions of the proof nets for system MN-
CLL, including the strong planarity and the stack condition. In this note, we extend our
results to the intuitionistic version of Multiplicative Non-Commutative Linear Logic IM-
NCLL. We introduce a so-called L-proof net, a notion of intuitionistic non-commutative
proof net; this is induced from Roorda’s formulation [8] of Intuitionistic Multiplicative
Non-Commutative Linear Logic, where each conclusion node has a polarity + or —. Then
we introduce the notions of L-strong planarity and the stack condition and show that our
characterization theorem holds for this system.

We denote a sequence of formulas by a capital Greek letter, such as A, I E,- - ..

Definition 1.1 We deﬁne the system L (Roorda [8]).
Azioms: - .
A= A, where A is an atomic formu,la

Rules of mference
S=A T, B A=C AL=>B

T.5,A\BASC ) DEWAY: an
A4 [LBA=C T,A= B
"I,B/AT,A=C (/2)“=>B/A 71

S A L=B (g d,'A,B,F=>‘C'('1)'”
ST = A A BTI=C"

T=>A TVAA=C
Y,A=C

(C it)

W note that the system L becomes Lambek Calculus [4], if the mference rules (\1) and .

( / 1) are applied only when the antecedent ¥ is non-empty.

_Deﬁmtmn 1.2 We define a signed formula, or a formula with polarity z'riductively as
follows: _

(1) If A is an atomic formula, then A* and A~ are atomic signed formulas, (2) if A and
B are signed formulas, then so are (A®B)*, (A®B)~, (ApB)* and (ApB)~.
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-Definition 1.3 For each signed formula A, we define its dual formula A* inductively as
Jollows:

(1) If B* is an atomic signed formula, then ( ) = B~, (2) If B~ is an atomic signed
formula, then (B~)* = B*, (3) (BQC)*)* = (B* ;C'* , (4) ((BRC)™ ) = (B*pC*)*,
(5) (BpC)t)* = (B*®C*)~, and (6) ((BpC)~)* = (B*®C*) .

As a result of the above definition, we can prove by induction on the complexity of a
signed formula that (A*)* = A, for any signed formula A.

We now define a system IMNCLL, which is later shown to be a one-sided version of
system L. There is a one-one correspondence between the rules of inference in the two
systems Thus we name each rule in IMNCLL with that of the correponding rule in L

Definition 1.4 We deﬁne system IMNCLL.
Agioms. :

F A", A, where A is a bzgned fo:mula
Rules of mfe?ence

FT,A* +B",A FT,Bt; A" A

Fraes s ¥ T appnra (D
FT,B- FA*,A FT, 4, B+, A
FT. (B eA) A 2 FT.Bpayra /Y
FT,A* B+ A T, A", B-,A

FT,(BY@AT)F.A S 3) FT,(A"pB~)",A (1)

FT,A FA*A
FT,A

(Cut) '

Proposition 1.5 The ‘sy'stem IMNCLL admits the cut-elimination. -
We call a signed formula a +-formula, if the outermost sign of the formula is +.
Lemma 1.6 Any derivation in IMNCLL has precisely one terminal +-formula.

Proof. We prove this by induction on the length of the derivation in IMNCLL. If the
derivation consists only of an axiom, then the claim clearly holds. We argue according to
the last inference rule added to the derivation. We only discuss for case (/2); and similar
arguments work for other cases: Let us assume that the last inference is

FT,B~ kA% A 2
FT,(B-®AT), A




Then we have provable sequents I'; B~ and A1, A. By the induction hypothesis, each of
them has precisely one +-formula; in other words, there is no +-formula in A, and there
exists precisely one +-formula in I. Thus we conclude that the sequent I', (B~ ®A%)~, A
satisfies the condition as well. O

As we mentioned above, there is a one-one correspondence between the rules of inference
in systems IMNCLL and L. Now we male the correspondence between the sequents of
IMNCLL and those of L in such a way that;

B,,---,B, = Acorresponds to - By ,---, B, AT

Moreover we identify the order of the forfnulas in a sequent of IMNCLL up to the cyclic
shifts: So By ,---, B, , A% is identified with B;,---, B, A%, By, -+,B,.

Theorem 1.7 (Implicitly in Roorda [8]) The system L is equivalent to IMNCLL.

