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Introduction to the classification of
purely infinite simple C*-algebras

- Kirchberg [KDOLZE DI/

KB A% - B KK E% (Hiroyuki Osaka)

1 Introduction

In this note we try to present the framework of the following classifi-
cation thery of purely infinite simple C*-algebras by Kirchberg [17].

Theorem B. If A and B are purely infinite simple, separable, unital,
nuclear C*-algebras (pi-sun algebras) with A = A* and B = B*, then for
every KK-equivalence z € K K(A, B) there exists a unital *isomorphism
h from A onto B which induces the equivalent KK-element to z, where
At denotes the Cuntz standard form, that is, the K element [14]o is a
zero element in Ky(A).

Since any purely infinite simple C*-algebra is stable isomorphic to
some purely infinite simple unital C*-algebra in Cuntz standard form, we
get

Corollary. Let A and B be pi-sun algebras. :

(1) A and B are KK-equivalent if and only if they are stable isomor-
phic.

(2) If there exists a KK- equlvalence z in KK (A, B) with.

Yo(z)([1a)o) = [15]o,

then A and B are isomorphic, where 7, is a natural map from K K(A, B)
to Hom(Ko(A), Ko(B)) which is induced by Kasparov product.
Therefore,
(Ko(A), [14)o, K1(A))



is a complete system of invariant in the classification of pi-sun algebras
satisfying the Universal Coefficient Theorem for their KK-Theory.

From this classification theorem we obtain that

1) For every separable simple unital nuclear C*-algebra A

A® O, =0,

2) A separable simple unital nuclear C*-algebra A is purely infinite if
and only if A 2 A® O,.

Now we shall look through Kirchberg’s approach to Theorem B

Kirchberg proved Theorem B using his deepest result of the following
characterization of exact C*-algebras [17]:

Theorem A.

(1) A separable C*-algebra A is isomorphic to a C*-subalgebra of O,
if and only if A is exact.

(2) A separable unital C*-algebra 4 is isomorphic to the range of a
conditinal expectation from O, onto a C*-subalgebra of O, if and only if
A is nuclear. |

Using Theorem A (1) Kirchberg defined a semigroup EK (A, B) con-
structed by *-monomorphisms from A into M(Cy(R+) ® B)/Co(R4) ®
B, and show that the Grohtendieck group of EK (A, B) is isomorphic
to KK(A,B). Next, he defines a natural semigroup morphism from
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EK(A, B) to asemigroup EK, (A, B) which is constructed by *-monomorphisms

from A into B,, where w is a ultrafilter on N and B, is the limit alge-
bra £, (B)/C,(B) which is also purely infinite simple. Then, ia,pplying
the approximate intertwining argument in the sence of Elliott and the
property of Kasparov product, Theorem B is obtained.

This note is a survey of Kirchberg’s draft ”The classification of purely
infinite C*-algebras using Kasparov’s Theory ”, and it is based on Dr. Ra-
jarama Bhat’s lecture and lecture note by Peter Frris [13] in the program
year (Sept., 1994 - Aug., 1995) in Operator Algebras and Applications
at the Fields Institute. The author also has been writing the more detail
explanation about it [22].

The author would like to thank Fumio Hiai for giving a chance for
the presentation about the classification theory by Kirchberg. He also
thanks Takashi Itoh, Masaki Izumi, and Toshikazu Natume for useful
conversations.



2 Basic results on purely infinite simple
C*-algebras

Definition 2.1 A projection p is called infinite if p 1s Murray-von Neu-
mann equivalent to a proper subprojection of p

For projection p, q, let us write p < ¢ if p is equivalent to a subpio—
jection of p.

Definition 2.2 A simple C*-algebra A 1is purely infinite(= pi) if every
hereditary C*-subalgebra contains an infinite projection. '

In the rest part of this note a ”p: algebra” is simple in particular.

Example 2.3 The Cuniz algebra O,(n = 2,3,---,00) is typical examples
of simple and purely infinite [7].

Proposition 2.4 (Cuntz[9],Kirchberg[17]) Let A be a simple C*-algebra(A #
C,0). Then the following conditions are equivalent:

(1) A is pi.

(11) For positive elements a,b € A with ||a|| = ||b]| = 1 and € > 0 there
erists ¢ € A with ||c|| = 1 such that ||b — c*ac|| < e.

When A has a unit, we get the following characterization.

Proposition 2.5 (Cuntz [9]) Let A be a simple unital C*-algebra. Sup-
pose that A is not the scalars. Then the following conditions are equiva-
lent:

(1) A is a pi algebra.

(11) For any non-zero a in A there are elements z and y such that
1= zay.

(1i1) For any non-zero positive element a in A and € > 0 there is an
element z such that

1=zaz" and |z|| < ||a||'% + .
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Corollary 2.6 (i) every hereditary C*-subalgebra of a pi algebra is pi.

(1) A®K 1s pi if A 1s a pi algebra, where K is a C*-algebra generated
by all compact operators on some Hilbert space.

(iii) A 1s a pi algebra if(and only if) A is simple and contains in
multiplier algebra M(A) a central sequence(for elements in A) of unital
copies of Ey(or of Oy), where Ey is the C*-subalgebra generated by s, s,
of O3 = C*(s1, 82, 83)-

(iv)(Rordam [28], Lin [18]) Let A be a o-unital C*-algebra.

If M(A)/A is simple, then A= K or A is pr.

Proof. (iii): Let a and b be positive elements in A with [|a|| = ||b]| =
1 and € > 0. Since A is simple there are z,,:--,z, in A such that
|b — ¥ ztaz;|| < e. From assumption there are isometries sq,---, s, such
that sfs; = 6,; for all ¢,j and ||s;a — as;|| < i=11”mi“,e for i. Put
c =2 s;z; and p =} s;5], then

llc*pape — b|| < |lc¢*pape — c* (X sjas;-‘)cn
< el ss7asksy — X 8587 skasil|
< elPIS; 85831l Zr(ask — ska)skl|

< (Z il some = &

Hence, if we take € as a small, A is purely infinite(see proof of (ii) — (¢)
in Proposition 2.4).

For a unital C*-algebra A we denote by U(A) the group of unitaries
of A, and by Uy(A) the connected compornent -of the unit.

Proposition 2.7 (Cuntz[9]) Let A be a unital pi algebra. Then:

(1) For every g € Ko(A) there is a non-zero projection p such that
[Pl =g

(i) Ko(A)* = Ko(A).

(iii) If p and q are non-zero projections then [p] = [q] iff p~ q.

(iv) The canonical map U(A)/Uo(A) — K1(A) is an isomorphism.

