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Linear operators and c.o.n.s. in Hilbert spaces associated with
chaotic dynamical systems

(A ZIFRICHHET 2R L KRR ERERR)
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In this note, we will show a non-chaotic property in chaotic dynamical system (X, ),
where X is a compact set and ¢ is a continuous map of X onto X . One of the most
important property in the chaotic dynamical theory is to be sensitive dependence on initial
conditions, whichi is a chaotic property in the sense that there exists 6 > 0 such that, for
any z in X and neighbourhood U(z) of z, there exists y in U(z) and n > 0 such that

d(¢™(z),¢"(y)) > 6.

On the other hand, some chaotic dynamical systems have the property of toplogical-mixing
on a measure spoce (X, m), that is,

lim Lf(go"(m))g(x)dmz/}(f(x)dm

—>00

for any continuous function f on a metric space X and L'- function g on the measurable
space (X, m) with [x g(z)dm = 1.

We study this non-chaotic property by representing chaotic dynamical systems (X, )
on Hilbert spaces §).

1. Covariant representation of dynamical systems
Let C(X) be the C*-algebra of all continuous functions on X. Then a continuous map
¢ from X onto itself induces a *-endomorphism o, of C(X), which is defined by

ao(f)(z) = fle(z)), zeX.

Let 7 be a covariant representation of (C(X),a,) on a Hilbert space ) in the following

sense:
m(ay(f)) = Vin(H)W + Var (/)Vy
for all f in C(X), where (V4, V2) is a couple of isometries on §) with the property

WV + Vg = 1.
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In this case, (V4,V;) induces a *x-endomorphism of £(5)) as follows:
av(@) = ViV + VyaV;

for all a in £(%).

For some couples (V1,V3), we can find a c.o.n.s. {e,}32; satisfying following condition:
Vien = €31 and Ve, =€y, foralln>1,

which are called a c.o.n.s. of Walsh type with respect to (V;, V3).
Related to these systems, we have already had a theorem which shows a non-chaotic

property.

Theorem 1.1. [2:Theorem 2.2.3] Let © be a covariant representation of (C(X), )
implememted by (V1,V2). If (V1,V2) has a c.o.n.s. {€,}22, of Walsh type, then we have

lim (o (a)¢, €) = (aex, e1)

n—oo

foralla in A and € in § with || € ||= 1.

Here we give some examples. Let ¢ be a unimodal map of [0, 1] onto itself in the following
sense.

(1) ¢ is a continuous map of [0,1] onto [0, 1].
(2) There exists a point ¢ in (0,1) such that

(1) #(0) = (1) = 0 and ¢(c) = 1,
(ii) ¢ is strictly monotone increasing on [0, c] and strictry monotone decreasing on
{67 1]7

(iii)  and the two inverse maps 3,7 of ¢ are abosolutely continuous functions on
0,1], where 8([0, 1]) = [0,d] and ([0,1]) = [e, 1].

Given a unimodal map ¢, we define a couple (V}, V;) of isometries associated with ¢ as
follows:

Vi=Vi(e) = M\/:n;MX[o,c]Tw and V3 =V;(p) = —M\/—-w'MX[C’”T‘p’

where My means the multiplication operator on L2[0,1], xz the characteristic function of
E and (Ty¢)(z) = £(o(2)).

Let 7(f) = My for f in C(X). Then 7 is a covariant representation of (C(X),a,)
with respect to this couple (V3,V5), but it has no c.o.n.s. of Walsh type. However, in



31

the following example, we can find a couple (W, W,) of isometris which implements the
s-endomorphism oy and has a c.o.n.s of Walsh type.

Example 1.2. Let X =[0,1] and ¢ =1— |1 — 2z | : the tent map.

1 1 1 1
Wy = %‘/1 - %Vz(z T,) and Wy=Wy(r)=—=WV + -\/—i

Va.
V2 ’
Wla Wg) having

Then 7 is also a covariant representation of (C([0,1]), c,) implemented by (
a c.on.s. {e,}, of Walsh type, which is just the following Walsh series (cf.[3]).
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Putting @ = M; for f in C(X) in the theorem above, we have
lim (a2(£)6,) = lim (3 (£)6,6) = (fer,e1) = (fre1)

for all £ in $ with || £ ||= 1.

