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This paper is concerned with the average-variance of Markov de-
cision processes with countable states and finite actions. Sufficient
conditions will be given to assure that there is a stationary deter-
ministic policy which minimizes the average-variance in a class of
the mean-optimal policies. The class of the policies is detetermined
by the quantity of the actions which do not satisfy the mean-optimal
equation.

1. Introduction.

As well as mean ( $\mathrm{v}\mathrm{i}\mathrm{z}$ . expected average) rewards, variances and their related criteria
of Markov decision processes (MDP’s) have been studied by many authors. Many of
their works are overviewed by White(1988) and seen also in Filar, Kallenberg and
Lee(1989).

But to our knowledge, there are a few papers which are concerned with the mini-
mization of the average-variance in the class of mean-optimal policies. The average-
variance is the applied form to MDP’s of the variance given by Kemeny and Sne11(1976).
In finite state MDP’s, Mand1(1971) investigates the asymptotic behavior of the average-
variance in details. He contributes to construct MDP’s whose mean rewards are the
variances for the given MDP’s. Kurano(1987) shows in general state MDP’s that
there is a stationary deterministic policy which minimizes the average-variance in the
restricted class of policies whose actions satisfy the mean-optimal equation.

In this paper, the MDP’s have countable states and finite actions. We show the
existence of a stationary deterministic policy which minimizes the average-variance in
the larger class of mean-optimal policies. The class is determined in relation to the
mean-optimal equation. As a corollary, if the state space is finite, the class is given
by the set of all mean-optimal policies.

In section 2, the necessary notations and the problem to be examined is stated. Also,
under an ergodic condition, the properties of mean-optimal policies are reviewed. In
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section 3, applying the equality given by Kurano(1987), we obtain a lemma which
describes Mand1(1971)s idea more generally. Owing to the lemma, the main theorem
is proved.

2. Definitions and notation.

Our MDP’s are specified by $(S, A, p, r)$ , where $S=\{0,1,2, \cdots\}$ is the set of states,
the subset $A(i)$ of $A$ is the set of actions available at each state $i\in S,$ $p=(p(a)_{i}j)$ is
the matrix of transition probabilities satisfying that $\Sigma_{j\in \mathit{8}}p(a)_{ij}=1$ for any $i\in S$ and
$a\in A(i)$ , and $r(i, a)$ is an immediate reward function defined on $\{(i, a);i\in S,$ $a\in$

$A(i)\}$ . We assume that $S$ is countable, each $A(i)$ is finite and that $r$ is uniformly
bounded, i.e., $|r(i, a)|\leq M$ for any $i\in S$ and $a\in A(i)$ .

The sample space is the product space $\Omega=(S\cross A)^{\infty}$ such that the projection
$(X_{n}, \triangle_{n})$ to the n-th factor $S\cross A$ describes the state and the action at time $n$ of the
process respectively for $n=0,1,2,$ $\cdots$ .

A policy $\pi=(\pi_{0}, \pi_{1}, \cdots)$ is a sequence of conditional probability $\pi_{n}$ such that
$\pi_{n}$ ($A(i_{n})|i0,$ $a0,$ il, $\cdots,$

$i_{n}$ ) $=1$ for any history $(i_{0}, a_{0}, \cdots i_{n})\in(S\cross A)^{n}\mathrm{x}S$ . A
policy $\pi$ is called Markov if $\pi_{n}(a|i0, a0, \cdots , i_{n})=\pi_{n}(a|i_{n})$ for any $a\in A(i),$ $n$ and
( $i_{0},$ $a_{0},$ $\cdots$ i)n. A Markov policy $\pi$ is called deterministic if there is a function $f_{n}$ on
$S$ with $f_{n}(i)\in A(i)$ for any $n$ such that $\pi_{n}(\{f_{n}(i)\}|i_{n}=i)=1$ for any $i\in S$ . A
deterministic policy is called stationary if $f_{n}=f$ for all $n=0,1,$ $\cdots$ . The stationary
policy is denoted by $\pi=f$ . Let $\Pi$ and $\Pi_{S}$ be the sets of all policies and stationary
deterministic policies, respectively.

Let $H_{n}=(X_{0}, \triangle_{0,1,n}\ldots, \triangle_{n-}x)$ for $n=0,1,2,$ $\cdots$ . We assume for any $\pi\in\Pi$

with $n=0,1,$ $\cdots,$ $i,$ $j\in S$ and $a\in A(i)$ ,

$P^{\pi}(X_{n+1}=j|H_{n-1,n}\triangle-1, xn=i, \triangle_{n}=a)=p(a)_{ij}$ .

