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1. Introduction

Minimax theorems are concerned with var-
ious fields in mathematics, operational re-
search, and economics. Among many ben-
efits of minimax theorems, most important
result is as follows. The saddle point theo-
rem in usual game theory insists that

a real-valued payoff function
possesses a saddle point if and
only if the minimax value and
the maximin value of the func-
tion are coincident;

and accordingly (scalar-valued) minimax
theorems say:

the minimax and maximin val-
ues are coincident under certain
conditions.

A point (strategy pair) $(x_{0}, y\mathrm{o})\in X\cross \mathrm{Y}$ is
said to be a saddle point of $f$ if

$f(x_{0}, y)\leq f(x_{0}, y\mathrm{o})\leq f(x, y\mathrm{o})$

for all $x\in X,$ $y\in$ Y. We know the min-
imax value is greater than or equal to the
maximin value in general, and hence the in-
sistence of minimax theorems is coincident
with the following: the minimax value is less
than or equal to the maximin value under

some appropriate conditions. These results
hold for real-valued functions, but it is not
always true in the case of vector-valued pay-
off functions.

In the decade from 1983, some re-
searchers have studied vector-valued min-
imax theorems. The common topic is
whether or not games with multiple non-
comparable criteria have an acceptable the-
ory similar to standard results for scalar
games, in particular, what type of mini-
max equation or inequality holds. In 1983,
Nieuwenhuis gave his pioneer idea [15] to
this area, and then Corley and Ferro pre-
sented important results; [4] and [5, 6, 7].
The author has separately researched such
minimax problems in general setting and
proved minimax theorems, existence theo-
rems for saddle points, and saddle point the-
orems in [17, 18, 19, 21, 22, 23, 24]. These
results have been approached by vector op-
timization method.

These papers suggest interesting an-
swers for the following questions: If we give
reasonable definitions for minimax values
and maximin values of a vector-valued func-
tion, what type of minimax equation or in-
equality holds? Also, if we give a suitable
definition for saddle points of the vector-
valued function, under what conditions do
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there exist such saddle points? What re-
lationship holds among such minimax val-
ues and maximin values and saddle values?
Moreover, this kind of research is continued
for more general payoff functions, especially
multi-valued functions (or set-valued maps)
up to now; see [8, 14, 16].

On the other hand, it is also well-known
that the convexity and continuity of real-
valued functions play very important roles
in the area of nonlinear optimization as well
as in various fields of mathematics. Such
situation remains to vector-valued minimax
theory as well as vector optimization. In
[21, 23, 24], some types of cone-convexity
and (cone-)semicontinuity are introduced,
and then vector-valued minimax theorems
are proved for vector-valued functions which
satisfy these properties.

It is, however, unfortunate that those
generalizations for such relaxations and
modifications into multi-valued version are
incomplete, in particular, with respect to
relaxations of continuity. In this paper,
we consider a certain relaxation of continu-
ity for vector-valued and multi-valued func-
tions, which corresponds to a generaliza-
tion of ordinary lower (upper) semiconti-
nuity into vector-valued and multi-valued
versions. One of such relaxations was also
done in [13]. For vector-valued functions
with this generalized lower semicontinuity,
we prove existence theorems for generalized
saddle points (cone saddle points) of vector-
valued functions, and then show some re-
sults of [24]. Furthermore, we observe those
of loose saddle points for multi-valued func-
tions. For this end, we also need results on
cone-convexity and cone-semicontinuity for
multi-valued function; see [8, 10, 12] and [9].

2. Saddle and Loose Saddle Points

Let $Z$ be an ordered real topological vector
space (ordered t.v.s. for short), as a range
space of functions, with the vector ordering
$\leq c$ induced by a convex cone $C$ , that is, for

$x,$ $y\in Z,$ $x\leq cy$ if $y-x\in C$ . Throughout
the paper, the convex cone $C$ is assumed
to be solid, that is, its topological interior
int $C$ is nonempty; and to be pointed, that
is, $C\cap(-C)=\{0\}$ . For $C$ , an element $x_{0}$

of a subset $A$ of $Z$ is said to be a C-minimal
point of $A$ (or an efficient point of $A$ with re-
spect to C) if $\{x\in A|x\leq_{C}X_{0}, X\neq x_{0}\}=$

