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In this note, we will show a non-chaotic property in chaotic dynamical system (X, $\varphi$ ),

where $X$ is a compact set and $\varphi$ is a continuous map of $X$ onto $X$ . One of the most

important property in the chaotic dynamical theory is to be sensitive dependence on initial
conditions, whichi is a chaotic property in the sense that there exists $\delta>0$ such that, for

any $x$ in $X$ and neighbourhood $U(x)$ of $x$ , there exists $y$ in $U(x)$ and $n\geq 0$ such that

$d(\varphi^{n}(X), \varphi^{n}(y))>\delta$ .

On the other hand, some chaotic dynamical systems have the property of toplogical-mixing
on a measure spoce (X, $m$ ), that is,

$\lim_{narrow\infty}\int_{X}f(\varphi(nX))g(x)dm=\int_{X}f(x)dm$

for any continuous function $f$ on a metric space $X$ and $L^{1}$ -function $g$ on the measurable
space (X, $m$ ) with $\int_{X}g(X)dm=1$ .

We study this non-chaotic property by representing chaotic dynamical systems (X, $\varphi$ )

on Hilbert spaces $\mathfrak{H}$ .

1. Covariant representation of dynamical systems
Let $C(X)$ be the $C^{*}$-algebra of all continuous functions on $X$ . Then a continuous map

$\varphi$ from $X$ onto itself induces $\mathrm{a}*$-endomorphism $\alpha_{\varphi}$ of $C(X)$ , which is defined by

$\alpha_{\varphi}(f)(x)=f(\varphi(_{X}))$ , $x\in X$ .

Let $\pi$ be a covariant representation of $(C(X), \alpha_{\varphi})$ on a Hilbert space $\mathfrak{H}$ in the following
sense:

$\pi(\alpha(\varphi f))=V_{1}\pi(f)V_{1}^{*}+V2\pi(f)V_{2}*$

for all $f$ in $C(X)$ , where $(V_{1}, V_{2})$ is a couple of isometries on $\mathcal{B}$ with the property

$V_{1}V_{1}^{*}+V_{2}V=I2^{*}$ .
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In this case, $(V_{1}, V_{2})$ induces $\mathrm{a}*$-endomorphism of $\mathcal{L}(\mathfrak{H})$ as follows:

$\alpha_{V}(a)=V_{1}aV_{1}^{*}+V_{2}aV_{2}^{*}$

for all $a$ in $L(\mathfrak{H})$ .
For some couples $(V_{1}, V_{2})$ , we can find a c.o.n.s. $\{e_{n}\}_{n=1}^{\infty}$ satisfying following condition:

$V_{1}e_{n}=e_{2n-1}$ and $V_{2}e_{n}=e_{2n}$ for all $n\geq 1$ ,

which are called a c.o.n.s. of Walsh type with respect to $(V_{1}, V_{2})$ .
Related to these systems, we have already had a theorem which shows a non-chaotic

property.

Theorem 1.1. $[2:\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}2.2.3]$ Let $\pi$ be a covariant representation of $(C(X), \alpha_{\varphi})$

implememted by $(V_{1}, V_{2})$ . If $(V_{1}, V_{2})$ has a $c.\mathit{0}.n.s$ . $\{e_{n}\}_{n=1}^{\infty}$ of Walsh type, then we have

$\lim_{narrow\infty}(\alpha^{n}V(a)\xi, \xi)=(ae_{1,1}e)$

for all $a$ in $A$ and $\xi$ in $\mathfrak{H}$ with $||\xi||=1$ .

Here we give some examples. Let $\varphi$ be a unimodal map of $[0,1]$ onto itself in the following
sense.

(1) $\varphi$ is a continuous map of $[0,1]$ onto $[0,1]$ .

(2) There exists a point $c$ in $(0,1)$ such that

(i) $\varphi(0)=\varphi(1)=0$ and $\varphi(c)=1$ ,

(ii) $\varphi$ is strictly monotone increasing on $[0, c]$ and strictry monotone decreasing on
$[c, 1]$ ,

(iii) $\varphi$ and the two inverse maps $\beta,$
$\gamma$ of $\varphi$ are abosolutely continuous functions on

$[0,1]$ , where $\beta([0,1])=[0, c]$ and $\gamma([0,1])=[c, 1]$ .

Given a unimodal map $\varphi$ , we define a couple $(V_{1}, V_{2})$ of isometries associated with $\varphi$ as
follows:

$V_{1}=V_{1}(\varphi)=M_{\sqrt{\varphi}x_{10}},M,T_{\varphi}\mathrm{c}\mathrm{l}$ and $V_{2}=V_{2}(\varphi)=-M_{\sqrt{-\varphi}},M_{\chi_{[c,1]}}\tau_{\varphi}$ ,

where $M_{f}$ means the multiplication operator on $L^{2}[0,1],$ $\chi_{E}$ the characteristic function of
$E$ and $(T_{\varphi}\xi)(x)=\xi(\varphi(x))$ .

