JORDAN-HÖLDER TYPE THEOREM IN NORMAL INTERMEDIATE SUBFACTOR LATTICES FOR DEPTH TWO INCLUSIONS OF AFD II₁ FACTORS

TAMOTSU TERUYA (照屋 保)

ABSTRACT. Let $N\subset M$ be a depth 2 inclusion of AFD II₁ factors with finite Jones index. Let K and L be normal intermediate subfactors of $N\subset M$. If $K\cap L=N$ and M is generated by K and L, then we can represent M,K,L,N as $M=P\otimes R,K=Q\otimes R,L=P\otimes S,$ and $N=Q\otimes S$ for some inclusins $P\supset Q$ and $R\supset S.$ Using this characterization, we shall prove Jordan-Hölder type theorem in normal intermediate subfactor lattices for depth 2 inclusions of AFD II₁ factors.

1. Introduction

Let $N \subset M$ be an irreducible inclusion of type II₁ factors with finite index. In [9], the auther introduced the notion of normality for intermediate subfactors of $N \subset M$ as follows:

Definition 1.1. Let K be an intermediate subfactor of the inclusion $N \subset M$. Let $N \subset M \subset M_1 \subset M_2$ be the Jones tower for $N \subset M$ and K_1 the basic extension for $K \subset M$. Then K is a normal intermediate subfactor of the inclusion $N \subset M$ if $e_K \in \mathcal{Z}(N' \cap M_1)$ and $e_{K_1} \in \mathcal{Z}(M' \cap M_2)$, where e_K and e_{K_1} are the Jones projections for $K \subset M$ and $K_1 \subset M_1$, respectively.

With the above notation, if the depth of $N \subset M$ is 2, then $N' \cap M_1$ and $M' \cap M_2$ are a dual pair of Hopf C^* -algebras. and $K' \cap K_1$ is a *-subalgebra and a left coideal of $N' \cap M_1$ (see [1]). Then K is a normal intermediate subfactor of $N \subset M$ if and only if $K' \cap K_1$ is a subHopf algebra and the left and right adjoint action of $N' \cap M_1$ leave $K' \cap K_1$ invariant (see [3]).

Watatani[10] studied intermediate subfactor lattices $\mathcal{L}(N \subset M)$ and relations between modular identity and commuting and co-commuting (nondegenerate) square conditions. The author[9] proved if the depth of $N \subset M$ is 2, then the set $\mathcal{N}(N \subset M)$ of all normal intermediate subfactors of $N \subset M$ is a sublattice of $\mathcal{L}(N \subset M)$ and a modular lattice.

Let $N\subset M$ be an irreducible, depth 2 inclusion of AFD II₁ factors with finite index. Our purpose is to show Jordan-Hölder type theorem in normal intermediate subfactor lattices for $N\subset M$. To be more precise, we prove that if $M=A_0\supset A_1\supset A_2\supset\cdots\supset A_n=N$ and $M=B_0\supset B_1\supset B_2\supset\cdots\supset B_m=N$ are maximal chains of $\mathcal{N}(N\subset M)$, then m=n and the inclusions $A_{i-1}\supset A_i$ are isomorphic to the inclusions $B_{j-1}\supset B_j$ in some order. To show this , we characterize tensor products of depth 2 inclusions of AFD II₁ factors with finite index as follows: Let $N\subset M$ be an irreducible, depth 2 inclusion of AFD II₁ factors with finite index. Let K and K be normal intermediate subfactors for K and K if K is generated by K and K is K is given by K and K is K is K in the K is K in the K in the K is K in the K in the K is K in the K in the K in the K is K in the K in the K in the K in the K is K in the K is the K in the K i

2. A CHARACTERIZATION OF TENSOR PRODUCTS OF DEPTH 2 INCLUSIONS

Let $N \subset M$ be an irreducible, depth 2 inclusion of II_1 factors with $[M:N] < \infty$ and $\mathcal{N}(N \subset M)$ the all normal intermediate subfactors of $N \subset M$. Suppose that $K, L \in \mathcal{N}(N \subset M)$ and M is generated by K and L, and $N = K \cap L$. Then

is commuting and co-commuting (nondegenerate) square (see [6, 8]). Let $K_1 = \langle K, e_K^M \rangle$ and $L_1 = \langle L, e_L^M \rangle$ be the basic extension with the Jones projections e_K^M and e_L^M for $K \subset M$ and $L \subset M$, respectively. Then it is well known that

are also nondegenerate commuting squares.