3 The generalized Weyl-von Neumann The-

oremnm

In this section we present the Weyl-von Neumann type theorem along
lines of Voiculescu and Kasparov(see [1],[14],[33]), which plays an impor-
tant role in [17].
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Definition 3.1 For a unital C*-algebra A which has a unital copy of O,
and a fived pair of generators s1,s, of Oz, we define the Cuntz addition
® = D, 5, 1n A as follows:

a®b=sias] + szbs;, a,b€ A.

Remark 3.2 Upto unitary equivalence, Cuntz addition is independent of
which particular copy of Oy we take: If s1,s; and ty,1; are generators of
two copies of Oy in A, then

a®, s b=u(a®ys,)u” forall a,b€ A,

where u = s1t] + sot3 is a unitary.

Theorem 3.3 (Kircberg [17]) Let A be a o-unital C*algebra. Then
the following properties of A are equivalent:
(i) AQK = K or there ezists a unital pi algebra B such that AQK =
B® K. .
(i1) For every unital separable C*-algebra C' of M(A ® K) and every
weakly nuclear unital completely positive map V : C — M(A® K) with
V(CN(A®K)) = {0} there ezists a sequence of isometries s, € M(A®K)
with
a)sids, —V(d) e AQK,Vde C
B) limy—.oo |85 ds, — V(d)|| = 0,Vd € C.

(i1i) For every unital separable C*-algebra C' of M(A ® K) and every
weakly nuclear unital representation h: C — M(A®K) with R(CN(A®
K)) = {0} there exists a sequence of unitaries u, € M(A ® K) with

a)utdu, —d@®h(d) € AQK,Vde C
B)lim, . o ||udu, — (d ® h(d))|| = 0,Vd € C.

The following proposition is a kye result to prove Theorem 3.3 (i) —

(77).
Proposition 3.4 (Kirchberg [17]) Let A be a pi algebra and let B be
a separable C*-algebra of A. Let Q be a compact Hausdorff space. Then
for every nuclear map ¢ : B — C(Q, A) there exists a sequence (d,) of
contractions in C(Q, A) and a sequence (h,) in AY with ||hy|| = 1 such
that lim, .o ||hndy]| = 0 and

#(b) = lim d;bd,,Vb € B.

n— o0
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We shall prove the assertion in the case that Q is a single point, that
is, Corollary 3.5. The proof of general case is almost the same.

Corollary 3.5 Let A be a o-unital pi algebra and let B be a separable
C*-algebra of M(A). For every nuclear map ¢ : B — A there ezists a
sequence (d,) of contructions in A such that

$(8) = lim d7bd,,, Vb € B.

Proof.
Let ¢ be a nuclear map from B to A. Fix elements b;,b;,--+,b,, and
e > 0. By the nuclearity of ¢ there are completely positive contractive

maps ¢' : B — M, and ¢" : M,, — A such that
l6(bx) = ¢" 0 ¢'(be)ll <&, 1<k<m.

Since B C A C A® K(= C), ¢ extends to C by Arveson’s extension
theorem (let us denote the extention by ¢’ again) and we can assume
that (¢')**(1¢«) = 1. Since A is infinite dimensional, there is a positive
element h = hy ® e1,1, hy € A*, [|lu|| = 1 such that ||#'(h)]| < e. Let p
be a pure state on C.

Claim I: There are contractions fi,---, f, in C such that f*f; = 0
for i # j, p(frfi) = 1for all 1, and ||¢'(by) — F®|| < e, k=1,---,m+1,
where F,-(j) = p(frbrf;) and bypyq = h.

Proof of Claim 1.

Let # : C — B(H,) be the GNS-representation induced by p with
a cyclic vector n. Since C is simple and = is faithful, we have a map
¢ : m(C) — M, defined by @ (r(c)) = #'(c). Note that ¢' extends to

Using Glimm’s lemma (Lemma, 3.6), we can find orthogonal vectors
Ty, **, T, in H, such that

1¢'(bx) = F®|| < e

fork=1,---,m+ 1, where F,-(j) =< w(bx)zj, z; >.
By Kadison’s transitivity theorem, there are elements fy,---, f, in C
such that 7(f;)n = z; and it follows that

< w(bk)zsy 2 > =< w(bg)w(f;)n, ©(fi)n >
=< 7(froufi)n,n >
= P(fi*bkfj)

for all s, 7.
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End of the proof of Claim 1.

Since ¢” is a contraction, we get
g .
¢" 0 ¢'(b) = ¢"(F®)| <&, k=1,--,m+1

Note that the multiplier algebra M(C) of C contains a unital copy of
O,..

Claim 2: There exist ey, - - -, e, in C such that ¢"(F®)) =¥, ; Fi(j-)e’{ej
fork=1,---,m+ 1.

Proof of Claim 2.

Let e;; be a canonical matrix units for M,. Then, [e;;] is a positive
matrix in M. Since ¢" is completely positive, [¢"(e; ;)] (= G) is positive.
Now define e;,--+,e, in C by

[61,"’,6,,] = [31) e ')Sn]G;-a

where sq,- -+, 5, are generators of O, in M(C). Then, G = [e1, -+, ea]*[e1, -+~

and hence for each [o; ;] € M,, we have
¢"([o5]) = Z ;9" (ei;) = E a; ;e e;.
.7

End of the proof of Claim 2.
Therefore,

19" 0 §'(bs) = S F¥etesll <&, k=1, ,m+1.
')J

Choosing an approximate unit z for C such that ||ze; — ¢;|| is sufficiently
small for all ¢ = 1,:-+,n, we can get

I Fere; ZF“" (52)(ze)l <&, k=1, m+1.
Claim & There is a contraction y € C such that
I ZF( (ej2)(we;) = 2 ety (frbufi)yeill < e
”J

foral k=1,---;m+ 1.
Proof of C’lazm 3. From Lemma 3.7 and clalrn 1, there exists y € C
such that IIF,-(’j) 2 — y*(f*bif;)yl| are small enough for

nzF“em(me,) ze (Frbufiyesll < e

for k = 1,---,m+ 1.
End of the proof of Claim 3.
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So, with d = ¥; fiye; we have

F(k)em (ze;) —d'bid|| <e, k=1,---,m+1.
3

From the above arguments, we obtain that
lg(bx) —d*bd]| < e k=1,---,m

Moreover, since ||¢" o ¢'(h)|| < e, we get ||d*hd|| < 4e. Hence, ||hd|| can
be made as small as we like.
If we replace d by (1® e1,1)d(1® e;1), then we get the assetion.

We put some observations about completely positive maps which were
used in the proof of Corollary 3.5.

Lemma 3.6 (Glimm [1]) Let A C B(H) be a unital C*-algebra. Sup-
pose that ¢ : A — M, is a completely positive map and annihilates ANK.
Then there is a net (vy) of operators : C* — H such that

|4(a) — viavill — 0
for alla € A. If ¢ is unital, then the vy’s can be chosen to be isometries.