An initial state $i\in S$ and a policy $\pi=(\pi_{0}, \pi_{1}, \cdots)$ determine the probability measure
$P_{i}^{\pi}$ on $\Omega$ by the usual way. The expectation of a random variable $Y$ with respect to
$P_{i}^{\pi}$ is denoted by $E_{i}^{\pi}(Y)$ .

For a policy $\pi$ , the long-run mean (or expected average) reward per unit time

starting from $i\in S$ is defined by

(1) $x(i, \pi)=\lim_{narrow}\inf_{\infty}\frac{1}{n+1}E_{i}^{\pi}[_{k=}\sum_{0}^{n}r(x_{k}, \triangle k)]$ .

The average-variance for the policy is defined, following to Kurano(1987), by

$\psi(i, \pi)=\lim_{narrow}\sup_{\infty}\frac{1}{n+1}V_{i}\pi[_{k=0}\sum^{n}r(x_{k}, \triangle k)]$ ,
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where $V_{i}^{\pi}[Y]=E_{i}^{\pi}\{Y-Ei\pi(Y)\}^{2}$ for a random variable $Y$ . The average-variance is
the application to MDP’s of the variance given in Kemeney and Sne11(1976).

Let $x^{*}(i)= \sup\{x(i, \pi);\pi\in\Pi\}$ . If a policy $\pi^{*}$ satisfies $x(i, \pi)*=x^{*}(i)$ for any
$i\in S$ , we say $\pi^{*}$ is mean-optimal. We denote by $\Pi(M)$ the set of mean-optimal
policies.

For any $f\in\Pi_{S}$ , let

$m(f)_{ij}= \sum_{n=1}^{\infty}nP_{i}^{f}$ ( $x_{k}\neq j$ for $1\leq k<n,$ $X_{n}=j$),

which is called the mean recurrence time to go from $i\in S$ to $j\in S$ . We shall set up
a condition.

Condition $I$. There are a state $0\in S$ and a constant $b>0$ such that $m(f)_{i0}\leq b$

for all $i\in S$ and $f\in\Pi_{S}$ .
Remark 1. According to Ross(1970), if $S$ is finite and each stationary Markov

chain $\{p(f)ij;i,j\in S\}$ is irreducible, Condition I holds. Federgruen, Hordijk and
Tijms(1978) shows that Condition I holds if $\lim_{narrow\infty}p(f)_{ij}^{n}$ exists independently of
$i\in S$ and the limit is approached with exponential speed. Dekker and Hordijk(1992)
and Mann(1985) generalize Condition I to the multi-chain case.

Ross(1970) shows under Condition I that (i) $x(i, f)$ is independent of $i\in S,$ $(\mathrm{i}\mathrm{i})$

there exists a bounded vector $v=(v(i))$ satisfying

(2)
$x^{*}+v(i)= \max_{a\in A(i)}\{r(i, a)+\sum_{j\in \mathit{8}}p(a)_{i}jv(j)\}$

for any $i\in S$ ,

where $x^{*}= \sup\{x(i, f);f\in\Pi_{S}\}$ , and (iii) If $f\in\Pi_{S}$ maximizes the term in the
brackets of (2) for any $i\in S$ , then $f\in\Pi(M)$ . Letting

$v(i, f)= \lim_{\beta\nearrow 1}\sum\beta n\{E_{i}^{f}r(x_{n}, \triangle)n-n=\infty 0x(i, f)\}$ for $f\in\Pi_{S}$ ,

Mann(1985) shows that there is $f^{*}\in\Pi_{S}$ which satisfies the above (iii) with $v(i, f^{*})=$

$v(i)$ for $i\in S$ .

For the analysis of the mean-optimality, let

(3) $\varphi(i, a)$

$=r(i, a)+ \sum_{j\in S}p(a)_{i}jv(j)-x^{*}-v(i)$ and

(4) $K(i)$ $=$ $\{a\in A(i);\varphi(i, a)=0\}$ for any $i\in S$ .

