0000000000
9790 1997 0 34-41 34
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Introduction.

We study the integral operators of the form
Kf(e) = v(e) [ kvt f) s, o> 0 &

where the weight real functions v(t) and u(t) are locally integrable and the kernel k(z,y) > 0 satisfies
the following condition: there exists a constant D > 1 such that

D™ (k(z,v) + (v, ) < k(z,2) < D(k(@,v) +k(n,2)), 3>y > 220, @)

where D does not depend on z,y, z.

A few standard examples of the kernel k(z,y) > 0 satisfying (2) are

(1) k(z,y) = (£ —-y)%, @20,

(2) kz,y) =log’(L+2 1), k(@y)=log’(Z); £ 20,

z a

@) k@) = ([ heds)”, 20, ) 20,
as well as their various combinations. However, for instance, the kernel of the first kind with negative
value of a does not satisfy (2).

The operators (1) with kernels satisfying (2) were intensively studied during the last decade and
many authors made contributions in this topic, e.g. see the author’s survey [St;] with history and
literature given there, and where the LP — L? mapping properties of (1) were investigated.

Here, in Section 1, we give further extension of some characterization results of [St;] on the Banach
function spaces for the following problems:

(B) Boundedness, :

(C) Compactness and measure of non-compactness.

In Section 2 we give the more detailing structural results for the operators (1), when they are
compact in the Lebesgue spaces, namely

(S) Two-sided estimates of the Schatten-von Neumann ideal norms,

(N) Asymptotic behaviour and two-sided estimates of p-norms of approximation numbers.

1. Problems (B) and (C) in Banach function spaces.

Assume X and Y be twc Banach spaces of measurable functions defined on R* = (0, 00). First
we consider the problem of the boundedness K : X — Y for the integral operator (1). This case was
recently investigated by E. Berezhnoi [Ber|, who, in particular, characterized the weak type estimates
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for operator (1) with the kernel k(z,y) > 0 increasing with respect to the first variable and also
the strong estimates, when k(z,y) = 1 and the spaces X and Y satisfy ¢-condition (see Definition
3 below). E. Berezhnoi [Ber| has also obtained some necessary and/or sufficient conditions for the
boundedness of operators (1) with the restrictions on k(z,y) > 0, stronger then (2).

Definition 1 [BS]. A real normed linear space X = ¢ f: | fllx < oo} of Lebesgue-measurable

functions on RY is called a Banach function space (BFS), if in addition to the usual norm axioms
| flix satisfies the following properties:

1) || fllx is defined for every Lebesgue-measurable function f on R*, and f € X if, and only if,
[ fllx <oo;and || fllx = 0if, and only if, f = 0 almost everywhere (a.e); ' '

2) I fllx = flllx for all f € X; '

3)if 0 < f < g ae, then || fllx < |lgllx;

4)if 0 < fa 1 f ae, then || fallx Tl fllx:.

5) if mesE < oo, then |[xe|x < co;

6) if mesE < oo, then [ f(z)dz < Cg||f||x for all f € X.

Given BFS X, its associate space X' is defined by

X’:{g: / |fg|<ooforallf€X}
0

and endowed with the associate norm

llgll x- =sup{/:° [fal: I fllx < 1}.

X' is also the Banach function space satisfying axioms (1-6) and, moreover, X’ is the norm funda-
mental subspace of the dual space X*, that is the inequality

1fllx = sup{ / Fal:allxe < 1}
holds for all f € X [BS].

The spaces X, X' are the complete normed linear spaces and X" = X [BS].

X has absolutely continuous norm (AC norm), if for all f € X, |[fxg.llx — 0 for every sequence
of sets {En,} C R¥ such, that xg, — 0 a.e. We assume throughout the paper that X' and Y have
the AC-norms.

Let ¢ be a it Banach sequence space (BSS), what means that axioms (1-6) are fulfilled with respect
to the count measure and let {e,} denote the standard basis in l

Definition 2. Given BFS X and BSS ¢, X is said to be £ — concave, if for any sequence of disjoint
intervals {Ji} such that {JJx = R*, and for all f € X

|3 exlion fllx |, < el £l
k

where a finite positive constant d; independent on f € X and {Ji}. Analogously, BFSY is said to
be ¢ — convez, if for any sequence of disjoint intervals {Ii} such that |J [ = R*, and forallge X

lally < daf| 3" enlixnasllv |,
k
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with a finite positive constant d; independent on g € Y and {I;}.

Definition 3 [Ber]. We say, that Banach function spaces X,Y satisfy ¢ — condition, if there exist
a Banach sequence space £ such that X is ¢-concave and Y is ¢-convex simultaneously.

Throughout the paper the uncertainties of the form 0 co, 0/0, co/co are taken equal to zero,
the inequality A <« B means A < cB, where ¢ depends only on D and, possibly, on d; and dp from
Definition 2; however the relationship A = B is interpreted as A « B « A or A = ¢B. xg denotes
the characteristic function of a set E c R¥.

