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SINGLE-LEVEL STRATEGIES FOR FULL- INFORMATION
BEST- CHOICE PROBLEMS, T
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"ABSTRACT. Some best choice problems with' full information and imperfect obser-
vation and their extension to two player competitive situation are discussed. Players
observe one by one sequentially a .sequence of iid random variables from a known
continuous distribution with the objective of choosing one of the k largest. The ob-
servations of the random variables are imperfect and the player (or players) is (are)
informed only of whether it is larger than or less than a previously determined decision
level. The problem is to find the optimal decision level that maximizes the probability
of achieving his objective. The solution of this one person game is derived. In.the
two player competitive situation two typical types of the optimal stopping games for
choosing the best observation are formulated, transformed into continuous games
on the domain [0, 00)?, tand : solutions of them are given. Iis shown st our
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1. INTRODUCTION

The subject of the baper is a class of optimal stopping problems for a sequence of #id rv’s
with full-information (FI) but imperfect observation to guarantee the maximal probability of
achieving some objects. In 1975 Enns [1] first considered and solved the problem where the
objective is to choose the best rv. Some generalization are posed and solved by Porosinski [8].
In Sakaguchi [I{ ]3] some more general problems are discussed. In Section'.2 we formulate and
solve the optimal stopping problem for finding the optimal threshold strategy that maximizes

the probability of selecting one of the k largest. rv's. It is shown that the asymptotically

optimal threshold strategy is to stop at the earliest rv that is larger than e:vf, where a; is

determined by the equation
(=]

al 1
z%j(j +D! Tk
In the subsequent two sections the optimal stopping problem for selecting the best rv, i.e.
the case k = 1, solved in Section 2, is extended to optimal stopping games where two players
compete in selecting the best rv. Two typical types of the optimal stopping games, where
each player’s objective and information condition are, by the notation used in Sakaguchi [15],
1°): Selecting best/ Players priority/ Common/ Zero-sum, with FI
and '
2°): Selecting best/Earlier stop/ Each/ Non-zero-sum, with FI,

respectively in Section 3 and 4.
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In 1°) Players 1 and 2 observe a common iid sequence of rv’s, which are sampled one by
one sequentially. Facing each rv, each player should accept the earliest rv that exceeds his
decision level. If one player accepts a rv and the other rejects it, the game is left thereafter
as the other player’s one person game. If both players stop simultaneously at a rv, then
Player 1 accepts it, by his priority, and the game is left, thereafter as Player 2’s one person
game. A single player who accepts the best rv is the winner, getting reward of one unit from
the opponent. Player 1(2) wants to maximize (minimize) the expected payoff to Player 1.
Related interesting results can be found in Neumann, Porosisiski & Szajowski [7], Porosinski &
Szajowski [9] and Majumdar [5]. The no-information case priority games have been considered
by Enns & Ferenstein [2], Sakaguchi [12] and Szajowski [17].

In 2°%) there are two independent iid sets of rv’s. Players observe the private iid sequence
of rv's. Facing each rv, each player should accept the earliest rv that exceeds his own decision
level. A player who is the first to stop at the best one in his set of rv’s is the winner. The
case, where both players stop at the best one in each set of rv’s, is a draw. Players’ aims
are to maximize his own the winning probability. An interesting related work is Mazalov [6],
where plé,yers’ objective are slightly different from the one in the present paper. Other related
works, but in the null information case, were done by Presman & Sonin [10], Fushimi [3] and
Sakaguchi [12]. .

For both of cases, 1°) and 2°), the game is transformed into a continuous game on the
domain [0, 00)2. Numerical solutions of them are given.

The considered problems are related to the full information best choice problem considered
by Enns [1], Sakaguchi [11], Porosifski 8] and the game version of the problem considered by

Neumann, Porosinski and Szajowski [7], and Sakajuof‘ i and Saario [13].

2. BEST CHOICE PROBLEMS FOR CHOOSING ONE OF THE k-BESTS

Let X;,X3,...,Xn be a sequence of iid rv's obeying uniform distribution on the unit
interval [0 1]. The X'’s are sequentially observed one by one, but the observation is imperfect
and we can only know whether the observed rv is greater than or less than a prescribed level
z € [0,1]. After X, is observed, we have to either accept or reject the observation. Our aim
is to accept one of the k bests among all rv’s. Neither recall nor uncertainty of selection is
allowed. In this paper we restrict ourselves to the strategies which reject the rv’s less tha.n
z and accept the earliest rv greater than 2. We call a win the event in which we accept a
rv satisfying the objective. The event in which either we fail to accept any rv or accept rv
dissatisfying his objective is a loss. We are looking for the decision level z which gives the
maximum probability of win.