$\emptyset$ , which is equivalent to $A\cap(x_{0}-C)=$

$\{x_{0}\}$ . We denote the set of all C-minimal
points of $A$ by $\mathrm{M}\mathrm{i}\mathrm{n}A$ . Also, $C^{0}$-minimal
[resp., $C$-maximal, $C^{0}$-maximal] set of $A$ is
defined similarly, and denoted by ${\rm Min}_{\mathrm{w}}A$

[resp. $\mathrm{M}\mathrm{a}\mathrm{x}A$, ${\rm Max}_{\mathrm{w}}A$], where $C^{0}$ $:=$

(int $C$ ) $\cup\{0\}$ . These $C^{0}$-minimality and $C^{0_{-}}$

maximality are weaker than C-minimality
and $C$-maximality, respectively; see [26].

Under the previous notation, we give
definitions for generalized saddle point of
a vector-valued function and a set-valued
map. Let $f$ : $X\cross \mathrm{Y}arrow Z$ and $F:X\cross \mathrm{Y}\sim>$

$Z$ be a vector-valued function and a set-
valued map, respectively.

Definition 1. A point $(x_{0}, y\mathrm{o})$ is said to
be: (i) a $C$-saddle point of $f$ with respect to
$X\cross \mathrm{Y}$ if

$f(x_{0}, y0)\in \mathrm{M}\mathrm{a}\mathrm{x}f(x_{0}, \mathrm{Y})\cap \mathrm{M}\mathrm{i}\mathrm{n}f(X, y_{0})$ ;

(ii) a weak $C$-saddle point of $f$ with re-
spect to $X\cross \mathrm{Y}$ if

$f(x0,y\mathrm{o})\in{\rm Max}_{\mathrm{W}}f(X_{0},Y)\mathrm{n}{\rm Min}_{\mathrm{W}}f(x,y_{0})$ ;

(iii) a $C$-saddle point of $F$ with respect
to $X\cross \mathrm{Y}$ if

$F(x_{0},y\mathrm{o})\cap \mathrm{M}\mathrm{a}\mathrm{x}F(x_{0}, \mathrm{Y})\cap \mathrm{M}\mathrm{i}\mathrm{n}F(X,y_{0})\neq\emptyset$ ;

(iv) a $C$-loose saddle point of $F$ with re-
spect to $X\cross \mathrm{Y}$ if

$F(x_{0}, y0)\cap \mathrm{M}\mathrm{a}\mathrm{x}F(x_{0}, \mathrm{Y})\neq\emptyset$

and
$F(x0, y0)\cap \mathrm{M}\mathrm{i}\mathrm{n}F(X, y_{0})\neq\emptyset$ .

We note that any $C$-saddle point of $f$ is
a weak $C$-saddle point of $f$ and that any C-
saddle point of $F$ is a $C$-loose saddle point of
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$F$ obviously. Also, in the case $C^{0}=C$ , the
conditions (i) and (ii) are coincident. When
$F$ is single-valued, every loose saddle point
is also a saddle point. Let $f$ : $Zarrow R$

be strictly monotonic, that is, $f(a)<f(b)$
whenever $a\leq_{C}b$ and $a\neq b$ , then any loose
saddle point (resp. saddle point) of $f\mathrm{o}F$ in
$X\cross \mathrm{Y}$ is also a loose saddle point (resp. sad-
dle point) of $F$ in $X\cross \mathrm{Y}$ ; see Lemma 3.2 of
[14]. We have given three types of existence
theorem of weak $C$-saddle points for vector-
valued functions, and we consider that of C-
loose saddle point for set-valued maps via
scalarization method. For this end, we ob-
serve cone-convexity and cone-continuity of
vector-valued function, and moreover cone-
convexity and cone-semicontinuity of set-
valued map in the following section.

Based on the notation, terminology, and
results in [12], we use the following six kinds
of classification for set-relationship:

Definition 2. For nonempty sets $A,B\subset$

$Z$ and a convex cone $C$ in $Z$ , we denote

$\bullet$ $A\Omega C\supset B$ by $A\leq_{C}B;(\mathrm{i})$

$\bullet$ $A\cap(B_{-}\mathrm{n}o)\neq\emptyset$ by $A\leq_{C}B;(\ddot{\mathrm{u}})$

$\bullet$ $A\omega C\supset B$ by $A\leq_{C}(\mathrm{i}\ddot{\mathrm{u}})_{B;}$

$\bullet$ (Am $C$ ) $\cap B\neq\emptyset$ by $A\leq_{C}(\mathrm{i}\mathrm{v})_{B;}$