1.1. Boundedness. Put for all t > 0

Ao = sup Ao(t) = sup || X(¢,e0pll¥ IX[0,4 ()2, - )u()|| x7, (3)
t>0 t>0

Ay = sup A1 (t) = sup || x(,00) (VEC, )V v (0,4l 37 (4)
t>0 t>0

and let A = Ao + A;. Note, that Ag = Ay, if k(z,y) = 1.

THEOREM 1.1. Let X andY be BFS satisfying the £-condition and let K be the integral operator
of the form (1) with the kernel k(x,y) > 0 satisfying (2). Then K : X — Y is bounded, if and only if,
A is finite. Moreover,

[Elx—y = A. (5)

Example 1. If X = LP, Y = L9, 1< p,q < co are the Lebesgue spaces with the usual norms,
then the ¢-condition holds if, and only if, p < ¢ and quantities (3) and (4) transform into

[e ] 1/ t , 1/ 4
Ag = sup Ao(t) =sup(/ ki (z, t)|v(z)|* dx) q(/ lu()[? dy) 7,
t>0 t>0 \J¢ 0

o q Yays [t o\ VP
A=swp ) = sup( [ oo ) ([ W ) )
t>0 t>0 \J¢ 0
1 1 1 1
in this case, where ~ + — =1 -+ =1 Forthecase 1 <¢<pin LP — L9 setting the following

q
criterion is true [Stl] | K|lLs—za = B, where B = By + By defined by

Rl e s ’ 1r
By = {/0 ([ kY (z, t)!'v(:z:)lq d:z:)r/q (At]u(y)lp dy) /q ]u(t) Ip dt} |
* * T , /o' | 1/r
o= { ([ ares) ([ wmar a) e

1 1 1 _ AN
where - = piat If k(z,y) = 1, then By = (%—) B, and the above criterion is valid for the range

0< g <pp21(S] with suitable modification, when p = 1 [SS].
Example 2. For 0 <7 < 00, 0 < s < o0 and a locally integrable function @(z) on RT, the
Lorentz space L7’ = L7} (R*) consists of all measurable functions f such that | fllrs,p < 00, where

e = ([ 0) %) gor 025 <0
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| fllrs,o = suptt/Tf*(t)  for s= o0,
t>0

1.,
=) ree
f‘(t):inf{z>0: AI(I):./{ER+|f( ) }(p(z)dzgt}‘
y Jf@W)>z

oo = (| @[ ot de) "

If X = L7?,Y = L7 then the {-condition holds if, and only if, max(r, s) < min(p, ¢) and in this case
the norm of K : X — Y is sandwiched by A = Ap + A;, where

and

If r=s, then

Ao~supAo “X(Otl k(t J(w()/e () lrfs',¢|{x[t’°°lv‘lpqw

A= sup Ai(t) = ‘ ”X[t oo (VE(, ) (- )”

pq, ¥

Remark 1.1. (i) If the ¢-condition fails, then the lower bound in (5) is nevertheless true. However,
there exist an operator, when (5) is valid for the spaces with no Z-condition. Indeed, if we take k(z,y) =
1,v(z) = 1, then in Lorentz space setting above the criterion (5) holdsfor 1 <7 =35, 27,0<p<co

([Sa], Theorem 2).

() fl<r=s50<gqg<r<c,0<p< co, then the crlterlon for the boundedness of this

operator is the following ([St1], Theorem 2.2). Put U f(z) = [J f(y)u(y)dy. Then

o2] Y v 1y
o (S (S

1_1_1
where 2 = o — 7.
1.2. Compactness and measure of non-compactness.
THEOREM 1.2. Let the assumptions of Theorem 1 be fulfilled and the spaces X' and Y have
the AC-norms. Then the operator K : X — Y is compact if, and only if, A is finite and

lim A;(t) = lim A;(¢) =0, i=0,1, (6)
t—a; t—b;

where
=inf{t > 0: A;(t) > 0}, b;=sup{t>0:A4;(t) >0} i=0,1L

Remark 1.1. (i) In fact, it follows from the proof of Theorem 1.2, that ap = a;,bp = b;.

(ii) By many authors the condition (6) used to be formulated for the end-points, however it is easy
to point out a formal counterexamle, when A is finite and (6) is valid with ag = a, = 0,60 = b; = 00,
but K is non-compact. The matter is, that the condition (6) has to formulated for the end-points of
the real interval of non-zero action of K.

(iii) For the case 1 < q¢ < p in LP — L7 setting the operator K : LP — L% is compact if, and only
if, B < co (see Example 1). It follows from the Ando theorem [A].
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In the non-compact case we estimate the measure of non-compactness of K or, equivalently, the
distance between K and the set of finite rank operators defined by

a(K) = inf [|K - P,

where the infimum is taken over all bounded linear maps P : X — Y of finite rank. To this end we
need additional portion of notations. For 0 < a < z < b < co we put

Ji(e) = sup Ixeavllyllxo.g ()G, ul)lx,
o<t<a

JL(@) = sup [Ix(,a)(VEC V) lv llxpo.ullx,
O0<t<a

Ji(2) = max (J2(z), Ji(a)), Jo = lim JL(z),

Z—ao

JR(®) = sup [xpavlly X,k Jul)llx,
b<t<oo

Jr(®) = sup [Ix(e,a(VEC, v(C)llvlixo,qulx,
b<t<oo

Jr(z) = max (Jp(z), Jx(a)) , Jr = lim Jr(2),

J= ma.x(JL, JR) .
THEOREM 1.3. Let the assumptions of Theorem 2 be valid and K : X — Y be bounded. Then

D71J < a(K) < (dy,ds, D)J.