Let $\pi(f)=M_{f}$ for $f$ in $C(X)$ . Then $\pi$ is a covariant representation of $(C(X), \alpha_{\varphi})$

with respect to this couple $(V_{1}, V_{2})$ , but it has no c.o.n.s. of Walsh type. However, in
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the following example, we can find a couple $(W_{1}, W_{2})$ of isometris which implements the
$*$ -endomorphism $\alpha_{V}$ and has a c.o.n.s of Walsh type.

Example 1.2. Let $X=[0,1]$ and $\varphi=1-|1-2x|$ : the tent map.

$W_{1}= \frac{1}{\sqrt{2}}V_{1}-\frac{1}{\sqrt{2}}V_{2}(=T_{\tau})$ and $W_{2}=W_{2}( \mathcal{T})=\frac{1}{\sqrt{2}}V_{1}+\frac{1}{\sqrt{2}}V_{2}$ .

Then $\pi$ is also a covariant representation of $(C([0,1]), \alpha)\varphi$ implemented by $(W_{1}, W_{2})$ having
a c.o.n.s. $\{e_{n}\}_{n=1}^{\infty}$ of Walsh type, which is just the following Walsh series $(\mathrm{c}\mathrm{f}.[3])$ .

$\vee 0_{1}\ulcorner$

$\infty_{\mathrm{t}}1|\underline{||}\mathfrak{l}|1||1$
$\frac{\dagger 1\mathrm{t}}{-\Delta-^{1}\mathrm{t}111|1|||\iota}\iota^{\mathrm{I}}|$

$\infty_{1}^{\mathrm{t}}||1||1|||\underline{|}\mathrm{I}\mathrm{t}\mathrm{t}|\iota \mathrm{u}||||\{|\mathrm{i}$ ,
$\mathrm{m}_{1^{1}|}\mathrm{L}\perp\lrcorner\dagger|||\mathrm{t}|\mathrm{t}1||_{||^{1}}||||\mathrm{I}_{1}^{\mathfrak{l}}.$

’

$\mathrm{L}_{\frac{||}{\mathrm{I}1|\dagger;|\mathrm{t}}}$
, $\overline{l||}$

$\iota\dagger|\overline{||||}$

$|||\neg$ $|||\mathrm{I}^{\neg}|$ ,
$\neg|||||||\sim||||-_{1},|||||\cap||$

$\mathrm{e}$ , $\mathrm{e}_{2}$ $\mathrm{e}_{3}$ $\mathrm{e}_{*}$
$\mathrm{e}_{\sigma}$

$\cdot$ .

Putting $a=M_{f}$ for $f$ in $C(X)$ in the theorem above, we have

$n arrow\lim_{\infty}(\alpha_{\varphi}^{n}(f)\xi, \xi)=narrow\infty\lim(\alpha_{V}^{n}(f)\xi, \xi)=(fe_{1}, e1)=(f, e_{1})$

for all $\xi$ in $\mathfrak{H}$ with $||\xi||=1$ .

Remark.1.3. The Walsh series becomes a group with respect to product of fuctoins on
$[0,1]$ , which satisfies the following relation.

Group $G=\{e_{n}\}_{n=1}^{\infty}$
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Let $\varphi$ be topologically conjugate to the tent map $\tau$ , that is, $\varphi=h\mathrm{o}\tau \mathrm{o}h^{-1}$ for some
homeomorphism $h$ of $[0,1]$ onto itself. In our case, the maps $h$ and $h^{-1}$ are assumed to be
absolutely continuous functions on $[0,1]$ .

Then $(C(X), \alpha_{\varphi})$ has a covariant representation implemented by $(W_{1}, W_{2})$ defined as in
Example 1.2. The couple $(W_{1}, W_{2})$ has a c.o.n.s. $\{e_{n}\}_{n=1}^{\infty}$ of Walsh type with $e_{1}=\sqrt{(h^{-1})’}$ ,
where $(h^{-1})^{;}$ is the derivative of $h^{-1}$ .

Example 1.4. Let $X=[0,1]$ and $\varphi=4x(1-x)$ : the logistic map. Then $\varphi$ is
topologically cojugate to the tent map with conjugacy $h(x)=\sin^{2}(\pi X/2)$ . Thus the couple
$(W_{1}, W_{2})$ has a c.o.n.s. $\{e_{n}\}_{n=1}^{\infty}$ of Walsh type with $e_{1}(x)=1/(\pi(x(1-x))1/2)1/2$ .