$\bullet$ $A\subset B\Theta C$ by $A\leq_{C}B;(\mathrm{v})$

$\bullet$ (A$\mathrm{b}\mathrm{i}C$ ) $\cap B\neq\emptyset$ by $A\leq_{C}(\mathrm{v}\mathrm{i})_{B}$ ,

where

3. Convexity and Semicontinuity

First, we introduce various types of con-
vexity of vector-valued functions. Some of
these convexities are collected in [20, 22, 23];
called cone-convexity. In particular, we
explicate some relationships among vector-
valued versions of quasi-convexity which
correspond to generalizations of ordinary
quasi-convexity for real-valued functions.
We have the following Table 1 about the re-
lationship among the cone-convexities, and
we also observe on their extensions to set-
valued functions.

Table 1: Implications among
cone-convexities for vector-valued

functions.

$A \{\mathrm{t}C:=\bigcap_{\in aA}(a+c),$ $A\omega C:=\cup(a+c)a\in A$

and

$B \cap-C:=\bigcap_{Bb\in}(b-C)=B\Omega(-C)$ ,

$B \cup-C:=\bigcup_{b\in B}(b-C)=B\mathrm{h}\mathrm{j}(-c)$ .

It is easy to see that $A\Omega C\subset$ $A\mathrm{b}iC$ and
$B\cap-C\subset B\cup-C$ , and also that $A\mathrm{t}\theta B=A+B$

and $A\cup-B=A-B$ .
As shown in Fig.3 in the last page, all

implications among the set-relations are eas-
ily verified.

Proposition 1. For nonempty sets $A,$ $B\subset$

$Z$ and a convex cone $C$ in $Z$ , the following
statements hold:

$\bullet$
$A\leq_{C}B(\mathrm{i})$ implies $A\leq_{C}B;(\ddot{\mathrm{u}})$

$\bullet$
$A\leq_{C}B(\ddot{\mathrm{u}})$ implies $A\leq_{C}(\mathrm{i}\ddot{\mathrm{u}})_{B;}$

$\bullet$

$A\leq_{C}(\ddot{\mathrm{u}}\mathrm{i})B$ implies $A\leq_{C}(\mathrm{v}\mathrm{i})_{B}$ ,

$\bullet$
$A\leq_{C}(\mathrm{i})B$ implies $A\leq_{c^{)}}B(\mathrm{i}\mathrm{v}$ ;

$\bullet$
$A\leq_{C}(\mathrm{i}\mathrm{v})_{B}$ implies $A\leq_{C}B;(\mathrm{v})$

$\bullet$
$A\leq_{C}B(\mathrm{v})$ implies $A\leq_{C}(\mathrm{v}\mathrm{i})_{B}$ .
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Using the six kinds of relationships be-
tween two nonempty sets, we consider some
different concepts with respect to six differ-
ent set-relations $\leq_{C}(k)$ ( $k=\mathrm{i}$ , ... , vi) for
each convexity of set-valued map as gener-
alizations of those of vector-valued function.
We can categorize such generalized convex-
ities into five class, that is, convexity, con-
vexlikeness, quasiconvexity, properly quasi-
convexity, naturally quasiconvexity, but we
concentrate upon convexity, properly quasi-
convexity, and quasiconvexity in this paper;
see [12] for others.

Definition 3. For each $k=\mathrm{i},$
$\ldots,$

$\mathrm{v}\mathrm{i}$ , a
set-valued map $F$ : $X’\Leftrightarrow Z$ is said to
be type $(k)$ convex if for every $x_{1},$ $x_{2}\in$

$\mathrm{D}\mathrm{o}\mathrm{m}F$ and $\lambda\in(0,1)$ ,

$F(\lambda x_{1}+(1-\lambda)x_{2})\leq_{C}(k)$

$\lambda F(X_{1})+(1-\lambda)F(x_{2})$ .

Proposition 2. For a set-valued map $F$ :
$X\sim Z$ , the following relationships hold:

type (i) convex $arrow$ type (iv) convex
$\downarrow$ 1

type
$(\mathrm{i}\mathrm{i})\downarrow$

convex type
$(\mathrm{v})\downarrow$

convex

type (iii) convex $arrow$ type (vi) convex

Table 2: Implications among type $(k)$

convexity.