Proof. We note that there is a one-one correspondence between the rules of inference
in systems IMNCLL and L as well as sequents of the systems. Thus we prove that émy
derivation in L has a derivation in IMNCLL, by induction on the length of the derivation
in L. If the derivation consists only of an axiom, then the claim clearly holds. Now let us
assume that the last applied inference rule is

S:AfﬁA:C“m
T,5,A\BA=C W\

By induction hypothesis, there are derivations in IMNCLL for sequents ¥ = A and
I', B,A = C, whose terminal edges are ¥~, At and ', B~,A~,C™, respectively. By
the cyclic shift, the second sequent becomes B~,A~,C*,I'~. By the inference rule (\2)
in IMNCLL, we obtain a new derivation in IMNCLL for £~,(A*®B~)",A~,C*, I'".
This corresponds to the terminal edge I', X, A\B,A = C. Similar arguments work for
the cases of other inference rules in L.

Secondly we show that any derivation in IMNCLL has a corresponding derivation in L,
- by induction on the length of the derivation in IMNCLL. If the derivation consists only
of an axiom, then the claim clearly holds. Let us assume that the last 1nfe1ence rule is

FFB‘ FA* A
FT,(B~@4%), 22,

Then we have provable sequehts r,B~ and At,A. By Lemma 1.6, each of them has
precisely one +-formula. Let us denote A and I as £~ and A~,C+, T, respectively.
Hence the sequents obtained above become At,¥~ and A~,C*+, T,
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B~, respectively. By induction hypothesis, they correspond to sequents ¥ = 4 and
[',B,A = C in L. By the rule (/2) in L, we obtain terminal edges

I'B/A, X, A = C, and this corresponds to the last sequent in the derivation in I’\/INCLL
which is A=, C*, ', (B~®A*)~,X~. O

Definition 1.8 We define L- p1oof nets by induction on the derivation in IMNCLL.
Axiom. We draw an aziom-link in an L-proof net as the aziom-link in MNCLL with A

and A*, where A is a formula.
x% z FA

Tensor. Now we draw a tensor-link as _th_p following 6 types:

' l(CA*@ﬁ)"‘” l?x@ﬁr. :

Par. Now we draw a par-link as the following 3 types:

I.Hllll.I.'II
r® ar ® s @ a

Af B~ A B* A- B
R\/L "R\ /L N/R
) > ®
c C
1(]3'*’3’A+ ) 1 B3 (AZB)

M — ’ ~— 1
o OO
A A A A

Proposition 1.9 The system of L-proof nets admits the cut-elimination.



An L-proof net has the inductive structure inherited from the system L.

Definition 1.10 A sequence A;yy,- -+, A,, Ay, -+, 4; (i < n) is called as a cyclic shift of
Aq, oo, A, ' .

Lemma 1.11 Let G be an L-proof net with terminal edqr’s' Y. Then for any cyclic shz’ft
Y of &, there exists an L-proof net with terminal edges ¥'. '

Proof. Tt follows since we identify the order of the formulas in a sequent in IMNCLL up
to the cyclic shifts. O

By a plane proof net of MLL, we mean a (commutative) proof net without crossings in
the graph drawing.

Definition 1.12 A directed DanOSQRégnier graph (or D-R graph) is a directed graph,
which consists of axz'om-lz'nk:s, cut-links, tensor-links, par-links and conclusion nodes: An
aziom-link has two out-edgés; a cut-link has two in-edges; each of a tensor-link and a
par-link has two in-edges and one out-edge.

Definition 1.13 An edge in a D-R graph connected to a conrluszon node is called a
terminal edge.

We will follow Danos and Regnier’s convention to denote a formula by an cdge and a
logical connective by a link.in a D-R graph. The following clml acterization theorem for
proof nets of MLL is due to Danos and Regnier.

Theorem 1.14 (Danos and Regnier [2]) A D-R graph is a, j)}'oof net of MLL. if and only
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if it is always acyclic and connected under any choice of pm swzt(,lunqs ( see [2] for the

notion of par-switchings).

We call the condition that a D-R graph is always acyclic and connected under any choice
of par-switchings, as the switching condition.

Definition 1.15 A marked D-R graph is a D-R graph, where each of a tensor-link and
a par-link has two in-edges labeled L (left) and R (right), respectively, and one out-edge
labeled C (conclusion). .
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Fig. 2. An example of marked D-R graphs.