Let $K=\mathrm{X}_{i\in s}K(i)$ . Let denote by $\Pi(K)$ the set of policies $\pi=(\pi_{0}, \pi_{1}, \cdots)$ such
that $\pi_{n}(K(i_{n})|i0, a0, i_{1}, \cdots, i_{n})=1$ for any history $(i_{0}, a0, \cdots i_{n})$ .
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Let define a function $\overline{r}(i, a)$ by

$\overline{r}(i, a)=\sum_{j\in S}p(a)_{i}j\{v(j)-hs\sum_{\in}p(a)_{i}hv(h)\}^{2}$
for any $i\in S$ and $a\in A(i)$ .

Notice that $\overline{r}$ is uniformly bounded. Using $r\mathrm{i}\sim \mathrm{n}\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{a}\mathrm{d}$ of $r,\tilde{x}(i, \pi)$ is defined by
limsup similarly as (1). For MDP’s specified by $(S, K, p, r)\sim,\overline{x}_{*}$ is defined by inf
similarly as $x^{*}$ . The bounded vector $\overline{v}=(\overline{v}(i))$ exists. Corresponding to (3), let

$\overline{\varphi}(i, a)=\overline{r}(i, a)+\sum_{j\in \mathit{8}}p(a)_{i}j\overline{v}(j)-\overline{x}_{*}-\overline{v}(i)$
for any $i\in S$ and $a\in A(i)$ .

Then, $\tilde{\varphi}(i, a)\geq 0$ for any $i\in S$ and $a\in K(i)$ . Corresponding to (4), let $\overline{K}(i)=$

$\{a\in K(i);\overline{\varphi}(i, a)=0\}$ . Then, $\overline{K}(i)\neq\emptyset$ for all $i\in S$ . Let a policy $\tilde{f}\in\Pi(K)_{S}$ be
$\tilde{f}(i)\in\overline{K}(i)$ for any $i\in S$ .

Kurano(1987) and Mand1(1971) show that $\tilde{f}\in\square (K)$ has the minimum average-
variance within the class of policies satisfying $\Sigma_{k=0}^{\infty}P_{i}\pi(\triangle_{k}\not\in K(X_{k}))<\infty$ .

3. Class of policies to the minimum average-variance.

This section gives sufficient conditions to determine the class of policies where
$\tilde{f}\in\Pi(K)_{\mathit{8}}$ in the previous section has the minimum average-variance. To the end,

two lemmas are prepared.
Next Lemma 3.1 estimates the quantity of the actions which do not satisfy (2) for

the mean-optimal policies.

Lemma 3.1. Suppose that Condition I holds. If $\pi\in\Pi(M)$ , it follows that

(5) $\lim_{narrow\infty}\frac{1}{n+1}\sum_{0k=}P^{\pi}(ix_{k}n=j, \triangle_{k}\not\in K(j))=0$ for any $i,$ $j\in S$

Proof. We have from (3) that

(6) $\sum_{k=0}^{n}E^{\pi}i\varphi(xk, \triangle_{k})=\sum_{k=0}E\pi r(nix_{k}, \triangle_{k})-(n+1)x^{*}-v(i)+E^{\pi}iv(xn+1)$ .

Since $\varphi(i, a)\leq 0$ for any $i\in S$ and $a\in A(i)$ , a policy $\pi$ is mean-optimal if and only if

(7) $\lim_{narrow\infty}\frac{1}{n+1}\sum_{0k=}E\pi(i\varphi n(X_{k}, \triangle k))=0$ for $i\in S$ .

Let $\epsilon_{j}=\max\{\varphi(j, a);a\not\in K(j)\}$ . Then, $\epsilon_{j}<0$ for any $j\in S$ since $A(j)$ is finite.

Take the terms $\varphi(j, a)=0$ away from (7), we get

(8) $\lim_{narrow\infty}\frac{1}{n+1}k=\sum_{0}\sum P\pi(ik=nj\in Sxj, \triangle_{k}\not\in K(j))\epsilon j=0$ .
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(8) implies (5) immediately, completing the proof. $\square$

For the sake of brevity, we shall omit the notation $\triangle_{k}$ freely in all the proofs
of the subsequent propositions if no confusion occurs. In paticular, the conditional
expectation $E_{i}^{\pi}(v(Xk+1)|Xk, \triangle_{k})$ will be denoted by $E_{i}^{\pi}(v(X_{k1}+)|X_{k})$ .

In the proof of Lemma 3.2, we shall use the followig equality which is given by
Lemma 3.2 in Kurano(1987).