The set $\mathrm{G}\mathrm{r}\mathrm{a}_{\mathrm{P}^{\mathrm{h}(F)}}+(\{\theta \mathrm{x}\}\cross C)$ is said to be
the epigraph of set-valued map $F$ , and then
we have the following result on the epigraph
convexity.

Proposition 3. A set-valued map $F$ :
$X\sim\succ Z$ is type (iii) convex if and only if
its epigraph is convex.

Remark 1. In [10], four notions of convex-
ity of set-valued map are defined, which are
included in Definition 3.

Next, we proceed to definitions for prop-
erly quasiconvexity of set-valued map.

Definition 4. For each $k=\mathrm{i},$
$\ldots$ , $\mathrm{v}\mathrm{i}$ , a

set-valued map $F$ : $X\sim Z$ is said to be
type $(k)$ properly quasiconvex if for ev-
ery $x_{1},$ $x_{2}\in \mathrm{D}\mathrm{o}\mathrm{m}F$ and $\lambda\in(0,1)$ ,

$F(\lambda x_{1}+(1-\lambda)x2)\leq_{C}F(k)(X1)$

or

$F(\lambda x_{1}+(1-\lambda)x_{2})\leq_{C}(x_{2})(k)_{F}$ .

Proposition 4. For a set-valued map $F$ :
$X\sim Z$ , the relationships shown in Table 3
hold among type $(k)$ properly $\mathrm{q}\mathrm{u}\mathrm{a}\dot{\mathrm{s}}$iconvex-
ity ( $\mathrm{p}$-qconvex for short in the table).

type
$(\mathrm{i})\downarrow \mathrm{p}- \mathrm{q}_{\mathrm{C}}\mathrm{o}\mathrm{n}\mathrm{V}\mathrm{e}\mathrm{X}arrow \mathrm{t}\mathrm{y}\mathrm{p}\mathrm{e}(\mathrm{i}\mathrm{v})_{\mathrm{P} ,1}$

-qconvex

type (ii) $\mathrm{p}$-qconvex type (v) p-qconvex
$\downarrow$

$\downarrow$

type (iii) $\mathrm{p}- \mathrm{q}_{\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{V}}\mathrm{e}\mathrm{X}arrow \mathrm{t}\mathrm{y}\mathrm{p}\mathrm{e}(\mathrm{v}\mathrm{i})$ p-qconvex

Table 3: Implications among type $(k)$

properly quasiconvexity.

Thirdly, we consider some generaliza-
tions of quasiconvexity. For a set-valued
map $F$ : $Xarrow Z$ and $x_{1},$ $x_{2}\in \mathrm{D}\mathrm{o}\mathrm{m}F$, we
denote, respectively, the dominated set from
below by sets $F(x_{1})$ and $F(x_{2})$ and the set
of points dominating sets $F(x_{1})$ and $F(x_{2})$

simultaneously from above by

$C_{L}(F(x_{1}), F(_{X}2))=$

$(F(x_{1})\mathrm{b}\mathrm{j}C)\cap(F(x_{2})\mathrm{b}jc)$ ,

and

$C_{U}(F(_{X_{1}}), F(_{X}2))=$

$(F(x_{1})\Omega c)\cap(^{p(_{X_{2}}))}\Omega c$ .

By using such two sets and the six different
set-relations $\leq_{C}(k)(k=\mathrm{i}, \ldots, \mathrm{v}\mathrm{i})$ , we gen-
eralize quasi $C$-convexity of vector-valued
function, but types $(\mathrm{i}\mathrm{v})-(\mathrm{v}\mathrm{i})$ generalizations
are meaningless since the following condi-
tions are $\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{v}_{!^{\mathrm{a}}}1$ in the case. $\mathrm{s}$ .
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Definition 5. For each $k=\mathrm{i},$ $\mathrm{i}\mathrm{i},$

$\mathrm{i}\mathrm{i}\mathrm{i}$, a set-
valued map $F:X\sim*Z$ is said to be

$\bullet$ type $(k)$ -lower quasiconvex if for
every $x_{1},$ $x_{2}\in \mathrm{D}\mathrm{o}\mathrm{m}F$ and $\lambda\in(0,1)|$ ’

$F(\lambda x_{1}+(1-\lambda)x_{2})\leq_{C}C(k)L(F(x_{1}),F(x_{2}))$ ;

$\bullet$ type $(k)$-upper quasiconvex if for
every $x_{1},$ $x_{2}\in \mathrm{D}\mathrm{o}\mathrm{m}F$ and $\lambda\in(0,1)$ ,

$F(\lambda x_{1}+(1-\lambda)x_{2})\leq_{c^{k}}()C\sigma(F(x1),F(x_{2}))$.