Lemma 3.7 (Kirchberg[17]) Let A be a pi algebra, let p be a pure state
on A and let € A be a contraction. Then for 6 > 0 and compact subset
K of A there exists a contractions y € A such that

lp(a)z*z — y*ay|| < 6

for allha €EK.

4 Proof of Theorem A (1)

In this section we present the sketch of the proof of Theorem A (1),
which is used to construct a semigroup EK, (B, A).
The following two results are key points in Theorem A.

Lemma 4.1 (Glimm [24]) Let A be a non-type I, separable, unital C*-
algebra. Then, there are a C*-subalgebra B of A and a closed left ideal L
of A such that
: B+LNL*=N(L)
L+L*+N(L)=A
N(L)/LNL* & My,

where N(L)={a € L : La+ La* C L}.
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Proof. From [20,Theorem 6.7.3] there is a C*-subalgebra B of A and
a closed projection ¢q in A*™*, commuting with B, such that gAq = ¢B and
qB is isomorphic to M3°.

Put L = A*(1 — q) N A, then L is a closed left ideal as required.

Theorem 4.2 (Kirchberg [16]) Let A be a separable unital C*-algebra.
Then A is exact if and only if there is a untal C*-subalgebra C of M
and a closed two-sided AF-ideal J of C such that A is *-isomorphic to
c/J.

We say that a subalgebra B of a C*-algebra A is essential if it has no
left annihilators in A, i.e. if aB = {0} implies a = 0 for a in A.

An ideal I of A is essential if and only if it has non-trivial intersection
with every non-trivial ideal of A

Remark 4.3 When A is a Cuntz algebra O,, then LN L* in Lemma 4.1
is an essential hereditary algebra. In fact, if it is not essential, there erists
a non-zero hereditary subalgebra K of Oy such that LK = {0}. Letr bea
open projection corresponding to K, then r = rq = qr, where q 1s a closed
projection corresponding to L. Hence, K can be embedded into M3°. But,
since K is purely infinite simple C*-algebra, this is a contradiction.

Proposition 4.4 Let A be a separable, unital ezact C*-algebra. Then
there exist a C*-subalgebra E of Oy and a closed two-sided ideal D be
such that » o

(i) D is an essential hereditary subalgebra of O,.

(1) E/D = A.

Proof. From Glimm’s theorem there is a closed left ideal L; of O,
such that Ly + L} + N(L;) = Oz and N(L1)/L; N L} & Mj~. Let g be
a closed projection corresponding to L;. Note that ¢ is a identity of M3°
and commute with elements in N(L;)(cf. N(L:) = {(1—¢)05*(1—q) +
qO%*q} N O;). From Theorem 4.2, there is a unital C*-subalgebra C of
M and a closed two-sided AF-ideal J of C such that A is *-isomorphic
to C/J. Then, D = {d € N(L;) : qd,qd* € J} and E = {d € N(L;) :
qd,qd* € C} satisfy conditions (i) and (ii) in the statement from the
previous remark.

Lemma 4.5 For any essential hereditary proper subalgebra D of O, we
have
D0, K.
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Proof. Since D is an hereditary subalgebra of O,, it is a pi algebra by
Corollary 2.6(i), thus it is either unital or stable by [38]. If D has a unit

p, then (1—p)D = {0} and 1 — p = 0 because D is essential. So, D & O,

and this is a contradiction. Therefore, D must be stable. By Brown’s
theorem [3] D is stable isomorphic to O,, hence D & 0, ® K.

Recall a few basic definitions from extension theory.
For every short exact sequence 0 - B — E — A — 0, we consider
the Busby diagram:

0 - B —»- F — AﬁO

L
0 - B - M(B) — Q(B) — 0,

where Q(B) denotes the corona algebra M (B)/B. For ¢,v € Hom(A, Q(B)),

we write ¢ &~ 1 if there exists a unitary u € M(B) such that ¢(a) =
m(u)p(a)m(u*),a € A. An element ¢ € Hom(A,Q(B)) is called trivial if
there exists an element <§5 such that mod = ¢, i.e., if ¢ is liftable. Further-
more we write ¢ ~ 1 if there exist trivial elements 71, 7» € Hom(A, Q(B))
such that ¢® 7 = ¢ & 7. '

We recall that Ezt(A, B) is the semigroup Hom(A, Q(B))/ ~, where
the zero element is the class of trivial elements. By Ezt=!(A, B) is de-
noted the group of invertible elements in Ezt(A, B), i.e. the classes of
c.p. liftable elements of Hom(A, Q(B)) [1].

By what we have seen so far, there exists for every separable unital
exact C*-algebra A, an exact sequence:

0 — D - E — A - 0
= o Ir

0 - 098K —» M(0,®K) — Q(0;®K) — 0
where F is a subalgebra of O; and D & O, ® K is essential in O,.
Then, since D is nuclear and F is exact, we know that this extension is a
semisplit extension from Effros-Haagerup Lifting Theorem [11, Theorem
3.4] (see also [35, Remark 9.5]), i.e., there is a unital completelely positive
map : A — E which is right inverse for £ — A. So, If 7 is a Busby
invariant of this extension, then [7] is invertible in Fzt(A, O, ® K). Then
, from the following fact we know that [7] = 0 , hence there exist liftable
elements 7; and 7, in Hom(A, Q(O, ® K)) such that 7@ r, & 7.

Theorem 4.6 Ext(A,0,® K) & KK'(A,O0; ® K) is trivial for every
C*-algebra A. ‘
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Proof. Since ido, and ido,®ido, are homotopic on O; [9], KK(0;,0;) =
{0}. Using the property of Kasparov product we get KK'(A4,0, ® K) =

{0}.

Proof of Theorem A (1)

Let A be a separable exact C*-algebra. We may assume that A is
unital. From the above argument, we have only to show that 7 is liftable.
Denote by C the image of F in M(0O, ® K) by 8 and define ¢ : C —
M(0, ® K) by

' p="ror tom.
Then, ¢ is a unital weakly nuclear map such that ¢(CN (0, @ K)) = {0}.

Now we employ the generalized Weyl-von Neumann theorem (Theo-
rem 3.3). This gives a unitary u € M(0, ® K) such that

7(¢(c)) & 7(c) = n(u*)w(c)n(u),c € C.

Let a € A. For every e € E such that a(e) = a we have n(c) = 7(a),
where ¢ = B(e). Thus ¢(c) = 71(a), hence for all a

| 7(u*)r(a)7(u) = 11(a) ® 7(a) = r=(a).

Therefore, [r] = [r2] in Ezt(A, O, ® K), and 7 is liftable.