2 Intuitionistic Non-Commutative Proof Net Im-
plies L-Strong Planity.

In this section, we introduce a notion of signed D-R graphs. Then we give a notion
of L-strongly planity, which'is shown to characterize L-proof nets in terms of signed D-
R'gfaphs. Our main theorem in this section is that non-commutative proof nets are
quivalent to L-strongly planar singed D-R graphs.

Definition 2.1 To each link of degree 3, we can assign a triple of signs (s1, 82, 53), where
sy 18 the sign of L-edge, s> R- edge, S3 C-edge A signed D-R graph is a marked D-R
graph, in which each edge is labeled either + or — ; every aziom-link and cut-link consists
of a pair of formulas of opposite signs; every par—lznk in the graph is assigned (=, +,+),
(+,—+) or (—,—,—); every tensor-link in the graph is assigned (+,—,—), (—,+, =), or
(+,+,4). - S ‘

Definition 2.2 The links with C-edge labeled with — are called a —-link, and The links
with C-edge labeled with + are called o +-link.
. lB.k

A\ t[B‘“ : A*é
Cls=at ‘g%gxa*@&)*
F1g . Figures for +- hnks
)B' a\ )B*

A+
L R L R
c AOBY C\(a@8y

Fig. 8. Figures for —-links.

Definition 2.3 (1) A signed D-R graph G is said to be L-strongly planar with terminal
edges Ay, - --, Aq, if there ezists a closure G of the graph G, which has a plane drawing
drawing with one terminal edge A1p--- pA,, in which (1.1) there exists a precisely one
+-formula; (1.2) all the —-links are uniformly directed; (1.3) all the +-links are uniformly
directed; and (1.4) the —-links and the +-lz'nk.s'are_ reversely directed. (2) A signed D-R
graph G is said to be L-strongly planar, if it is L-strongly planar with some terminal edges
T )



As a matter of simplicity, we assume that the signed D-R graph G is a plane L-directed
graph drawing, in which the —-links are clockwisely ordered, and the +-links are counter-
clockw1sely ordered, 1espect1ve1y

Theorem 2 4 Let G be an L-proof net wzth terminal edges ¥. Then it is an. L- strongly
planar signed D-R graph G with terminal edges ¥ satisfying the switching condition.

Proof. Let the L-proof net have terminal nodes ¥. We can construct by induction on the
structure of the L-proof net, a plane L-directed graph drawing, in which the —-links are
clockwisely ordered, and the +-links are counter-clockwisely ordered, respectively, as in
Theorem 3.7in [7] . O

3 Stack Condition Implies Intuitionistic Non- Com-
mutative Proof Net.

In this section, we give the notion of the stack condition, and show that it characterizes
the L-proof nets.

The notion of a stack condition is defined by a special trip, which is a long trip with
restrictions. The stack condition is originally obtained for MNCLL [7], which is obtained
from an attempt to analyze the relationship hetween the strohg planity [7] and the long
trip condition introduced by Abrusci [1]. We modify this stack condition in order to
characterize IMNCLL.

Definition 3.1 For a given signed D-R graph G with an edge A,

(1) T is a point of G, iff T is Al or AT,

(2) we call a sequence Ty, -+, T, of points of G a one-way special trip from AT (or A |)

in G, iff the sequence is portion of the long trip in G fromTy = AT toT, = A | (or
=A| toT,= AT, respectively), with the following switching:

(2.1) every +-@-link (+,+,+) is switched on ”L” ("left”),

(2.2) every —-®-link (+,—, =) or (—,+,—) is switched on "R” ("right”),

(2.3) every +-p-link (—,+,+) or (+,—,+) is switched on "R” ("right”),

(2.4) every —-p-link (—,—, —) is switched on "L” ("left”).

Let G be a Signed D-R graph satisfying the switching condition. By Theorem 1.14, graph
G is a proof net of MLL. We say an edge is a critical node (a critical vertex of Abrusci
[1]), if it is a terminal edge or a R-edge of a par-link.
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Definition 3.2 (Definition of a stack.) Let S be a stack consisting of the ordered pairs
defined above. Top(S) represents the top element in the stack S. An action Pop pops up
the top element in the stack S, which is denoted as Pop(S). An action Push(A,S) pushes
a new element A on the top of the stack S. | ' ‘

We define an algorithm with stack S which is later used for the correctness criteria.

Definition 3.3 (Definition of a stack algorithm.) A stack algorthm is defined inductively
on a special long trip.

(Initial State.) S = (b

If we visit:

(Case 1.) B | followed by B 1, Push(B,S).