Definition 6. A set-valued map $F:X\sim$

$Z$ is said to be
$\bullet$ type $(-1)$ level-set convex if for ev-

ery $z\in Z$ ,
$F^{-1}(z-c):=\{x\in X|F(x)\cap(z-C)\neq\emptyset\}$

is convex or empty;

type (i)-lower
$arrow$

quasiconvex

type
$(\mathrm{i}\mathrm{i})\downarrow$

-lower
$arrow$

quasiconvex

type $(-1)$
$rightarrow$

type
$(\mathrm{i}\mathrm{i}\mathrm{i})\downarrow$

-lower
$arrow$

level-set convex quasiconvex

$\bullet$ type $(+1)$ level-set convex if for ev-
ery $z\in Z$ ,

$F^{+1}(z-c):=\{x\in X|F(x)\subset(z-^{c)\}}$

is convex or empty.

In $[14, 16]$ , the notion of type $(-1)$ level-set
convexity is used in existence theorems for
loose saddle points. By Proposition 1 and
simple demonstration, we have the following
interesting implications among quasiconvex-
ities above, including the level-set convexity.

Proposition 5. For a set-valued map $F$ :
$X\sim>Z$ , the following relationships hold:

type (i)-upper type $(+1)$

quasiconvex $rightarrow \mathrm{l}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{l}$-set convex

type
$(\mathrm{i}\mathrm{i})\downarrow$

-upper
quasiconvex

type
$(\mathrm{i}\mathrm{i}\mathrm{i})\downarrow- \mathrm{u}\backslash$

pper
quasiconvex

Table 4: Implications among. type $(k)$ lower and upper quasiconvexities and level-set
convexities.

With respect to set-relation (iii), type (iii)
lower quasiconvexity, equivalently type $(-1)$

level-set convexity, is a weaker notion than
type (iii) convexity and type (iii) properly
quasiconvexity, respectively; see [12].

continuity of a real-valued function and a
set-valued map is transmitted to the supre-
mum type marginal function associated with
them.

Now, we generalize a vector-valued ver-
sion of lower semicontinuity, which is a gen-
eralization of the ordinary lower semiconti-
nuity on real-valued functions, that is, the
notion of classical upper semicontinuity of
set-valued map is generalized to cone-upper
semicontinuity. Hence, simultaneous semi-

With respect to researches on upper and
lower semicontinuities for set-valued maps,
there are an extensive bibliography in [2].
Let $X$ and $\mathrm{Y}$ be two topological spaces. A
set-valued map $F:X\sim \mathrm{Y}$ is said to be up-
per semicontinuous (u.s.c. for short) at $x_{0}$

if for any open set $V$ with $F(x_{0})\subseteq V$ , there

83



exists a neighborhood $U$ of $x_{0}$ such that

$F(x)\subset V$ for all $x\in U$.

In [25], some modifications for this notion
are given as follows: a set-valued map $F$ :
$X\sim \mathrm{Y}$ is said to be weak upper semicon-
tinuous (wusc for short) at $x_{0}$ if for any
open set $V$ with cl $F(x_{0})\subset V$ , there exists
a neighborhood $U$ of $x_{0}$ such that

$F(x)\subset V$ for all $x\in U$ ;

moreover if $\mathrm{Y}$ is a t.v.s., a set-valued map
$F$ : $X\sim\succ \mathrm{Y}$ is said to be equally weak up-
per semicontinuous (ewusc for short) at $x_{0}$

if for any open neighborhood $G$ of the ori-
gin of $\mathrm{Y}$ , there exists a neighborhood $U$ of
$x_{0}$ such that

$F(x)\subset F(x_{0})+G$ for all $x\in U$.

These notions are slightly different, and
the following relation holds:

u.s.c. $arrow \mathrm{w}\mathrm{u}\mathrm{s}\mathrm{c}arrow \mathrm{e}\mathrm{w}\mathrm{u}\mathrm{S}\mathrm{C}$ .
Moreover, we introduce three types of cone-
upper semicontinuity of set-valued map
which extend ordinary u.s.c. and its mod-
ifications above, respectively and which
are also generalizations of real-valued lower
semicontinuity.