Remark.1.3. The Walsh series becomes a group with respect to product of fuctoins on
[0,1], which satisfies the following relation.

€ | €] Gl el @] E e |

'@; c\ . QZ 63 eu( es 66 C"l e?

Group G = {e,}32, -
_ e.flele] e, esle e le,le

eslles| eyl e | ey] e, el esl e,
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Let ¢ be topologically conjugate to the tent map 7, that is, ¢ = h o7 o A~! for some
homeomorphism % of [0,1] onto itself. In our case, the maps h and A~! are assumed to be
absolutely continuous functions on [0,1].

Then (C(X), o) has a covariant representation implemented by (W;, W;) defined as in
Example 1.2. The couple (W, W;) has a c.o.n.s. {e,}52; of Walsh type with e; = 1/(h-1),

where (h™!) is the derivative of A1

Example 1.4. Let X = [0,1] and ¢ = 4z(1 — z) : the logistic map. Then ¢ is
topologically cojugate to the tent map with conjugacy h(z) = sin®(7z/2). Thus the couple
(W1, W) has a c.ons. {e,}52, of Walsh type with e;(z) = 1/(r(z(1 — z))/?)1/2,

2. Convergence of sequences { (a}(-)¢,€) }&2, in o-weak topology

We consider the convergence in Theorem 1.1 in the context of duality between £($) and
the predual space £(5)).. Let M be an ay-invariant von Neuman subalgebra of £(53) and
A = AY the adjoint operator of the restriction of ay to M. Then Theorem 1.1 implies the
following. If (V4,V;) has a c.o.ns. {e,}22, of Walsh type, then we have

lim A™(wee) = e ¢,

n—00

for all £ in § with || £ ||= 1, where wg¢ is a vector state on £(5)).
~ Let M be the abelian von Neumann subalgebra Mpwp,1). Then the predual M, is re-
garded as L'[0,1]. Let (W1, W5) be as in Example 1.2 or 1.4. Then we have A = AM = 4M
and the convergence mentioned above means the following.
If ¢ is the tent map on [0,1], we have

im A™(n) = e? = ¢,

n—oo

for all 7 in L[0,1] with || n ||;= 1, where ¢;(z) = 1.
On the other hand, if ¢ is the logistic map on [0,1], we have.

lim A™(n) = €

n—00

for all n in L*[0,1] with || n [|;= 1, where e(z) = 1/m\/z(1 — ).

2 2 L
E(x)= i+ - —
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In the case of the tent map, we have more detailed results mentioned below.

Theorem 2.1 Let ¢ be the tent map on [0,1] and M the abelian von Neumann algebra
My Put A= AM . Then we have the following.

(1) A)(@) = 2(0(2) +n(1 = 2) for n in L0, 1].

(2) lim A™(n) =1 in o(L'[0,1], L>[0,1]) topology, for n in LY[0,1]) with || 7 |1= 1.

n—oo

(3) lim || A"(n) = 1 =0 for n in L2[0,1) with | 1= 1.

(4) lim || A7) =1 |l=0 for n in Cwl[0,1], where Cw[0,1] is the C*-subalgebra of
L>®[0,1] generated by the Walish series {en}or;-

We note that
c[o,1] ¢ Cwl[0,1] C L*°[0,1] C L*[0,1] C L*[0,1].

Remark 2.2. Let A be the map of L![0,1] into L'[0,1] mentioned in the theorem above.
Then we have the following.
(1)A(1) = 1.
(2)A(2z) = 1.
3 4=1.2 41

n 2\ __ oy .
(3)A"(32%) = AT + T for each positive integer n.

For other ay-invariant von Neuman subalgebras M, we have some results concerning
the property of convergence of the sequence { (A})"(w¢¢) }o,. Moreover we are studying
representations of chaotic dynamical systems in the case of other unimodal maps and Dai
and Larson [1] provide an interesting theory which is deeply related to our study.
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