5 Limit algebras

Definition 5.1 A filter on N is a set w of subsets of N satisfying the
following conditions:

(i)0¢w.

(11)) LiN Ly € w for all L, L, € w.

(i) L € w whenever L' C L for some L' € w.

We say that w is an ultrafilter if in addition it satisfies

(iv) For every L C N, either L € w or L° € w.

or equivalently .

(iv) w is not properly contained in any other filter.

Note that for any ultrafilter w, the intersection Ny, L is either empty
or contains exactly one element. .

In order to avoid pathological behaviour, we usually restrict our at-
tension to ultrafilter w for which Nzew L = 0. Such ultrafilters are called
free. Note that w € BN is free if and only if w € SN\N.



Definition 5.2 Let w be an (ultra)filter and let A be a C*-algebra. A
sequence (a,) in A said to converge to an element a € A along w (written
a, = 0 orlim, a, = 0) if for e > 0 there is an L € w such that ||a—a,|| <
e foralln € L.

Let A be a unital C*-algebra and w be a ultrafilter on N. Let £,,(A4) =
{(ax) : a, € A,sup||a.|| < +00} and c,(A) = {(a,) € £o(A) : a, = 0}.
Then c, (A) is a closed tow-sided ideal in £,,(A4). Set A, = £.(A)/c.(4),
and let , be the quotient mapping £,,(4) — A,. We call A, the limit
algebra of A. Note that the quotient map =, satisfies

7 (a)l] = lim ||a||
, where the crucial point is that the limit always exists.

Remark 5.3 If w is free, then
co(A4) = {(a,)|lima, = 0} C ¢, (A).

Hence A, s a quotient of Ao(= £oo(A)/co(A)).

Proposition 5.4 Let A be a unital C*-algebra. Then,
A, ts a pt algebra if and only if A is a pi algebra.

Proof. Suppose that A, is a pi algebra. Let z be a non-zero element
in A, and consider a canonical image of z in A,. Since A, is pi, there are
sequences (yy), (2,) of A such that

(ylmzl, YaT 2y, ) - (1’ L,-- ) € C,.

So, there is a non-zero set L € w such that ||y,z2, — 1|] < 1 for n € L.
Hence, there are y, z € A such that yzz = 1. This implies that A4 is a pi
algebra from Proposition 2.5(ii). A

Suppose that A is a pi algebra. Take a non-zero positive element
a € A, with ||a|]| = 1, write a = [(a,)]. Since |ja|]] = 1 and w is an
ultrafilter, there is a non-zero set L € w such that |ja,|| > % for n € L.

Define @, by
o= { T:_:-IT nel
y (lwll=1) n¢l
Note that for any € > 0 there is a non-zero subset L, of L such that
Hlanll — 1] < e. Set @ = [(@,)]. Then, & = a in A,.
Since [|a,|| = 1, there is a z, € A such that ||z,|| < 1+ % and
zrad,z, = 1 for any n € N. Set z = [(z,)] € A,. Then, we know
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that z*az = z*ar = 1, and this implies that A, is a pt¢ algebra from
Proposition 2.5(iii).

The following is a limit version of Corollary 3.5.

Proposition 5.5 Let w be a free ultrafilter in N. If A is a unital p1 alge-
bra, B a separable C*-subalgebra of A, containing 14, andV : B — A, 1s
a nuclear unital completely positive map. Then there erists a nonunitary
isometry s € A, with V(b) = s*bs for b € B.

Proof. Take a compact subset Ap of B such that B is the closed linear
span of Ap. Fix 0 < ¢ < 1 and let Y be the set of d = (di) € A, such
that ||hrdi|| < € for some (hi) € A, hx € AY, ||h|| = 1. By Proposition
3.5 we have

inf Sup ll¢(b) — d"bd]| = 0.

Claim: There is an element s € Y such that ¢(b) = s*bs for all b € B.

Since ¢ is unital, s is an isometry. Moreover, since ||hs|]| < e < 1 for
some h € A}, ||h|| = 1, s is not a unitary.

Proof of Claim. We may prove the following result:

Let A be a C*-algebra and let w be an ultrafilter in N. Let Z be
a set of contractions A — A and let Z, denote the set of all sequences
of elements of Z. Let Q be a compact metric space and let f;, f, be
continuous maps :  — A,. Then the infimum

p= inf supllfu(z)  g(fale)

is attained by some g € Z,,.
Proof.
Choose a sequence (¢) in Z,, such that

sup |fi(z) — g™ (fal@))]] < g+ =
TEN n

for all n. Fix the lifting of A, — £o,(A), y — (yx). By the compactness
of 2, there are sets L, € w such that

sup lfu()e = s (fa(eDull <+ 7, k€ L.

We may assume that Ly D Ly D ---. Now let g be the diagonal element
given by

[ M, if keN\L
=N 6™ it ke L\Lnn
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Then for any n > 2 sup,¢q [|f1(2)x — 9(f2(2))ill < u+ L for all k € L,,.
But then sup,¢q ||f1(z) — 9(f2(2))|| = p as desired.

We can construct more general limit algebra as follows:

Let X be a locally compact Hausdorff space, let Cy(X, A) be a C*-
algebra of C*-algebra A-valued bounded continous functions, and let
Co(X, A) be a C*-algebra of C*-algebra A-valued continuous functions
with vanishing at infinity. For every point w in the corona space SX\X
of X we consider a two-sided ideal in Cy(X, A) consisting of all functions
f € Cy(X,A) such that w({z € X — [|f(z)||]}) = 0, where X is a
Stone-Cech compactification of X.

Lemma 5.6 (Rgrdam[28]) Let A be a simple unital C*-algebra. Then,
A is pi if and only if for any positive elements a,b in A with norm one
there are cy,cy in A such that ciac} + caach = b.

Proof. Suppose that for any positive elements a,b in A with norm one
there are ¢y, c; in A such that ciac} + coach = b.
Define a continuous function f, : R* — [0, 1] by

0 t€[0,¢]
f(t)=41 t € [2¢,00)
linear ¢ € [e, 2¢]

Let a be a positive element in A with norm one. Since m
is simple and infinite dimensional, there are positive elements z’, 3’ in
W with norm one such that z'y’ = 0.

Set 2 =1-— f%(y’), Yy = f%(y’). Since A is simple, there is a unitary
u in A such that

z' Az’ Nuy" Ay'"u* # 0.

Choose z in z’Az’ Nuy”Ay"u* # 0. Put y = u*zu. Then, z,y in aAaq,
zz =1z, and yz = 0. ‘

By assumption there are c;,c; in A such that cyzc} + cpzcy = 1. Put
t = c12 + cau(l = z). Then, t(z + y)t* = 1. Since z + y in aAa, there is
an infinite projection in aAa which is equivalent to 1. Hence, A is purely
infinite.