Let P()(z) be the probability of win for selecting one of the k bests under the strategy
with the decision level z. Then since the winning event by accepting an rv on or before the
(n — k)-this

k n-k

U U (X1, X2y..., Xjo1 £ 2< X ;1 N {exactly m — 1 rv thereafter > X;}],

m=1 j=1

we have
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(2.1) P(’;)(z) = zk: PE™(2) 4 2275 (1 = 2*)
m=1
where
(2:2) PEM(z) = 'ZZ"I/ (n J)(l z)"~ignmi~mtidg
= z"zz-('“)( r )/l(l—z)’"”z'-mﬂdm
C o r=k m-1)J:

is the proBability that the accepted rv on or before the (n — k)-th is the m-th best with
1<m<k.
We use the following abbreviations in Theorem 1
e p.w. is the probability of win with the decision level z;
e a.d.l (a.p.w.) is the asymptotic decision level (probability of win), when the decision
level is such that z = e~%/", with @ > 0 and n — oo.

Let us deﬁng functions

(23) | me) = Y
(2.4) Gu(z) = gjm;j_l)-,

Theorem 1. (i) Fork =1 (i.e. selectmq the best) the probability ofwm is P(l)(z) = 2"H,(z)
and the optimal strategy is to. choose 2o, “which is determined by the equation

g |
(2.5) ' H,(2)= ; —

zl
i—

and the mazimum of probability of win isn=1y | | zo Therefore

a.dl = exp(-——)
(2.6) "

—_ 3
a.p.w. = (1——6;-—-—)- = 0.5174
ay

where a; = 1.5029 is a unique root in (1,00) of the equation

a ot _ a __
(2.7) _ / e 1dt=e 1’
0

4 a

i.e. Gy(a) =1.
~ (i1) For k = 2 (i.e. selecting one of the two best) the probability of win is

(2.8) PO(2) = "[2Ha(2) - n(% 1), n>2,
and the optimal strategy is to choose z, which is determined by the equation

11 n-1 n
(2.9) Hi(z)==) =+ e
n <2 275 2
~ =t 7y
The mazimum of P(?)(z) is FA




(2.10) . (2) _2 = ) n—
. P (ZO) = .E-O 25 — 2, t
Moreovér we have

a.dl = exp(_gz_)

1—-¢ 9
2(—-*); > 0.7265
Qy

/—5‘"‘*\

where a, & 2.017'7 is @ unique root in (a;,00) of the equation

(2.11)
a.p.w. =

(2.12) < /ae'_1dt=e°f1+a__1
0 14 a 2 ’
i.e. 2G(a) = 1.
(iii) For k = 3 (i.e. selecting one of the three be.hﬂ the probability of win is
9.13 @)\ = _n(n-=1)z%2-1 n(n-5
(213) PO = sh () - MESDES L oL
and the optimal strategy is to choose 2y which is determined by the equation
1) me=iFl eIl o e-1 i
ni= 6 22 6 z 3

The mazimum of PG®)(z) is

@), ) = ' D(n-4), ._ n-5
1) POy = ST Dy nS
Moreover we have

adl = exp(—a—s)
n

1—e 2
a-p-w- =3(—_aa_) -2+ )e“" = 0.8355

(2.16)

where a3 = 2.4934 is a unique root in (az,00) of the equation

et —1 e*—-1 2 2
217 e
i.e. 3G3(a) = 1. :

3. A ZERO-SUM BEST CHOICE GAME WHERE PLAYERS’ PRIORITY IS GIVEN

74

A zero-sum game version of the discrete-time, full information and imperfect observation
best choice problem is considered in this section. Two Players 1 and 2 observe sequentially a
sequence of n iid rv’s from uniform distribution on [0, 1], with each objective of choosing the
largest rv. Let Player 1(2) chose a single level z (w), and he rejects rv's as long as they are
less than z (w) and accepts the earliest rv’s that is > z(w). If the earliest rv thatis > zVw

appears, Player 1 is given the priority to accept it and drops out from the game thereafter.

The player accepting the largest rv wins the game and he is p‘a,id a unit reward from the

opponent. Player 1(2) wants to maximize (minimize) the player I's expected payoff.