Lemma 2.1. With the above notation, $L \subset K_1$ and $K \subset L_1$ are irreducible, depth 2 inclusions. Moreover, M and $\langle L, e_K^M \rangle$ are normal intermediate subfactors of $L \subset K_1$ and, M and $\langle K, e_L^M \rangle$ are normal intermediate subfactors of $K \subset L_1$

Proof. Since $L \subset M$ and $M \subset K_1$ are depth 2 inclusion by [9], the depth of $L \subset K_1$ is 2 by [7]. Similarly, $K \subset L_1$ is a depth 2 inclusion. It is easy to see that $L \subset K_1$ and $K \subset L_1$ are irreducible inclusions. \square

Lemma 2.2. With the above notation, we have

$$K' \cap K_1 = \langle K, e_L^M \rangle' \cap M_1 = N' \cap \langle L, e_K^M \rangle$$

$$L' \cap L_1 = \langle L, e_K^M \rangle' \cap M_1 = N' \cap \langle K, e_L^M \rangle.$$

Proof. By Lemma 2.1 and [8], we have $[M:K]=[L:N]=[L_1:\langle K,e_L^M\rangle]$. Therefore we have

$$\dim_{\mathbb{C}}(K'\cap K_1)=\dim_{\mathbb{C}}(\langle K,e_L^M\rangle'\cap M_1)=\dim_{\mathbb{C}}(N'\cap \langle L,e_K^M\rangle).$$

Let x be an element of $K' \cap K_1$. Since e_L^M is an element of the center of $N' \cap M_1$ and $K' \cap K_1 \subset N' \cap M_1$, x and e_L^M are commutative and hence $x \in \langle K, e_L^M \rangle' \cap M_1$. So we have $K' \cap K_1 \subset \langle K, e_L^M \rangle' \cap M_1$. By $\dim_{\mathbb{C}}(K' \cap K_1) = \dim_{\mathbb{C}}(\langle K, e_L^M \rangle' \cap M_1)$, we have $K' \cap K_1 = \langle K, e_L^M \rangle' \cap M_1$.

Since M_1 is the basic extension of K_1 by $\langle L, e_K^M \rangle$ with the Jones projection e_L^M , we have $\langle L, e_K^M \rangle = \{e_L^M\}' \cap K_1$. Since e_L^M is an element of the center of $N' \cap M_1(\supset K' \cap K_1)$, if x is an element of $K' \cap K_1$, then $x \in \{e_L^M\}' \cap K_1 = N' \cap \langle L, e_K^M \rangle$. And hence $K' \cap K_1 \subset N' \cap \langle L, e_K^M \rangle$. And $K' \cap K_1 = N' \cap \langle L, e_K^M \rangle$ by $\dim_{\mathbb{C}}(K' \cap K_1) = \dim_{\mathbb{C}}(N' \cap \langle L, e_K^M \rangle)$. Similarly, we have $L' \cap L_1 = \langle L, e_K^M \rangle' \cap M_1 = N' \cap \langle K, e_L^M \rangle$. \square

Theorem 2.3. Let $N \subset M$ be an irreducible, depth 2 inclusion of AFD II_1 factors with $[M:N] < \infty$. If K and L are normal intermediate subfactors of $N \subset M$ such that $K \cap L = N$ and M is generated by K and L, then we can represent M, N, K, L as $M = P \otimes R, N = Q \otimes S, K = Q \otimes R$ and $L = P \otimes S$

Proof. $N\subset M$ has the generating property, i.e., there exists a tunnel $M=N_0\supset N=N_1\supset N_2\supset \cdots\supset N_i\supset \cdots$ such that

$$M = \overline{igcup_{i=1}^{\infty}(M \cap N_i')} ^{weak} \supset N = \overline{igcup_{i=1}^{\infty}(N \cap N_i')}$$