Proposition 5.7 Let A be a unital C*-algebra and w in BX\X. Then,
Qu(A) = Cy(X, A)/J, is a pi algebra if A is a pi algebra.

Proof. Take positive elements a,b € Q,(A) with
lall = |]6]| = 1. Then, we may assume that



la(z)|| = [|b(z)|] = 1 for all z € X, where & and b are preimage in
Cy(X, A)4+ of a and b, respectively.

Claim: For any compact set 2 C X and € > 0 there is a continuous
function [ in C(Q, A) with ||I|| < 1 such that ||5|Q — I*a|Ql|| < e..

Proof. Take a state v of C*{1,d|Q} (= C) such that (d@|Q) = 1.
Define a map V from C into C(£2, A) by V(f) = v(f)b|Q for f € C. Then,
V is completely positive contractive. Hence, there exists a contraction [
in C(w, A) such that ||b|Q — *d|QI|| < e from Proposition 3.4.

(End of the proof of claim) ,

Since w is free ultrafilter, there is a sequence of open sets X; of X such
that Xf € w, Q; = X; C X;41, and X = U;X;. Then, take continuous
functions g; : X — [0, 1] such that ¢;|Q; = 1 and ¢;|Qf,; = 0. From the
claim there are contractions l; € C(£;, A) such that ||l;(z)*d@(z)li—b(z)|| <
o for any z € Q.

Set
e = 97l + (g3 — 92)bla + (94 — g3) s + -+
cz = (92— 91)%12 + (g3 — 92);_14 + -
Then,
|mo(ctdcy + cidc, — B)|| = 0, where 7, is a canonical quotient map

from Cy(X, A) to Q,(A). Hence, Q,(A) is a pi algebra from the previous
lemma.

6 Elliott’s intertwining principle

In this section we shall give a brief introduction to this principle {12).
Fix two sequences

(DA 25 4, 23 4, 25 4, — -

(2)B, nap g g ..

of separable C*-algebras and *-homomorphisms. And fix dense sequences
F, C A; and G; C B;, respectively, for i € N. Let A = lim A; and
B = lim B; denote the corresponding inductive limit C*-algebras and
¢; : A; — A and 9; : B; — B be the canonical homomorphisms.

Lemma 6.1 (Elliott[12]) Let {6,} be a sequence in [0,00) such that
¥, 6, < 00. Let a; 1 A; — B;, i € N be *-homomorphisms such that

140s,i41 © 2i(z) — ipq © $ii1(z)|| < 6,

whenever z € S;, where S; is the finite set of A; consisting of the images
in A; of the first 1 terms of the sequences Fy, -+, Fi_;.
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Then the sequence {¢; 0 oy 0 ¢;1(z)}, | > 1, converges in B for each
z € A; and all i € N. Furthermore, there is a *-homomorphism a: A —

B such that

a(pi(z)) = limyy o oy 0 ¢ 4(2),
TEA,i=1,2-.

Proof. Let F; = {a;1,ai2,+--}. From the assumption, {x o a) o
dir(ai)}pz; (K > 1 > 1) is a cauchy sequence for a;; € A;. So, we
can define of : F; — B by ai(z) = limp_ ¥r 0 a © ¢;x(z). Since
ol 106¢;i41 = of and the density of F; in A;, we obtain a *-homomorphism
o : A — B, which is required one.

Definition 6.2 By an Elliott’s approzimate intertwinig between the se-
quences (1) and (2), we mean *-homomorphisms «; : A; — B; and
Bi : B; — A;41 such that

lloi+1 0 Bi(y) = diim(y)ll < 27
for yeT;

18: 0 () — $iisa(2)l] < 27
for z€S5;,1 €N,

where S; is the finite subset of A; consisting of the images in A; of the first
1 terms of the sequences Fy,-++, F;_q, and Gy,--+,G;_1, along all possible
paths in the diagram. Similarily, T; is the finite subset of B; consisting
of the images in B; of the first 1 terms of the sequences Fy,---, F; and
Gy,-++,Gi_1, along all possible paths in the diagram.

Theorem 6.3 (Elliott[12]) An approzimate intertwinig between (1) and
(2) induces a *-isomorphism between A = lim A; and B =lim B;.

‘Proof. From the definition of an approximate intertwining it follows
that

||%ik 0 ai(z) — ok 0 ¢ k(2)]] < 242
T E S,'

sk 0 Bily) = Bt 0 Pina ()] < 271,
y €T

Therefore, there are *-homomorphisms oo : A - Band 3: B — A
from Lemma 6.1. By using the original estimates from the definitions it
is easily seen that o and f are inverses of each other.
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Definition 6.4 (Rgrdam([29]) Two *-homomorphisms ¢,¢ : A — B
between C*-algebras A and B are said to be approzimately unitary equiv-

alent if for every finite subset F' of A and every e > 0 there 1s a unitary
v € B (or B if B has no unit) so that

lvg(a)v™ — P(a)ll <e

foralla € F.

7 Kirchberg’s semigroup(discrete)

In this section we introduce Kirchberg’s semigroup (E K, (B, A)) and
present basic observations. This notion (idea) is an important tool to get
Theorem B. We shall prove that for every simple separable unital nuclear
C*-algebra B B® D, & D,, where D; =0, ® 02 ® Oy---.

We use the following definitions and observations to define and study
a semigroup EK,(B, A).

Let D be a C*-algebra such that its multiplier algebra M (D) con-
tains a unital copy of O, let B be a C*-algebra and hy,h; : B — D
*_homomorphisms. '

We say that hy n-dominates hy if there exist dy,ds,---,dn € M(D)
such that didy + -+ did, = 1 and hy(*) = dihi(*)dy + -+ + dtha(+)dn.

h, dominates h, if there is an isometry s € M(D) with ho(v) =
s*hy(+)s. We will write hy < hy.

Remark 7.1 In this case, ss* is in the relative commutant hy(B)'NM (D)
of hi(B) in M(D).

Proof. Set ¢ = ss*. Then, since s*hy(b*b)s — s*hy(b*)ss"hi(b)s = 0,

gha (B (b)q = ahs (5*)ghs(B)g. So, aha(b)(1 — g)hs(8)g = 0. Hence,
(1— q)hy(b)g = 0, and h1(b)g = ghy(b)q for any b € B. Therefore,
hi(b)qg = qhy(b) for any b € B.

The following are simple observations:

Lemma 7.2 (i) If hy dominates hy and ho(B) N M(D) contains a unital
copy of O, then Cuntz addition (see Definition 5.1) hy @ hy and hy are
unitary equivalent in M (D).