Definition 7. Let $X$ and $\mathrm{Y}$ be a topolog-
ical space and an ordered topological vector
space with a convex cone $C$ , respectively. A
set-valued map $F:X\sim \mathrm{Y}$ is said to $.\mathrm{b}\mathrm{e}$ :

(u1) $C$-upper semicontinuous at $x_{0}$ (C-
$\mathrm{u}\mathrm{s}\mathrm{c})$ if for any open neighborhood $V$

of $F(x\mathrm{o})$ , there exists an open neigh-
borhood $U$ of $x_{0}$ such that $F(x)\subset$

$V+C$ for all $x\in U\cap \mathrm{D}\mathrm{o}\mathrm{m}F([13$ ,
Def.7.1 (p.33)$])$ ;

(u2) $C$-weak upper semicontinuous at $x_{0}$

( $C$-wusc) if for any open neighbor-
hood $V$ of cl $F(x_{0})$ , there exists an
open neighborhood $U$ of $x_{0}$ such that
$F(x)\subset V+C$ for all $x\in U\cap \mathrm{D}\mathrm{o}\mathrm{m}F$ ;

(u3) $C$-equally weak upper semicontinuous
at $x_{0}$ ( $C$-ewusc) if for any open neigh-
borhood $G$ of $\theta_{\mathrm{Y}}\in \mathrm{Y}$ , there exists
an open neighborhood $U$ of $x_{0}$ such
that $F(x)\subset F(X_{0})+G+C$ for all
$x\in U\cap \mathrm{D}\mathrm{o}\mathrm{m}F$ ,

where $\mathrm{D}\mathrm{o}\mathrm{m}F:=\{x\in X|F(x)\neq\emptyset\}$ .

Ordinary upper semicontinuity of set-
valued map implies cone-upper semiconti-
nuity. Such types of cone-upper semicon-
tinuity are also regarded as extensions of or-
dinary lower semicontinuity for real-valued
functions, or extensions of a vector-valued
version (called cone-lower semicontinuity) of
the lower semicontinuity; see [24, Def.2.1].
In fact, whenever $\mathrm{Y}=R,$ $C=R_{+}$ , and $F$ is
an ordinary (singleton) function, all types of
$C$-upper semicontinuity above are the same
as the ordinary lower semicontinuity.

In the case of cone-semicontinuity of
vector-valued function, the correspond-
ing notions to three different definitions
above are coincident with each other ([24,
Def.2.1]), but such notions for set-valued
map are not always coincident.

Proposition 6. Let $X$ and $\mathrm{Y}$ be a topolog-
ical space and an ordered topological vector
space with a convex cone $C$ , respectively. In
the above definition, $(\mathrm{u}\mathrm{l})\Rightarrow(\mathrm{u}2)\Rightarrow(\mathrm{u}3)$ .
Moreover, if $F(x\mathrm{o})$ is closed then (u2) $\Rightarrow$

(u1). Also, if cl $F(x\mathrm{o})$ is compact in $\mathrm{Y}$ ,
then (u3) $\Rightarrow(\mathrm{u}2)$ .

Next, we introduce cone-semicontinuity
for lower semicontinuity of set-valued map.
Let $X$ and $\mathrm{Y}$ be two topological spaces. A
set-valued map $F$ : $X\sim \mathrm{Y}$ is said to be
lower semicontinuous (l.s.c. for short) at $x_{0}$

if

(i) for any open set $V$ with $F(x_{0})\cap V\neq\emptyset$ ,
there exists a neighborhood $U$ of $x_{0}$

such that $F(x)\cap V\neq\emptyset$ for all $x\in U$ ;
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equivalently

(ii) for any $y_{0}\in F(x\mathrm{o})$ and any open
neighborhood $V$ of $y_{0}$ , there exists a
neighborhood $U$ of $x_{0}$ such that $F(x)\cap$

$V\neq\emptyset$ for all $x\in U$ ;

moreover if $\mathrm{Y}$ is a t.v.s., we have the follow-
ing equivalent condition

(iii) for any $y_{0}$ $\in F(x\mathrm{o})$ and any open
neighborhood $G$ of $\theta_{\mathrm{Y}}\in \mathrm{Y}$, there ex-
ists a neighborhood $U$ of $x_{0}$ such that
$F(x)\cap y_{0}+G\neq\emptyset$ for all $x\in U$ .