2. Problems (S) and (N) in Lebesgue spaces

2.1. Schatten-von Neumann ideal norms. Let H be a separable Hilbert space. Then the
set of all linear bounded operators T : H — H forms the normed algebra B, where o-the ideal of
all compact operators. The theory of simmetrically normed (s.n.) ideals 0 C 0o Was developed by
using the s.n. functions @ defined on the space of sequences with a finite number of non-zero terms

1/2
([GK], Chapter 3). If T € 0, then T* € 0 and (T*T) € 0. To construct oe the sequences
1/2
of singular numbers s;(T) = A; (T'T were used, with the eigenvalues A\; > 0 taken according
to their multiplicity and decrease. Formula {|T||,, = @(sj(T)) defines the norm (quasinorm) in the

s.n. ideal 0. The most well-known are the s.n. ideals o, related to the space of sequences [,
1/p
0 < p < co. The norm (quasinorm) ||T,, = > s?(T)) is usually called by the Schatten-von

Neumann norm (quasinorm). Thus, |T||s, = ||T}| and ||T|s, is the Hilbert-Schmidt norm expressed
1/2

2
for an integral operator T'f(z) = /T(z,y)f(y) dy by the formulae | T|,, = <f f‘T(x,y)[ dr dy

It is known (BS], that in general the norm ||T||,, of an integral operator substansially depends on
the smoothness of its kernel, when p < 2, however for some particular operators of complex harmonic
analysis the effective two-sided estimates of the Schatten-von Neumann norms are well known, e.g.
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see [Pa], [P]. The aim of the section is to present a brief account of some results from [ES:] and [Sto]
about the Schatten-von Neumann ideal norms for the integral operators (1) with the condition (2) for

their kernels. v
Let H = L%(0,c0) and

o t
Ad = sup/ K (z, t)|v(x)|2 dﬂ:/o |u(y)|2 dy,
t

t>0

c0 . t
A = sup/ |v(:z:)|2 dx/ k2 (t,y) Iu(y)[2 dy.
t>0 J¢ 0 c
Theorem 1.1 and the Hilbert-Schmidt formula bring

”K“am =~ AO + Al:

1K los = (Aw[v(z)f dx/ox K2 (¢, y)lu(y)IZ dy) 1/2 _ (A‘” Iu(y)|2 dy /y°° kQ(i,y)lv(x)|2 da:) 1/2.

Using these formulas and applying the real method of interpolation we obtain the following
THEOREM 2.1. Let K be an operator of the form (1) with the kernel satisfying (2) and K € 0.

Then - . - ]
- ||Kua,z< [T e a)™ ([T ewl ) el

o . B v
(/x k% (y, z)]v(y)|2 dy)w2 (A |u(y) 12 dy>§ 1Iu(:z:) [2] da:) p, 2<p<co.  (7)

Remark 2.1. The upper bound of (7) is proved in [ES;] and the lower one in [Stp]. In case
k(z,y) = 1 the formula (7) can be simplified and extended as follows. If

Hi@) = o(z) /0 " fy)ul) dy, @

then
1/p

1Hllo, = ([)m (‘/Oxluw)l2 dy)p/z(/J:mlv(y)l2 dy) g—llv(r) § dzv) , 1<p <o (9)

Remark 2.1. In alternate form the equivalence (9) for the case u(y) = 1 has been established in
[N] and later this result has been widely extended in [NS] for the operator

v(z)

zl/

I f(z) =

/Oz(x'— v )y, v>1/2.

2.2. Approximation numbers. Recall that if T': X — Y, then the n-th approﬁmation number

of T is defined by
an = inf{||T - P}|, rankP <n}, n=12,..

The problem of asympthotic behaviour of the approximation numbers is well known and was
treated in the monograghs [EE|, (K| and others and for the operator (8) in the papers [EEH, |, [EEH2],
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(ES1], [LS1], [LSz2]. Here we present the new result for the operator (8) easy comparable with formula
(9).

THEOREM 2.2 Let 1 < p,s < co and the integral operator H : LP(0, c0) — LP(0, co) given by
(8) be compact and {a,} is the sequence of the approzimation numbers of H. Then

(g;la 1/3'*‘(/ /|u lp dy /p /I |”dy ]u(m)ldz)l/s,

oQ
Tim na, < 7,,/ luv| <2 lim na,, p#2,
n—oo

n—oQ

1 (]
nlgrgonan = ;/o Iuv[, p=2.
The last two formulas are proved in [EEH;] and the proof of the first is based on the results of
[EEH,).
Remark 2.2. All the assertions of the paper have natural analogs for a finite interval instead of
(0,00) and for the dual operator K* as well (see [St;] for details).
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