(i) If by n-dominates hy and hy(B)' N M(D) contains a unital copy
of E, then hy dominates h,.

(iii) If ho(BY 0 M(D) contains a unital copy of Oy, then a set of
unitary equivalence classes of the *-homomorphisms h : B — M(D)

39



which are dominated by ho forms a semigroup S(ho, B, D) under Cuntz
addition.

We use [h] as an unitary equivalence class of h: B — M(D).

Proof. (i): From the assumption there is an isometry d € M (D) such
that hy = d*h;d. Take a generator {s;,s,} of O, which is contained in
ha(B)'NM(D). Then, hy1®,, s, ha = s1h15*+55h285. Set u = (1—dd*)st+
ds1d*s] + ds2s3, then u is a unitary in M (D) and u(hy ®,, ., ha)u* = h,.

(ii): From the assumption there are n elements {d;}*, in M (D) such
that hy = 10, dfhid; and =7, dfd; = 1. Since hy(B)'NM(D) contains a
unital copy of Ej, it contains O,,. Take n elements {s;}"_, of generators
of Oy. ‘

Set d = Y%, sid;. Then, d is an isometry in M (D), and

hg — 2?_:1 d:hld,
= Zi,j d:‘s:‘hls]dJ

= d*hid.

(iii): Note that the definition of h @0, k is a independent from the
choice of a unital copy of O; in M (D). Take [h], [ha] € S(ho, B, D), and
write h; = dfhod; (i = 1,2), where d;, d, are isometries in M(D).

Then,

h’l ®0'1,62 h2 = Z?:] Jl’d:hodio':
= Zi,j,k aidfof‘ajhoa;‘akdkaz
= (Zi0:idi o} ) (T, 05ho0)(Zk oxdiay)
= d*hyd,

where 01,0, are generators of O, in ho(B)' N M(D) and d = o1dio +
O'deUg.

Hence, the unitary equivalence class of hi@h, is contained in S(ho, B, D).

Proposition 7.3 Let hy: B — M(D) be a *-homomorphism so that

ho(B) N M(D) contains a unital copy of O,. Then

(1) the set G(ho, B, D) = {[h @ ho] : h < ho} forms a subgroup of
S(ho, B, D). Moreover,

(2) G(ho, B, D) is isomorphic to the Grothendieck group of S(ho, B, D)
(= Groth(S(he, B, D))).

Proof. (1): From Lemma 7.2(i), we know that

[Ro] + [ho] = [ho @ ho] = [ho],
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so [ho] is a zero element in G(hg, B, D). Take nonzero element [h & ho).
Since h < hg, there is an isometry d in M(D) such that h = d*hod. Set
k = (1 —dd*)hg + dhod*. Then,

k ®s,5, h = 81(1 — dd")hos1 + s1dhod"s] + s2d”hodss,

where sy, 5, are generators of a unital copy of O; in M (D).
Set u = g1as} + 01(1 — dd*)s] + 02d*s], where 0, 0 are generators of

0, in ho(B)' N M(D). Then, u is a unitary in M (D), and

u(k ®,, 5, h)u* = o1dd*hodd* o} + 01(1 — dd*)hoo + 02hed*dos
= O'Ihoo'; + 0'2]’1,0’0;

— ho.

Hence,
[k® ho] +[h@®ho] =[k®h® ho® hq)
= [ho @ ho @ ho] = [ho]
Therefore, G(ho, B, D) is a group.
(2) Exercise.

Now we will define a semigroup F K, (B, A).

Definition 7.4 Let A be a unital pi in Cunts standard form (A = A*),
that is, A contains a unital copy of O,. and let B be a separable unital
C*-algebra. Let w be a free ultrafilter of N, that 1s, w € SN\N.

Then EK,(B, A) is a set of unitary equivalence classes [h] of nuclear
unital *-monomorphisms h: B — A,,.

Under the Cuntz addition, that is, [h] + [k] = [h @0, k], EK,(B, A)
becomes an abelian semigroup. Note that if h, k are nuclear, then it is
easily seen that h @0, k is also nuclear.

We show FK,(B, A) is a group if B is exact.

Lemma 7.5 Let A be a unital pi algebra with A = A*t and let B be a
unital separable exact C*-algebra. Then for any [hi1],[h2] € EK,(B, A),

hg -~ hl-

Proof. Let C = hy(B). Define h: C — A, by h = hyohi’. Then, from
Proposition 5.5 there is a proper isometry s € A, such that h(c) = s*cs
for c € C. Put ¢ = hy(b) (b € B). Then, hy(b) = s*hy(b)s for any b € B.

This implies the conclusion.



Proposition 7.6 Under the same assumption as in the previous lemma
(1) EK,(B,A) is a group.
(i1) [A] = 0 in EK,(B, A) if and only if h(B)' N A, contais a unital
copy of O,.

Proof. (i): Let ho be an inclusion map
ho : B—=0,C0,80,C 0, CACA,

which is guaranteed by Theorem A. From the previous lemma we know
that for any element [h] in EK (B, A) h < hy. Note that ho(B)' N A,
contains a unital copy of Os.
Hence, EK,(B, A) is a group from Lemma 7.2(i) and Proposition 7.3.
(2): This comes from Lemm 7.2(iii).

Remark 7.7 Let D, be a decoy of O,, that is, O ® O, ® --+. Then,
EK,(B,D;)=0
for any separable unital exact C*-algebra B.

Proof. Note that D, is a pt algebra from the next lemma and Corollary
2.6. The statement comes from Corollary 7.9 and the freeness of w.

Lemma 7.8 C*-algebra D, contains a central sequence of unital copies
of Oy. Hence, D, 1s a pi algebra.

Proof. Let Ap be a compact subset of D such that the linear span of
elements in Ap is dense in D,. We have only to show that for any € there
is a generator {s;, s3} of O, such that ||s;z — zs;|| < € ( = 1,2) for any
z € Ap. For each z € D, and for any ¢ > 0 there is an element y € D,
such that

YEO, Q@ :--0,81®---. Since Ap is compact, there are n elements

N

n(z)
Ty, 2, € Ap such that Ap C U ,U(z;,e). Set k = max{n(z,)}.

i t t ces ces
Then, if we take a generator {s;,s;} of O, from 1®---1Q0; ® ---,

k
||zs; — siz|| < 4e (1 = 1,2) for all z € Ap.

Corollary 7.9 Let A be a unital C*-algebra and let h : Dy — A be a

unital *-monomorphism. Then, h(D,) N A, contains a unital copy of O,.

The following is a reformation of Theorem 6.3.
We call a C*-algebra A pi-sun algebra if A is purely infinite simple,
separable, unital, nuclear algebra.
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Lemma 7.10 If A and B are pi-sun algebra with A = A*, B = B*, and
leth: A — B, k:B — A unital *~homomorphisms such that [kh] =
[ida] in EK,(A, A) and [hk] = [idg] in EK,(B, B) then there exists an
isomorphism ¢ : A — B which is approzimately unitary equivalent to h.