‘Let M(z,w) stand for the payoff to Player 1 when the levels z and w are chosen. Then for
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z < w we have

(3.1) M(z,w) = Zn:z"‘I/Iz"“’dz
_Zz’ 1 z w‘-a—l{(w—z)/ Yy ‘dy+/ da;/ , 7‘dy}.

s=1 t=s+1

= 2" > 2~ > {,_1‘ 5}{ 1w — 1) - _zzgw-;;ll- 1_}'

Similarly for z > w we have

(3.2) M(z,w) = Zw" 1/ " ‘dz+Zw’ ! Z 2 l(z—w)/l:z:""al:c

s=1

t=s+41
3= n-—s 1 1
=Y [yt 3 e e [y
s=1 s=1 t=s+1 T

=w" Zi‘lw"(l — 27 ¢ w')

i=1
ny 2 " w,) 2
+(=-1)3 {Z(;) }
j=1 \s=1
2 zg [z -1 273711
+uw*) (n—j —’“{ — — }
S {5 -
Note that (3.1) and (3.%) coincide at z = w and so the game is a continuous game on the
unit square 0 < z,w < 1. k
Define the function for a € (0, 00),

leat_l ) il a].'
s [ —a=Y

j=1] J'

This function is strictly increasing and convex function with $(0) = 0, ®'(a) = a~!(e® - 15
and ®"(a) = a"2{1 - (1 - a)e’} = 352, ;{,‘—:—2-)-, >0.

Now let z = e™%, w = e~ %, with a,b > 0 and n — co.- Then (3.1’) - (3.2') becomes a
continuous game on [0, 00)?, with the payoff function

. (et —e*) +e®(a D), ifo<b<a,
(33) M(a,b)=q e* [(b — a)(2(b) - ®(b = a)) - 2(b) — a5 — 1)] |
' ‘“(<I>(a)+1)+-——1 if0<acx<hb,

Note that (3.3) is a continuous function on [0, 00)? with value ae~® on the halfline ¢ = b > 0
and we have

M(a,O) = e‘“<I>(a) = e® /od et ;_ 1

M(0,b) = —e~t®(b),

both of which are reasonable facts since setting z or w = 1 means that the game is actually
one-person game.

(3.4) di,
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Compuler vesulk on The basis of (3 E)N(}’,é).,nge; e fu(’,@p'u{ing 5 —
Theorem 2. For the zero sum game on [0, 00)? with the payoff function (33), a sa p ‘
(a0, bo), with 0 < aq < bo, exists and the saddle value is -

=5 [(bo — a0)(B(b0) — B(bo — o) — B(ao) — ao(b" = ]+ ¢ (Blao) +1)+ T2 =1 = 03233,

where (ao,bo) = (1.57205, 2.99628) is determined by a simultaneous equation
¢=%(®(a) — @ (a)) + e *(®(b) — 3' (b)) = et ®(b — a)

BT (b - B —a) + (B — &' (1) = (- }{EE) - ()~ 2 —a) + &' (0~ )
+a et -1-b+b?).

“The Thecrem S‘\ON? that Prgﬁy?r [ sete ‘ﬁf} Aec,{g.]m—bv&o %= Q_aO/n #;}lu’r Than The D;’Ptm(;{f
n the o\aﬂvv,& rfty, and The Saddde W\,ﬁ% s ros;l?vﬁ, rdﬁzd?’r; PlA)zn 1s advu.n-oae over
l’\:s D‘)Y\)h'(n't e 'to the k'.?l\eb Pr(Orit/v A P&\/)ry Tl\p_ game’

4. A NON-ZERO SUM BEST CHOICE GAME WHERE WINNING REQUIRES EARLIER STOP

A non-zero-sum game version of the discrete time, full information and imperfect observa-
tion best choice problem is considered in this section. We first state the problem as follows:

(1) There are two Players 1 and 2, and a sequence of n 4id bivariate rv’s {(X;, Y;)}7_, from
independent uniform distribution on [0, 1]%. Player 1(2) observes X,(Y;)’s sequentially
one by one.

(2) Let Player 1(2) choose a single level z(w). He rejects X:(Y:)’s as long as they are less
than z(w) and he accepts the earliest rv that is X, > 2 (Y > w), where o and 7 are
the stopping times of the players. ) .

(3) If one of the players stops (accepts), the other player is not inforx.ned of this fact and
continues playing. We call a “win” for each player the event in which he gets to be the
first to stop at the best one in his set of rv’s. If the two players stop simultaneously
at the best one in each player’s set of rv’s, both of them are the winners. .

(4) The aim of each player in the game is to determine his decision level by which the
probability that he becomes a single winner is maximized.

Let M;(z,w) (M3(z,w)) stand for the probability of winning for Player 1(2) when the levels
z and w are chosen. Then we have

’ n 1 s—1 1
_ s=-1 mn-—sdm w’ + wt—l/ (1 - ,yn—t)d,y} .
4.1) My(zw) =32 / { >,

n —j - ~. . n _l. —
:(zw)"zz , 1{w"‘—w"+w"+1-— > 2 1}.
i=1 J : i=j41 ?

M,(z,w) is equal to M;(z,w) with z and w interchanged.