(Case 2.) B | followed by BpC' |, Pop, if Top(S) = C and g is —-link, or the algorithm
fails and the content of the stack is discarded otherwise.

(Case 3.) C | followed by BpC |, Pop, if Top(S) = B and g is +- lmk or the algomthm
fails and the content of the stack is discarded otherwise.

R (Default.) S is unchanged in all the other cases.

Definition 3.4 Let ¥ = A, ---,A,. Let G be a D-R graph satisfying the switching
condition, and consider a special trip on G starting from A, |. We say that graph G with
terminal edges ¥ satisfies the stack condition, if the content of the stack S is Ay, Aa, - -+ An
at the end of the trip.

Remark. If graph G with terminal edges © = A,,---, A, satisfies the stack condition, any
special trip on G starting with 4; | (i # n) resultsin a eyclic shift Ait1, -+, An, A1, A2, - - A;
of A;, Ag,--- A, in S at the end of the trip.

Finally we show that the stack condition implies the L-proof nets.

Lemma 3.5 LetG be a signed D-R graph with terminal edges T satisfying both the switch-
ing condition and the stack condition. Then for any special trip Ty, - - -, T, with Ty=D}]
with a terminal edge D in T, the content of stack S at the end of the trip is a cyclic shift
of ¥ in which D is the rzghtmost formula

Proof. By the property of the spec1al trips. O

Lemma 3.6 Let G be a signed D-R graph with terminal edges satlsfying both the switch-
ing condition and the stack condition. Then for any cyclic shift ©' of S, G with terminal
- edges X' satisfies the stack condition.

Proof. By Lemma 3.5. O



Definition 3.7 An edge A is said to be connected to an edge B. if there is « path con-
necting the edges A and B.

Theorem 3.8 Let G be a signed D-R graph with terminal edges S satisfying both the
switching condition and the stack condition. Then it is an L-proof net with terminal edges
- .

Proof. Because the signed D-R graph G satisfies the switching condition, by Theo-
rem 1.14, G is a proof net of MLL. Thus we may assume the inductive structure of proof
net G. We prove by induction on the inductive structure of proof net G.

Aziom. Clear.

Par. We only consider for (+, —, +)-link; and the similar arguments work for the other

64

par links. Let ¥ be T',(A~pB*)*,A. Let @ be a signed D-R graph obtained by iemov—\ |

ing the par-link between A~ and B*. We show the stack condition on G’ with terminal
edges T', BT, A™; A follows. Let C be the rightmost formula in A. By the stack condition
of G, a special trip T1,---,T, on G starting T3 = C | gives the content of S equal to
[,(A~pB*)*, A at the end of the trip. We construct a special trip 77, -+, 7", on G', such
that the content of S is I, BT, A=, A at the end of the trip. We follow the same trip up
to B |;let T; = Bt |. We define T/ = T; (j < i): We define the rest of the trip as
T/ =Tjye (i+1<j < m).

Because the trips are exactly the same up to 7; and 77, and Pop is excuted at T,+1
(A~pB*)* |, Top(S) = A~ at T; = B* |. Hence the content of S at T, = B* 1 is
- B*,A™,A. Since the rest of the trips are again exactly the same, the claim holds. The

- rest of the proof follows from the induction hypothesis applied to G'.

Tensor. We may assume there is no par-link in ¥, whose C-edge is a terminal one. By
Splitting Lemma [3], we moreover may assume the tensor-link is added last. We only
consider for the (+, +, +)-link; and the similar arguments work for the other tensor links.
By the stack condition of G, and Lemma 3.6, we assume a special trip T3,---,T, on G
starting Ty = (BTQA™)* | gives the content of S equal to X', where ¥’ is a cyclic shift
of & and (B*®A*)* is the rightmost formula in ¥'. Let Gg+ and G+ be signed D-R
graphs obtained from signed D-R graph G by removing the tensor-link between Bt and
At whose edges are connected to edge B+, and are connected to edge A*, respectively:
Hence Gp+ and G4+ are only connected at (B*®A*)* in G. Because of the property of
the special trip, To = (B*®A™)* 1, T3 = AT 1; and there exist an integer i < n, and
formulas D and C, such that each T; '(3 < j £ 1) is a point in the subgraph G+ and
T;=D|,and Tiyy = At |\ 1o = B* 1, Tjy;3=C f,each T; (1+3 < j<n-1)
is a point in the subgraph Gg+ and T, = B* |. Therefore there exist ' and A such
that © = A, T, (B*®A*)*, where I are the terminal edges in G and A are the terminal
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edges in Gf. Moreover, the part of the special trip A* |, T3,---,T; gives a special trip
on a signed D-R graph G4+ such that the content of S is I', G 4+ at the end of the trip,
and the part of the special trip B* |, 12, -+, T,—1 gives a special trip on a signed D-R
graph Gp+ such that the content of S is A, Bt at the end of the trip. Thus both graphs
G4+ and Gp+ satisfy the stack condition. By induction hypothesis, both G4+ and Gg+
are L-proof nets with terminal edges ', A* and A, BY, respectively. Hence there exists an
L-proof net with terminal edges A,T', (BY® A*)*. By Lemma 1.11, we obtain an L-proof
net with terminal edges X.