(9) $E_{i}^{\pi} \{_{k=}\sum_{1}(v(x_{k})-E_{i}\pi(v(x_{k})|X_{k}-1))\}n2=\sum_{k=0}^{n-1}E_{i}\pi r\sim(x_{k}, \triangle_{k})$ .

Lemma 3.2. $Suppo\mathit{8}e$ Condition I holds. Then, it holds for any policy $\pi\in\Pi$ and
$n=0,1,2,$ $\cdots$ that

$| \{V_{i}^{\pi}(\sum r(Xk, \triangle k))-V\pi(\sum_{0k=}^{n}\varphi(xk, \triangle_{k}))k=n0i\}-\sum_{=0}E_{i}\pi\overline{r}k(xnk, \triangle_{k})|$

(10)
$\leq 2[\{_{k0}^{n-1}\sum_{=}E^{\pi}\overline{r}(ixk, \triangle k)\}^{\frac{1}{2}}+M_{1}]\{V_{i}^{\pi}(\sum_{0k=}\varphi(Xnk, \triangle_{k}))\}^{\frac{1}{2}}+o(n)$ ,

where $M_{1}$ is a $Con\mathit{8}tant$ and $o(n)$ is a number such that $\lim_{narrow\infty}o(n)/n=0$ .

Proof. Let $\pi\in\Pi$ . For a random variable $Y$ and a constant $\mu$ , it follows that
$E(Y-E(Y))2=E(Y-\mu)^{2}-(E(Y)-\mu)^{2}$ . Substitute $Y=\Sigma_{k=0^{r}}^{n}(X_{k})$ and $\mu=$

$\Sigma_{k=0}^{n}(x*+E_{i}^{\pi}\varphi(X_{k}))$ to the equality. Using (6), we have

(11)
$V_{i}^{\pi} \{\sum_{0k=}nr(x_{k})\}$ $=E_{i}^{\pi} \{_{k=0}\sum^{n}(r(x_{k})-x-E^{\pi}*(i\varphi X_{k}))\}2$

$-\{v(i)-Ei\pi v(xn+1)\}^{2}$ .

On the other-hand, we have from the definition of $\overline{r}$ and (9) that

(12) $\sum_{k=0}^{n}E^{\pi}(i\overline{r}(x_{k}))=E_{i}^{\pi}\{_{k=0}\sum^{n}(v(xk)-E\pi(iv(x_{k+1})|x_{k}))-(v(X_{0})-v(x_{n}+1))\}^{2}$

Expand (12) with the form $a^{2}-2ab+b^{2}$ . Substitute (3) to $a^{2}$ . Rearrange the terms

in $2ab$ following:
(13)

$E_{i}^{\pi} \{v(x+1)\sum_{1k=}^{n}(v(Xk)-E_{i}\pi(v(Xk)n|x_{k}-1))+v(x_{n+1})(v(X_{0})-E_{i}^{\pi}(v(Xn+1)|X)n)\}$.

After sharing $E_{i}^{\pi}$ , apply the Schwarz inequality to (13) and use (9). Since $v$ is bounded,

(13) is represented by $o(n)$ . Then, (12) turns out to be

(14) $\sum_{k=0}^{n}E^{\pi}\overline{r}i(x_{k})=E_{i}^{\pi}\{\sum_{=k0}^{n}(r(Xk)-x^{*}-\varphi(X_{k}))\}^{2}+o(n)$ .

132



Comparing (14) with (11), we have

$\sum_{k=0}^{n}E_{i}\pi\overline{r}(xk)=Vi\pi(k=\sum^{n}r(x0k))+V_{i}^{\pi}(\sum_{0k=}^{n}\varphi(x_{k}))$

(15)
$-2E_{i}^{\pi} \{_{k=0}\sum^{n}(r(Xk)-X-E_{i}^{\pi}*\varphi(Xk))\sum_{f=0}^{n}(\varphi(x_{\ell})-E_{i}^{\pi}\varphi(x\ell))\}+o(n)$ .

Substitute (3) to $r(X_{k})-x^{*}$ in (15). In the same way as (13), apply the Schwarz
inequalities to both terms and use (9). The constant $M_{1}$ should be taken to satisfy

$M_{1}\geq\{E_{i}^{\pi}(v(X\mathrm{o})-E_{i}^{\pi}(v(x_{n+1})|Xn))^{2\frac{1}{2}}\}$ for all $n$ .