Proof. Since [kh] = [ida], there is a unitary u € A, such that
kh(a) = uau* for a € A. Since u can be lifted to a sequence {u,} of
unitaries in £, (A), we may know that kh and id4 are approximately uni-
tary equivalent. Similarily, we know that hk and i¢dp are approximately
unitary equivalent. Let X4 and Xp be dense sequenses in A and B,
respectively. '

Then we can find sequences of unitaries {u, } in A and {v,} in B such

that A; = A, ¢iip1 = w(-)ul, Bi = B, i1 = ()v], i = h, B; = k,

F;, = X,, and G; = Xp for all i € N induces approximate intertwining in.

Definition 6.2. So, there is an isomorphism ¢ : A — B by Theorem 6.3.
It is easily seen that ¢ is approximately unitary equivalent to h from
the construction.

Proposition 7.11 If A is a pi-sun algebra with A = A* and [id4] = 0
in EK,(A, A), then A= D,.

Proof. Let h: A — D, C A and k : D; — A be *-monomorphisms
which is guranteed by Theorem A (note that D, is nuclear). Then kh :
A — D, — A C A, and kh(A)'NA, contains a unital copy of O, from the
previous corollary. Hence, [kh] = 0in EK,(A, A). From the assumption
[kh] = [id4].

On the contrary, since [hk] € EK, (D2, D) ( = 0), we know that
[hk] = 0 = [idp,].

Hence, from Lemma 7.10 A & D,.

Corollary 7.12 (i) If B is simple separable unital nuclear and contains
a central sequence of unital copies of Oy, then B = D,.
(11) For every simple separable unital nuclear B, we have B D; & D;.

Proof. (i): Let Ap be a compact set of B such that linear span
of elements in Ap is dense B. From the assumption there is a central
sequence {s}, s%}j-"_l_l of unital copies of O, such that ||[s}, z]|| < -;— for any
j €N and z € Ap.

Note that B is pi (Corollary 2.6(iii)) Now set T} = (s3,s], ) and
T, = (s3,82%,--+), then C*(T1,Ty) =& O, C B,. Moreover, idg(B)' N B,
contains C*(T,Ty), hence [idg] = 0 in EK, (B, B) from Lemma 7.2(iii).
So, from Proposition 7.11 B & D,.
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(i1): Since D, has a central sequence of unital copies of O,, B ® D,
has also the same property. Hence, from (i) B ® D; & D,.

8 Kirchberg’s semigroup(continous)

In this section we introduce a continuous version of EK, (B, A).
We assume that A is a unital pi algebra with A = A** and B is a
separable unital exact C*-algebra.

Definition 8.1 Let w € f(R4)\Ry is in the corona of Ry, there is a
canonical epimorphism m, : Co(Ry, A)/Co(Ry, A) — AR+, where AR+
is pt (Proposition 5.7)

Co(Ry, A)[Co(R+, A)[Jo [ Co(Roy, A) Co(Ryy, A)/ )
We call a unital *-monomorphism
h:B— Cb(R+1A)/CO(R'+1 A) = Q(R+)A)

completely faithful if m,oh is a *-monomorphism for everyw € FR4\Ry.

h is constant if h(B) C A C Q(R4, A).

h is Dy-factorizable if h(B) is contained in a unital copy of D, in
Q(Rs, A).

h is scaling invariant if for every topological isomorphism o of R
onto Ry we have that h. and 6 o h are approzimately unitary equivalent,
where & is the *automorphism of Q(R4, A) by o.

From the above definitions we introduce the following three abelian
semigroups under the Cuntz addition:

CEK(B,A) = {[h]: h is constant unital nuclear *-monomorphism}.
EK(B,A)={[h]: h is completely faithful unital nuclear *-monomorphisms}.
SEK(B,A)={[h]: h is unital nuclear *-monomorphism}.

Remark 8.2 One has CEK(B, A) C EK(B, A) and
SEK(B, A) + CEK(B, A) C EK(B, A) + SEK(B, A) C EK(B, A).

Proposition 8.3 (i) Any two completely faithful unital nuclear *_monomorphisms
from B into Q(R4, A) 2-dominates each other.

(11) Any two D,-factorizable *-monomorphisms are unitarily equiva-
lent, and their class is contained in CEK (B, A). In particular, if

ho: B—>0,C 0,0, C 0, CACQ(Ry, A),



then [ho] = 2[ho] in SEK(B, A).

(i1i) SEK (B, A)+[ho] 1s a subgroup of EK (B, A) which is isomorphic
to Groth(SEK(B, A)) = Groth( EK(B, A)).

(iv) If 0 = X; < X, < --+is a sequence in Ry with lim, X, =
00, w is a free ultrafilter on N and @ € fRL\R, defined by (X,) and
w, then there is a canonical isomorphism from A;R+ onto A, and 7z :
Q(R4,A) — Ag* > A, defines a semigroup morphism from SEK(B, A)
into EK,(B, A).

Proof. Hint: For the proof of (i) we use the following claim.

Claim. Let A be a unital p: algebra, X a locally compact o-compact
Hausdorff space, 14 € B C Q(X, A) = Co(X, A)/Co(X, A) a separable
unital completely faithfully embedded C*-subalgebra of Q(X,A) and V :
B — Q(X, A) a nuclear unital completely positive map.

Then there exists a;,a; € Q(X, A) with V (b) = aibai+ajba; for every
b€ B.

Here B C Q(X, A) is called completely faithfully embedded if any free
ultrafilter w in BX\X m,|B is faithful, where 7, is a canonical quotient
map from Q(X, A) to Q(X, A)/(J, + Co(X, A)) (¥ Q. (A) in Proposition
5.7).

Corollary 8.4 Let w be a free ultrafilter in N. Then, the natural map
from Groth(SEK(B, A)) into EK,(B, A) is injective.

Proposition 8.5 If A and B are pi-sun algebra with A = A** and B =
B and h: A — B, k: B — A unital *-homomorphisms such that [kh]+
[h&] = [ida]+[R] in Groth(SEK (A, A)) and [hk]+[h5] = [idg]+[hE] in
Groth(SEK (B, B)), then there exits an isomorphism ¢ : A — B which
is approzimately unitary equivalent to h.

Proof. This comes from Lemma 7.10 and Corollary 8.4.

9 Proof of Theorem B

In this section we present the out line of Theorem B. If a reader is
"interested in the detail proof of main theorem (Theorem 11.1), he or she
may try to read (or complete) arguments in [17, Appendix].
The follwoing is a main theorem in a article of Kirchberg.