If $\mathrm{Y}$ is a t.v.s., we can provide the fol-
lowing modification of lower semicontinuity,
which is stronger than lower semicontinu-
ity. A set-valued map $F$ : $X’$. $\mathrm{Y}$ is said
to be equally lower semicontinuous (elsc for
short) at $x_{0}$ if for any open neighborhood
$G$ of $\theta_{Y}\in \mathrm{Y}$, there exists a neighborhood
$U$ of $x_{0}$ such that $F(x\mathrm{o})\subset F(x)+G$ for all
$x\in U$ . If a set-valued map $F$ : $X\sim \mathrm{Y}$ is
elsc at $x_{0}$ then it is also l.s.c. at the point.
Conversely, if $F$ is l.s.c. at $x_{0}$ and cl $F(X_{0})$

is a compact set, then it is elsc at the point;
see [25] for detail.

Definition 8. Let $X$ and $\mathrm{Y}$ be a topolog-
ical space and an ordered topological vector
space with a convex cone $C$ , respectively. A
set-valued map $F:X\sim \mathrm{Y}$ is said to be:

(11) $C$-equally lower semicontinuous at $x_{0}$

( $C$-elsc) if for any open neighbor-
hood $G$ of $\theta_{Y}\in \mathrm{Y}$ , there exists an
open neighborhood $U$ of $x_{0}$ such that
$F(x\mathrm{o})\subset F(x)+G-C$ for all $x\in$

$U\cap \mathrm{D}_{0}\mathrm{m}F$ ;

(12) $C$-lower semicontinuous at $x_{0}$ (C-lsc)
if for any $y_{0}\in F(x_{0})$ and any neigh-
borhood $G$ of $\theta_{\mathrm{Y}}\in \mathrm{Y}$ , there exists
a neighborhood $U$ of $x_{0}$ with $F(x)\cap$

$(y_{0}+G+C)\neq\emptyset$ for any $x\in U\cap$

$\mathrm{D}\mathrm{o}\mathrm{m}F$ .

Two types of cone-lower semicontinuities
of set-valued map above generalize equally

lower semicontinuity and lower semiconti-
nuity of set-valued map which are pro-
posed in [25]. Of course, ordinary lower
semicontinuity of set-valued map implies C-
lower semicontinuity. Also, conditions (u3)
and (11) are precisely dual concepts in
the sense of complementary notions by ex-
changing $(F(x_{0}), c)$ and ( $F(x),$ $-^{c)}$ , re-
spectively. For more detail research on cone-
semicontinuity, see a forthcoming paper [9].

Now, we consider the composition of a
real-valued function and a set-valued map,
$\varphi$ : $X\sim R$ defined by $\varphi(x):=f\mathrm{o}F(x)=$

$\bigcup_{y\in F(x})\{f(y)\}$ , and consider $C=R_{+}$ or
$C=R_{-}$ ; then the marginal functions are
denoted by $g(x)= \sup\varphi(x)$ and $h(x)=$
$\inf\varphi(x)$ . A real-valued function $f:\mathrm{Y}arrow R$

is called monotonically u.s.c. (resp. mono-
tonically l.s.c.) if for any set $V\subset R$ and
$\epsilon>0,$ $f^{-1}(V+(-\epsilon, \epsilon)+R_{-})$ is open and
$f^{-1}(V)+G\subset f^{-1}(V+(-\epsilon, \epsilon)+R_{-})$ for
some open neighborhood $G$ of $\theta_{\mathrm{Y}}$ (resp. by
replacing $R_{-}$ by $R_{+}$ ).

Proposition 7. Let $X$ and $\mathrm{Y}$ be a topolog-
ical space and an ordered topological vector
space with a convex cone $C$ , respectively. If
$F:X\sim \mathrm{Y}$ and $f$ : $\mathrm{Y}arrow R$ have the follow-
ing semicontinuity, then we have the follow-
ing eight statements on semicontinuity for
$\varphi,$ $\sup\varphi$ , and $\inf\varphi$ :

Based on these results, we prove exis-
tence theorems for generalized saddle points
of multi-valued functions.

Theorem 1. [Th.3.3 in [14]] Let $X,$ $\mathrm{Y}$ be
two locally convex spaces over reals, and $Z$

an ordered topological vector space with a
convex cone $C$ , respectively. Assume that
the following conditions hold:
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(i) $A$ and $B$ are nonempty compact con-
vex sets in $X$ and $\mathrm{Y}$ , respectively;

Then, there exists at least one loose saddle
point of $F$ on $A\cross B$ .