By letting z = e=*/", w = e~%/", with a,b > 0 and n — oo, we obtain a non- zero-sum
continuous game on [0, 00)? with payoff functions
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Ml(a,b.) =e° [Q(a) - be“f’ /01 Q(at)@l(bt)dt] ,

(4.2) May(a,b) = e [<I>(b) — ae-® /ol‘q,’(at)q_)(bt)dt] ,

We note that (4.2) gives
M,(a,0) = e *®(a), M,(0,b)=0
(43) M,(0,b) = e *®(b), My(a,0)=0
and : :
(44)  My(a,0) = My(a,0) = e 8(a) ~ 3(e™*B(a)* = 5 [1 - (1 - e=*@(a))7],
on the halfline @ = b > 0. Again setting 2 = 1 (w = 1) means that Player 1(2) does not play
any role in the game. Furthermore we find that
(4.5) My(a,b) + My(a,b) = 1- (1 - e *®(a))(1 - e~*3(b)),
by an evident identity
a /0 ' o' (at)(bt)dt + b /0 %' (bt)®(at)dt = B(a)B(b).
Now we find an equiﬁbrium for a pair of payoﬁ' functions (4.2). |

Theorem 3. For the non-zero-sum game on [0, 00)? with the payoff functions (4.2) the equi-
librium point ezists and it is (a,b) with a = b = a, = 1.6065 where a, is defined by ¥ (¢)=0.

The common equilibrium value is

1
€™ ®(a0) ~ 5(e™®(a0))’ = 0.3830.

Therefore the probability of draw of the game is 0.2339.

and ‘
M
’(/)(C) = ea% |a=b=c

e 3(R(e))" - <(2(26) - 28(0))] - B() + € (c),



78

REFERENCES

. E.G. Enns, Selecting the mazimum of & sequence with imperfect information, J. Amer. Statist.

Assoc. 70 (1975), 640 - 643.

9. E.G. Enns and E.Z. Ferenstein, The horse game, J. Oper. Res. Soc. Jap. 28 (1985), 51 - 62.

10.
11.
12.
13.

14.

5

(6.

. M. Fushimi, The secretary problem in a compelitive situation, J. Oper. Res. Soc. Jap. 24 (1981),

350-358.

. 1.P. Gilbert and F. Mosteller, Recognizing the mazimum of a sequence, J. Amer. Statist. Assoc.

61 (1966), no. 313, 35-73.
A.A.K. Majumdar, Optimal stopping for a lwo-person sequeniial game in the continuous case,
Pure and Appl. Math. Sci 22 (1985), 79-89. '

. V.V. Mazalov, A game related to optimal stopping of two sequences of independent random vari-

ables having different distributions, Math. Japonica 43 (1996), 121-128.

. P. Neumann, Z. Porosiniski, and K. Szajowski, A note on two person full-information best choice

problems with imperfect observation, 1993, submitted to Game Theory and Applications.

7. Porosinski, Full-information best choice problems with imperfect observation and a random

number of observations, Zastos. Matem. 21 (1991), 179-192.

7.. Porosifiski and K. Szajowski, On continuous-time two person full-information best choice prob-

lem with imperfect observation, 1994, to appear in Sankhya. .

Eh.L. Presman and I.M. Sonin, Equilibrium poinis in game related 1o the best choice problem,

Theory of Probab. and its Appl. 20 (1975), 770-781.

M. Sakaguchi, Best choice problems with full information and imperfect observation, Math. Japon-

ica 29 (1984), 241-250.

, Some two-person bilateral games in the generalized secretary problem, Math. Japonica 33

(1988), 637-654. .

M. Sakaguchi and V. Saario, A best choice problem for bivariate uniform distribution, Math.

Japonica 40 (1994), 585-599, Correction in : Math. Japonica 41(1995), 231.

, A class of best choice problems with full tnformation, Math. Japonica 41 (1995), 389-398.
MS"""@W&A O ptimal stoppimy games — A Feview; Math, Ta}»m‘m 42 (1995)
3 L,_g _35_1 L LY A 4 ~ 2

S.M. Samuels, An ezplicit formula for the limiting optimal success probability in the full information

best choice problem, Mimeograph series, Purdue Univ. Stat. Dept., 1980.

{7 K. Szajowski, Double stopping by two decision makers, Adv. Appl. Probab. 25 (1993), 438 - 452

% RESEARCH INSTITUTE FOR INFORMATION SYSTEMS, NAGOYA UNIVERSITY.OF CoM-
MERCE AND BUSINESS ADMINISTRATION, KOMENOKI, NISSHIN , AicHI 470-01, JAPAN

%% INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WROCLAW, WYBRZEZE
WYSPIANSKIEGO 27, PL-50-370 WRoCLAW, POLAND

E-mail: szajow@im.pwr.wroc.pl