(see for example [4, 5]). Let

$$A_{00} \supset A_{01} \supset A_{02} \supset \cdots$$

$$\cup \qquad \cup \qquad \cup$$

$$A_{10} \supset A_{11} \supset A_{12} \supset \cdots$$

$$\cup \qquad \cup \qquad \cup$$

$$A_{20} \supset A_{21} \supset A_{22} \supset \cdots$$

$$\cup \qquad \cup \qquad \cup$$

$$\vdots \qquad \vdots \qquad \vdots$$

be the commuting and co-commuting squares such that the initial commuting square is

and $A_{ii}=N_i$ for $i=1,2,\ldots$ as in [8]. Note that for the square

 $A_{kl} \supset A_{k+1,l+1}$ is again irreducible, depth 2 and, $A_{k,l+1}$ and $A_{k+1,l}$ are normal intermediate subfactors of $A_{kl} \supset A_{k+1,l+1}$. We put

$$P = \overline{igcup_{i=1}^{\infty}(A_{00}\cap A'_{i0})}^{weak} \supset Q = \overline{igcup_{i=1}^{\infty}(A_{10}\cap A'_{i0})}^{weak}$$
 $R = \overline{igcup_{i=1}^{\infty}(A_{00}\cap A'_{0i})}^{weak} \supset S = \overline{igcup_{i=1}^{\infty}(A_{01}\cap A'_{0i})}^{weak}.$

Then we can see $M=P\otimes R, N=Q\otimes S, K=Q\otimes R$ and $L=P\otimes S$ by Lemma 2.2 and [2]. $\ \square$

3. JORDAN-HÖLDER TYPE THEOREM

In this section, we shall prove Jordan-Hölder type theorem for depth 2 inclusions of AFD II_1 factors.

Theorem 3.1. Let $N \subset M$ be an irreducible, depth 2 inclusion of AFD II₁ factor. If K and L are normal intermediate subfactors of $N \subset M$, then $K \subset K \vee L$ and $K \cap L \subset L$ are conjugate.

Proof. Since the set $\mathcal{N}(N \subset M)$ of all normal intermediate subfactors of $N \subset M$ is a sublattice of $\mathcal{L}(N \subset M)$, $K \vee L$ and $K \cap L$ are elements of $\mathcal{N}(N \subset M)$. Therefore $N \subset K \vee L$ and $N \subset K \cap L$ are depth 2 inclusion by [9, Theorem 4.6]. Moreover $K \cap L$ is a normal intermediate subfactor of $N \subset K \vee L$ by [9, Proposition 3.7]. So we have $K \cap L \subset K \vee L$ is depth 2 inclusion by [9, Theorem 4.6]. By theorem 2.3, there exist inclusions $P \supset Q$ and $R \supset S$ such that $K \vee L = P \otimes R$, $K = P \otimes S$, $L = Q \otimes R$ and $K \cap L = Q \otimes S$. So we can see both $K \vee L \subset K$ and $L \supset K \cap L$ are conjugate to $R \subset S$. \square

Theorem 3.2. Let $N \subset M$ be an irreducible, depth 2 inclusion of AFD II_1 factors with $[M:N] < \infty$. Let $K, \tilde{K}, L, \tilde{L}$ be normal intermediate subfactors of $N \subset M$ with $K \supset \tilde{K}$ and $L \supset \tilde{L}$. Then the pairs $\tilde{K} \lor (K \cap L) \supset \tilde{K} \lor (K \cap \tilde{L})$ and $\tilde{L} \lor (K \cap L) \supset \tilde{L} \lor (\tilde{K} \cap L)$ are conjugate.

Proof. Since $\tilde{K}\vee (K\cap L)=(\tilde{K}\vee (K\cap \tilde{L}))\vee (K\cap L)$, the pairs $\tilde{K}\vee (K\cap L)\supset \tilde{K}\vee (K\cap \tilde{L})$ and $K\cap L\supset (K\cap L)\cap (\tilde{K}\vee (K\cap \tilde{L}))$ are conjugate by the previous theorem. Similarly, the pair $\tilde{L}\vee (K\cap L)\supset \tilde{L}\vee (\tilde{K}\cap L)$ and $K\cap L\supset (K\cap L)\cap (\tilde{L}\vee (\tilde{K}\cap L))$. are conjugate. Since $\mathcal{N}(N\subset M)$ is a modular lattice by [9], we hve $(K\cap L)\cap (\tilde{K}\vee (K\cap \tilde{L}))=((K\cap L)\cap \tilde{L})\vee (K\cap \tilde{L})=(K\cap \tilde{L})\vee (K\cap \tilde{L})$. Similarly, we hvave

 $(K\cap L)\cap (\tilde{L}\vee (\tilde{K}\cap L))=(K\cap \tilde{L})\vee (K\cap \tilde{L}).$ We have thus proved the theorem. $\ \square$

In a lattice L, a finite chain $x=x_0\supseteq x_1\supseteq\cdots\supseteq x_d=y$ is maximal if $x_i\supsetneq x_{i+1}$ and $x_i\supseteq a\supseteq x_{i+1}$ implies x=a or $x_{i+1}=a$ for $i=1,2,\ldots,d-1$.