2. Convergence of sequences $\{(\alpha_{V}^{n}(\cdot)\xi,\xi)\}_{n=1}^{\infty}$ in a-weak topol\‘Ogy
We consider the convergence in Theorem 1.1 in the context of duality between $L(\mathfrak{H})$ and

the predual space $L(\mathfrak{H})_{*}$ . Let $M$ be an $\alpha v$-invariant von Neuman subalgebra of $L(\mathfrak{H})$ and
$A=\mathrm{A}_{V}^{M}$ the adjoint operator of the restriction of $\alpha_{V}$ to $M$ . Then Theorem 1.1 implies the
following. If $(V_{1}, V_{2})$ has a c.o.n.s. $\{e_{n}\}_{n=1}^{\infty}$ of Walsh type, then we have

$\lim_{narrow\infty}A^{n}(\omega_{\xi},\xi)=\omega_{e_{1},\mathrm{e}}1$

for all $\xi$ in fl with $||\xi||=1$ , where $\omega_{\xi,\xi}$ is a vector state on $L(\mathfrak{H})$ .
Let $M$ be the abelian von Neumann subalgebra $M_{L^{\infty}[0,1]}$ . Then the predual $M_{*}$ is re-

garded as $L^{1}[0,1]$ . Let $(W_{1}, W_{2})$ be as in Example 1.2 or 1.4. Then we have $A=\mathrm{A}_{V}^{M}=A_{W}^{M}$

and the convergence mentioned above means the following.
If $\varphi$ is the tent map on $[0,1]$ , we have

$narrow\infty 1\mathrm{i}\ln An(\eta)=e_{1}^{2}=e1$

for all $\eta$ in $L^{1}[0,1]$ with $||\eta||_{1}=1$ , where $e_{1}(x)=1$ .
On the other hand, if $\varphi$ is the logistic map on $[0,1]$ , we have.

$\lim_{narrow\infty}A^{n}(\eta)=e_{1}^{2}$

for all $\eta$ in $L^{1}[0,1]$ with $||\eta||_{1}=1$ , where $e_{1}^{2}(x)--1/\pi\sqrt{x(1-X)}$ .

$\mathrm{e}_{1}^{2_{(\mathrm{x})arrow 1}}\vee$

$\mathrm{e}_{\mathrm{t}}^{2}(\mathrm{x})\underline{\vee}\frac{1}{\pi\frac{\mathrm{x}l\mathrm{X}}{(})}$
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In the case of the tent map, we have more detailed results mentioned below.

Theorem 2.1 Let $\varphi$ be the tent map on $[0,1]$ and $M$ the abelian von Neumann algebra
$M_{L^{\infty}[0,1]}$ . Put $A=A_{V}^{M}$ . Then we have the following.

(1) $A( \eta)(x)=\frac{1}{2}(\eta(\frac{x}{2})+\eta(1-\frac{x}{2}))$ for $\eta$ in $L^{1}[0,1]$ .

(2) $\lim_{narrow\infty}A^{n}(\eta)=1$ in $\sigma(L^{1}[0,1], L^{\infty}[0,1])$ topology, for $\eta$ in $L^{1}[0,1]$ with $||\eta||_{1}=1$ .

(3) $\lim_{narrow\infty}||A^{n}(\eta)-1||_{1}=0$ for $\eta$ in $L^{2}[0,1]$ with $||\eta||_{1}=1$ .

(4) $\lim_{narrow\infty}||A^{n}(\eta)-1||_{\infty}=0$ for $\eta$ in $C_{W}[0,1]$ , where $C_{W}[0,1]$ is the $C^{*}$ -subalgebra of
$L^{\infty}[0,1]$ generated by the Walish series $\{e_{n}\}_{n=1}^{\infty}$ .

We note that
$C[0,1]\subset C_{W}[0,1]\subset L^{\infty}[0,1]\subset L^{2}[0,1]\subset L^{1}[0,1]$.

Remark 2.2. Let $A$ be the map of $L^{1}[0,1]$ into $L^{1}[0,1]$ mentioned in the theorem above.

Then we have the following.
(1) $A(1)=1$ .
(2) $A(2_{X})=1$ .
(3) $A^{n}(3_{X^{2}})= \frac{3}{4^{n}}-\frac{3}{4^{n-1}\cdot 2}+\frac{4^{n-1}\cdot 2.+1}{4^{n-1}2}$ for each positive integer $n$ .

For other $\alpha_{V}$-invariant von Neuman subalgebras $M$ , we have some results concerning

the property of convergence of the sequence $\{(A_{V}^{M})^{n}(\omega\xi,\xi)\}_{n=1}^{\infty}$ . Moreover we are studying

representations of chaotic dynamical systems in the case of other unimodal maps and Dai

and Larson [1] provide an interesting theory which is deeply related to our study.
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