(ii) $F$ is continuous compact-valued;

(iii) there exists a strictly monotonic con-
tinuous single-valued map $f$ from $Z$ to
$R$ such that $f\mathrm{o}F(X, y)$ is type $(-1)$

level-set convex in $x$ for any fixed $y$

and that $-f\mathrm{o}F(x, y)$ is type $(-1)$

level-set convex in $y$ for any fixed $x$ .

Then, there exists at least one loose saddle
point of $F$ on $A\cross B$ .

The proof of Theorem 1 is based on ap-
plying the Browder fixed point theorem [3]
to the following map:

$\tau(X_{0,y_{0})=}\{(x, y)\in A\cross B|$

$\min_{\max}f\mathrm{o}F(f\mathrm{o}F(_{X_{0}},B)\in fA,y_{0})\in f\mathrm{o}_{\mathrm{O}}FF(x_{0},y_{0})(x,y)\}$

for each $(x_{0}, y_{0})\in A\cross B$ .

Theorem 2. [Th.3.1 in [16]] Let $X,$ $\mathrm{Y}$ be
two Hausdorff topological vector spaces over
reals, and $Z$ an ordered Hausdorff topolog-
ical vector space with a convex cone $C$ , re-
spectively. Assume that the following con-
ditions hold:

(i) $A$ and $B$ are nonempty compact con-
vex sets in $X$ and $\mathrm{Y}$ , respectively;

(ii) $F$ is compact-valued and upper semi-
continuous such that, for each fixed
$x\in A,$ $y\mapsto F(x, y)$ is lower semi-
continuous on $B$ and, for each fixed
$y\in B,$ $x\mapsto F(x, y)$ is lower semicon-
tinuous on $A$ ;

(iii) there exists a strictly monotonic con-
tinuous single-valued map $f$ from $Z$

to $R$ such that, $f\mathrm{o}F(x, y)$ is type
$(-1)$ level-set convex in $x$ for any fixed
$y$ and that $-f\mathrm{o}F(x, y)$ is type $(-1)$

level-set convex in $y$ for any fixed $x$ .

These results can be improved by us-
ing several kinds of cone-convexity and cone-
semicontinuity for set-valued maps.

4. Minimax Theorems

In a few of the author’s papers, he has pro-
posed some minimax theorems for vector-
valued functions. Their results are based on
both existence theorems of saddle points and
a saddle point theorem of a vector-valued
function, which is a corollary of existence for
vector-valued minimax and maximin sets.
His vector-valued minimax theorems con-
sists of three types: topological space type,
topological vector space type, and locally
convex space type.

They are similar statements to the ordi-
nary minimax theorems for real-valued func-
tions. In fact, vector-valued minimax the-
orems tell us that there exist some mini-
max strategy and maximin strategy of $f$

such that their values are ordered by $\leq c$

and dominated each other whenever $f$ has
a weak $C$-saddle point. As illustrated in
Fig. 1,

Fig. $1:\mathrm{M}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{m}\mathrm{a}\mathrm{x}$ inequality among mini-
max values, maximin values, and sad-
dle values (type I).

first type minimax theorem means that min-
imax values and maximin values of $f$ are en-
tirely contained in the set of maximin values
of $f$ minus the pointed convex cone $C$ and
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in the set of minimax values of $f$ plus the
pointed convex cone $C$ , respectively. Also,
as illustrated in Fig. 2,

[7] Ferro $\mathrm{F}$ (1991) A Minimax Theorem for
Vector-Valued Functions, Part 2. $\mathrm{J}$ Optim
Theory Appl 68:35-48.

$\mathrm{F}\overline{\mathrm{l}}\mathrm{g}.2:\mathrm{M}\overline{\mathrm{l}}\mathrm{n}\check{\mathrm{l}}\max \mathrm{i}\mathrm{n}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{l}\check{\mathrm{l}}\mathrm{t}\mathrm{y}$ among mini-
max values, maximin values, and sad-
dle values (types II, III).

second and third type minimax theorems
mean that there exist some minimax values
and maximin values of $f$ such that both vec-
tors are ordered by $\leq c$ and dominated each
other.

With respect to multi-valued functions,
such minimax theorem is open problems,
but different results are expected, $\mathrm{w}\mathrm{h}\mathrm{i}\mathrm{C}\mathrm{h}$

,
will

be found in forthcoming papers.
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