Cut. Similar to the case of tensor. O

4 L-Strong Planity Implies Stack Condition.

In order to establish the equivalehce between the L-proof nets and the two characteri-
zations, we then prove that the L-strong planity implies the stack condition.

Definition 4.1 An edge A is said to be unilaterally connected to an edge B, if there is a
directed path from the edge A to the edge B.

Lemma 4.2 Let G be a signed D-R graph satisfying the switching condition. Then signed
D-R graph G is L-strongly planar with terminal edges ¥ iff it is L-strongly planar graph
with terminal edges X' for any cyclic shift ¥’ of T.

Proof. Let £ = A;,---,A,. As same as Lemma 3.9 in [7] , we can construct a closure
of G, as graph drawing with terminal edge An.p(A1p- - - pAn-1) such that the —-links are
clockwisely directed and +-links are counter-clockwisely directed. O

Lemma 4.3 Let A~ be an edge in a signed D-R graph and be an associative par instance
of £. Then any edge in X is signed —.

Proof. By induction on the number of elements in ¥. O

Lemma 4.4 Assume an L-strongly planar signed D-R graph G with terminal edges Ay, - - -, A,
satisfying the switching condition. If 1 < i < j < n, then in a closure G of G. the follow-
ing hold: ,

(1) for the edges Af and Aj, there ezists a par-link such that the edge Af is unilaterally
connected its R-edge and the edge A; is unilaterally connected to its L-edge.

(2) for the edges A7 and AJr there ezzsts a par-link such that the edge A is unzlatemlly
connected to its R-edge and the edge A+ is unilaterally connected to its L-edge,

(3) for the edges A7 and A7, there exists a par-link such that the edge A7 is unilaterally
connected its L-edge and the edge A is unilaterally connected to its R-edge.



Proof. we only discuss on (1), but arguments for (2) and (3) are similar. We may assume
that closure G of G is a plane signed D-R graph drawing with a single terminal edge
which is an associative par instance of A;,---,A,. Moreover in the graph G, we may
assume that the links with C-edge labeled with — are clockwisely ordered, and that the
links with C-edge labeled with + are counter-clockwisely ordered, respectively.

We prove the lemma by induction on the number of formulas in the associative par
instance, whose in-edges, the edges A} and A7 are unilaterally connected to. We have
three types of par-links:

By Lemma 4.3, the possible par-link is either type (I) or (II). If the par-link is type (I),
we argue as in Lemma 6.2 in [7]. If the par-link is type (II), then by Lemma 4.3, both
At and A;”  are connected to B*. By 1ndu(;t10n hypothesis, the cla,un holds. O. ‘

Lemma 4.5 A szgned D-R graph satzsﬁes the switching condition, then there is only one
+-formula connected to a conclusion node.

Proof. By induction on the number of links. O

Proposmon 4.6 Assume that an L-strongly planar signed D-R graph G with terminal
edges ¥ satisfies the swztchzng condition. and no terminal edge in G is a C-Pdge of a
par-link. Then there is a splitting formula AQB in X.

Proof. The argument goes as Theorem 1.14.

Lemma 4.7 Assume that an L-strongly planar signed D-R graph G with terminal edges
', A®B, satisfies the switching condition, and that AQB is a splitting formula. Let Gp
be a graph obtained from G by removing the tensor link between A and B, whose edges
are connected to edge B.

(1) Assume that AQB is signed —, and that an edge Dg is the rightmost edge in I'. which
belongs to graph G, then any edge in T left to Dy belongs to Gg as well.