Theorem 9.1 Let B be a unital separable and ezact C*-algebra such that
B contains a unital copy of O, and A a pi algebra with A = A*, then there
is a group isomorphism ¢ from SEK(B, A) + [ho] = Groth(SEK(B, A))
onto K Kp..(B, A).
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Here K K,..(B, A) is a group which was studied by Skandalis [31]:
(Note that if B is nuclear, then K K,,,.(B, A) is a usual KK-group K K (B, A))

Let’s see. the outline of Theorem 9.1.

Let Q(X,D) = Cy(X,D)/Co(X, D) for a C*-algebra D and a lo-
cally compact Hausdorff space X. We define a new abelian semigroup
ES(B, A) as aset of unitary equivalence classes of nuclear*-monomorphisms
h:B®K — Q(R4,A®K). Then, we define a map 7 from SEK (B, A)
to ES(B, A) by

7([h]) = [~ ® 1dk].

Proposition 9.2 Let A be a pi algebra with A = A*t and let B be a
separable unital exact C*-algebra that contains a unital copy of Oy. Then,
T 1S a semigroup isomorphism.

Next, we define one more semigroup SFEzt,,.(B,A) as a set of uni-
tary equivalence classes of nuclear *-monomorphisms » : B® K —
M(Co(R, A ® K)/Co(R,A ® K). Define a map ¢ from ES(B,A) to
SEzt,..(B,A) by

Y([h]) = [(ho, h)], where hq is an absorbing element from B ® K into
Q(R_-, A ® K) and (ho,h) is a nuclear *-monomorphism from B ® K
into QR_,AQK)® QR4+, A®K) 2 Q(R,A®K) C M(Cy(R,A®
K)/Co(R, A ® K).

Proposition 9.3 Under the same assumption in the previous proposition
Y maps ES(B, A) onto the absorbing classes of SEztn..(B, A), that is,
SExtnuc (B, A)+[ho] (2 Groth(SEztu..(B,A)). Moreover, this induces a
group isomorphism from Groth(ES(B, A)) from Groth(SExzt,,.(B, A)).

From the construction we know that if B is nuclear, then
Groth(SEzt,,.(B, A)) is a usual extension group Ezt~}( B®K, Co(R, A®
K)). On the contrary , from the KK-Theory there is a correspondence
between Ezt™'(B ® K,Co(R,A ® K)) and KK (B, A). Hence, if B is
nuclear, then there is a group isomorphism from SEK(B, A) + [ho] to
KK(B,A). If B is a general exact C*-algebra, see [31].

Remark 9.4 Since KK,,.(B, A) is the homotopy invariant, we have
¢([6 0 h]) = ¢([h]) for any topological isomorphism o from Ry to Ry.
Hence,

[6-0 (A @ ho)] = [& © h] + [ho] = [A] + [ho] = [h @ ho].

Corollary 9.5 (1) O, & D,.
(2) B® O; = O, for any simple separable unital nuclear C*-algebra
B.



Proof. (1): Since KK(0,0;) = 0, Groth(SEK (0>, 0,)) = 0 from
Theorem 9.1. Hence, O, & D, from Corollary 8.4(ii) and Proposition
7.11.

(2): This comes from (1) and Corollary 7.12(ii).

Lemma 9.6 A nuclear *-monomorphism h : B — Q(R4, A) is scaling
invariant (modulo unitary equivalence) if and only if h is unitary equiv-
alent to a constant *-monomorphism k: B— A C Q(R4, A).

Corollary 9.7 If B is separable unital nuclear C*-algebra with a unital
copy of O, , and A is a pi algebra with A = A*, then every element
2 € KK,,.(B, A) is of the form ¢([h & ho]), where h is a unital nuclear

*_monomorphism from B into A.

Theorem B

Let A and B be pi-sun algebras with A = A* and B = B*. If
z € KK(A, B) is a KK-equivalence, then there exists an isomorphism ¢
from A onto B such that #([¢] + [ho]) = z in KK (A, B).

Proof. From assumption there is an inverse y of z in K K(B, A) such
that zy = Idg and yz = Id4. From the previous result, there are nuclear
*_monomorphisms h : A — B and k : B — A such that ¢([h @ h§]) = z
and ¢([k ® hZ]) = y.

Using Kasparov product we get
[hk] + [hs ] = [ids] + [h5]

[kh] + [h3] = lida] + [A5])-

Hence, from Proposition 8.5 there exists an isomorphism ¢ from A to
B which is approximately unitary equivalent to h. Therefore, they induce
the same class in EK, (B, A), where w is a free ultrafilter on N, that is,
w € BN\N. Therefore, we get [¢] = [h] in SEK(B, A) from Corollary
8.4

Corollary 9.8 Let A and B be pi-sun algebras.

(1) A and B are KK-equivalent if and only if they are stable isomor-
phic.

(2) If there exists KK-equivalence z in KK (A, B) with

Yo(2)([1a]o) = [18]o,

then A and B are isomorphic, where 7y 1s a nutural map from KK (A, B)
to Hom(Ky(A), Ko(B)) which is induced by Kasparov product.
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Proof. (1): Take projections p in A and ¢ in B such that [p]o = 0 in
Ko(A) and [g]o = 0 in Ko(B). Then, both pAp and ¢Bgq are in Cuntz
standard form.

Since pAp and ¢Bg are KK-equivalent, there are isomorphic from
Theorem B. So, A and B are stable isomorphic from [2].

(2): As in the same argument we have an isomorphism 7 from pAp to
qBq for some projections p € A and ¢ € B such that 7([14]0) = [15]o-
Take projections p; € pAp and ¢; € ¢Byq so that p; is equiavalent to 14,
and g¢; is equivalent to 1p.

Since 7o([p1]o) = [g1]o, there is a partial isometry u in ¢Bgq such that
u*u = 7(p;) and uu* = ¢q;. So, py Ap; is isomorphic to ¢; Bg;, hence A is
isomorphic to B. '

Corollary 9.9 Let A be a simple separable unital nuclear C*-algebra.
Then, A 1s piif and only if A2 A® O.

Proof. Let ¢ : A = A® O, be a *-homomorphism defined by ¢(a) =
a ® 1 Then, this induces KK-equivalence in KK(A, A ® O,,). Note that

#0([14]o) = [lago,Jo- Therefore, A and A ® O, are isomorphic from
Corollary 9.8(2).

Corollary 9.10 If A and B are pi-sun algebras satisfying the UCT, and
if 0 1 K.(A) — K.(B) is an isomorphism with oo([1alo) = [15]o, then
there exists an isomorphism 7 from A onto B with K.(1) = o..

Proof. This comes from the same argument as in Corollary 9.9.
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