Since $v$ is bounded, such $M_{1}$ exists. This completes the proof. $\square$

Theorem 3.3. $Supp_{\mathit{0}\mathit{8}}e$ Condition I holds. Let $\pi\in\Pi$ satisfy

(16) $\lim_{narrow\infty}\frac{1}{n+1}V^{\pi}(i\sum_{0k=}(\varphi(Xnk, \triangle_{k}))=0$ and

(17) $\lim_{narrow}\sup_{\infty}\frac{1}{n+1}\sum_{0k=}E\pi(i\overline{\varphi}n(X_{k}, \triangle k))\geq 0$ for any $i\in S$.

Then, it $hold_{\mathit{8}}$ that

(18) $\psi(i,\tilde{f})=\overline{x}(i,\tilde{f})\leq\overline{x}(i, \pi)=\psi(i, \pi)$ for any $i\in S$.

Proof. Dividing (10) by $n+1$ , let $n$ tend to infinity. We have from (16) that
$\overline{x}(i, \pi)=\psi(i, \pi)$ for any $i\in S$ . In particular, $\overline{x}_{*}=\overline{x}(i,\overline{f})=\psi(i,\tilde{f})$ , since
$\varphi(j,\tilde{f}(j))=0$ for any $j\in S$ .

The relation between $\sum_{k=0^{E_{i}}}^{n}\pi\overline{r}(x_{k})$ and $\Sigma_{k=0}^{n}E^{\pi}i\tilde{\varphi}(xk)$ is given similarly as (6).

Then (17) implies

$\overline{x}(i, \pi)=\overline{x}_{*}+\lim_{narrow}\sup_{\infty}\frac{1}{n+1}\sum_{0k=}^{n}E^{\pi}(i\overline{\varphi}(x_{k}))\geq\overline{x}_{*}$ .

Thus (18) is obtained, completing the proof. $\square$

Corollary 3.4. Suppose Condition I holds. If a policy $\pi\in\Pi \mathit{8}atisfieS$

(19) $\lim_{narrow\infty}\frac{1}{n+1}\sum_{0k=}^{n}P_{i}^{\pi}(\triangle_{k}\not\in K(X_{k}))=0$ , for any $i\in S$,

then $\pi\in\Pi(M)$ and $\mathit{8}atisfieS(\mathit{1}\mathit{6})$ and (17).
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Proof. The equality (19) is written by

(20) $\lim_{narrow\infty}\frac{1}{n+1}\sum_{0k=}^{n}\sum\sum_{jj\in Sa\not\in K()}P^{\pi}i(X_{k}=j, \triangle_{k}=a)=0$ .

Notice that $\varphi(j, a)=0$ for $a\in K(j)$ . By the bounded convergence theorem, (20)

implies (7), so that $\pi\in\Pi(M)$ . Since $\overline{\varphi}(j, a)\geq 0$ for $a\in K(j),$ (20) implies (17)
similarly.

Let $|\varphi(i, a)|\leq M$ for some $M>0$ and for any $i\in S$ and $a\in A(i)$ . Notice that

$E_{i}^{\pi}( \sum_{0k=}n\varphi(x_{k}))^{2}=\sum_{k=0}^{n}E^{\pi}(i\varphi(x_{k})^{2})+2\sum_{k=1}^{n}\sum_{=\ell 0}^{1}E^{\pi}|i\varphi k-(x_{\ell})\varphi(x_{k})|$ and

$E_{i}^{\pi}|\varphi(x_{\ell})\varphi(x_{k})|\leq M^{2}P_{i}^{\pi}$ ( $\triangle\ell\not\in K(x_{l})$ and $\triangle_{k}\not\in K(X_{k})$ )

for $0\leq\ell\leq k$ and $k=0,1,2\cdots$ . Then, (19) implies $\lim_{narrow\infty}E_{i}^{\pi}(\Sigma_{k}n\varphi=0(x_{k}))^{2}/(n+$

$1)=0$ , so that (16) holds. The proof is complete. $\square$

Corollary 3.5. Suppwse Condition I holds. If $S$ is finite, (18) holds for any
$\pi\in\Pi(M)$ .

Proof. By summing (5) in $j\in S$ , we see that $\pi\in\Pi(M)$ satisfies (19). Then,
Corollary 3.4 and Theorem 3.3 implies (18). The proof is complete. $\square$
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