Theorem 3.3. Let $N \subset M$ be an irreducible, depth 2 inclusion of AFD II₁ factors with $[M:N] < \infty$. If $M = A_0 \supset A_1 \supset \cdots \supset A_n = N$ and $M = B_0 \supset B_1 \supset \cdots \supset B_m$ are two maximal chain of $\mathcal{N}(N \subset M)$, then m = n and the inclusions $A_{i-1} \supset A_i$ are isomorphic to the inclusions $B_{j-1} \supset Bj$ in some order.

Proof. Put

$$A_{ij} = A_i \vee (A_{i-1} \cap B_i)$$

and

$$B_{ji} = B_j \vee (A_i \cap B_{j-1}).$$

Then $A_{i,j-1}\supset A_{ij}$ is isomorphic to $B_{j,i-1}\supset B_{ji}$ by Theorem 3.2. Since $A_0\supset A_1\supset \cdots\supset A_s$ is maximal chain, for any $i(i=1,2,\ldots,s)$, there uniquely exists j such that $A_{i-1}=A_{i,j-1}\supset A_{ij}=A_i$. Then $B_{j-1}=B_{j,i-1}\supsetneq B_{ji}=B_j$. And hence $A_{i-1}\supset A_i$ is isomorphic to $B_{j-1}\supset B_j$. \square

Example 3.4. Let G be a semi direct group $B \rtimes A$ of finite groups A and B. Let

$$M = P \rtimes_{\gamma} B \supset N = P^{(A,\gamma)} = \{x \in P | \gamma_a(x) = x, \forall a \in A\},$$

where γ is an outer action of G on II_1 factor P. Then the depth of $N \subset M$ is 2 (see for example [7]). Let $A_0 = A \supsetneq A_1 \supsetneq \cdots \supsetneq A_r = \{e\}$ and $B_0 = B \supsetneq B_1 \supsetneq$

 $\cdots \supseteq B_s = \{e\}$ be normal subgroups of G such that if H is a normal subgroup of G with $A_{i-1} \supseteq H \supset A_i$ or $B_{j-1} \supseteq H \supset B_j$, then $H = A_i$ or $H = B_j$. Then $M = P \rtimes_{\gamma} B_0 \supset P \rtimes_{\gamma} B_1 \supset \cdots P = P^{(A_r,\gamma)} \supset P^{(A_{r-1},\gamma)} \supset \cdots P^{(A_0,\gamma)} = N$ is a maximal chain of $\mathcal{N}(N \subset M)$ by [9]. Therefore if $M = C_0 \supset C_1 \supset \cdots C_n = N$ a maximal chain of $\mathcal{N}(N \subset M)$, then n = r + s and the inclusins $C_{k-1} \supset C_k$ are isomorphic to $R \rtimes_{\gamma} F \supset P$ or $R \supset R^F$ for some II₁ factor and some finite group F.

REFERENCES

- 1. M. Izumi, R. Longo, and S. Popa. A Galois correspondence for compact groups of automorphisms of von Neumann algebras with a generalization to Kac algebras. preprint.
- Y. Kawahigashi. Classification of paragroup actions on subfactors. Publ. RIMS, Kyoto Univ., 31:481-517, 1995.
- 3. S. Montgomery. Hopf Algebras and Their Actions on Rings. CBMS series number 82, 1992.
- A. Ocneanu. Quantum symmetry, differential geometry of finite graphs, and classification of subfactors, 1991. Univ. of Tokyo Seminary Notes.
- S. Popa. Classification of subfactors: the reduction to commuting squares. *Invent. Math.*, 101:19-43, 1990.
- 6. S. Popa. Classification of amenable subfactors of type II. Acta Math., 172:163-255, 1994.
- T. Sano. Commuting co-commuting squares and finite dimensional Kac algebras. to appear in Pacific. J. Math.
- T. Sano and Y. Watatani. Angles between two subfactors. J. Operator Theory, 32:209–242, 1994.
- 9. T. Teruya. Normal intermediate subfactors. J. Math. Soc. Japan, to appear.

10. Y. Watatani. Lattices of intermediate subfactors. J. Funct. Anal., to appear.