(2) Assume that AQB is signed +, and that an edge D, is the rightmost edge in T', which
belongs to graph G 4, then any edge in T left to D4 belongs to G4 as well.
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Proof. The proof essentially goes as Lemma 6.3 in [7] with a help of Lemma 4.4, except
that we argue separately according to the signs of A, Dp and D;. However, Lemma 4.5
reduces the number of cases we have to argue. O ‘

Lemma 4.8 Assume that an L-strongly planar signed D-R graph G with terminal edges
Y satisfies the switching condition, and that AQB is a splitting formula. Let G4 and
Gp be signed D-R graphs obtained from G by removing the tensor-link between A and B,
whose edges are connected to edge A, -and are connected to edge B, respectively.

(1) If AQB is signed —, then there are sequences I' and A of terminal edges in G, such
that (1.1) the edges in I‘ belong to G4 and the edges in A belong to Gg, (1.2) signed
D-R graphs G 4 with terminal edges T, A and Gp with terminal edges B, A are L-strongly
planar, (1.3) T, AQB~, A is a cyclic shift of ©.

(2) If AQB is signed +, then there are sequences I' and A of terminal edges in G, such
that (2.1) the edges in T' belong to Gp and the edges in A belong to G4, (2.2) signed
D-R graphs Gp with terminal edges T', B and G 4 with terminal edges A, A are L-strongly
planar, (2.8) T, AQ B*, A is a cyclic shz‘ft of L. .

Proof. The proof essentially goes as Lemma 6.4 in [7] with a help of Lemmas 4.2 and 4.7.
We note that if AQB is signed —, then A and B are opposntely signed; and if - 4®B is
signed +, then A and B are both 51gned +. Use Lemma 4.5. O

" Lemma 4.9 Assume that an L-strongly planar signed D-R graph G with terminal edges
D,T satisfies the switching condition, and that L in G is a splitting formula. Let G4
be a graph obtained from G by removing the cut-link between A and A*, whose edges are
connected to edge A. Assume that an edge D, is the rightmost edge in I‘ which belongs
to graph G4, then any edge in T' left to D4 belongs to G, as well.

Proof. The proof essentially goes as Lemma 6.5 in [7] with a help of Lemma 4.4. O

Lemma 4.10 Assume that an L-strongly planar signed D-R graph G with terminal edges
¥ satisfies the switching condition, and that L is a splitting formula. Let G4 and Gas
be signed D-R graphs obtained from G by removing the cut-link between A and A*, whose
edges are connected to edge A, and are connected to edge A*, respectively.

Then there are sequences I' and A of terminal edges in G, such that (1) the edges in I’
belong to G4 and the edges in A belong to Ga~, (2) signed D-R graphs G 4 with terminal
edges T', A and G4« with terminal edges A*, A are L-strongly planar. (3) T', A is a cyclic
shift of .

Proof. We note that A and A* are oppositely signed. The argument essentially goes as
Lemma 6.6 in [7] with a help of Lemmas 4.2 and 4.9. O
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Theorem 4.11 Assume that a signed D-R graph G satisfies the switching condition. If
G is L-strongly planar with terminal edges T, then G with T satisfies the stack condition.

Proof. We prove by induction on the number of links in the signed D-R graph G. We
use Proposition 4.6 to keep the inductive step, and show the removal of any par-link or
any tensor-link preserves the stack condition by Lemmas 4.2, 4.8 and 4.10. The argument
goes as in Theorem 6.7 in [7] . O

Theorem 4.12 (Characterization theorem with respect to the signed D-R graph for L) A
signed D-R graph represents an L-proof net iff (1) it satisfies the switching condition and
it is L-strongly planar, iff (2) it satisfies the switching condition and the stack condition.

Proof. By Theorems 2.4 and 4.11. O

Roorda’s characterization of the proof nets for Lambek Calculus is written as the condition
on A-terms assigned to formulas, and not quite geometric [8]. Our question is whether
the additional condition of the non-empty antecedent on the inference rules (\ 1) and (/
1) of Lambek Calculus. (see the remark after Definition 1.1) can be interpreted as some
geometrical property of signed D-R graphs. One would think that we can simply add the
condition that there are strictly more than one —-signed terminal edges in the signed D-R
graph: But this does not mean that any smaller signed D-R graph obtained by‘splitting
the original signed D-R graph always preserves the same property. Hence, the following
remains an open question: What is a geometric characterization of proof nets for Lambek
Calculus in terms of signed D-R graphs?
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