oooooooogon
9790 19970 57-74

FEABRL-ZMIcE T 2RLEBERICONT

HEARAME =@ FH (Yasuhide MIURA)

0. Infroduction |

In the theory of operator algebras a notion of a selfdual cone is highly
instrumental in studying a non-commutative order in a Hilbert space.
Many authors have studied the problem how an algebraic structure of
a von Neumann algebra is determined by the underlying Hilbert space.
In [C] A. Connes introduced the orientation in a facially homogeneous
selfdual cone and constructed a von Neumann -algebra related to the
selfdual cone. B. Iochum [I2] studied the (not necessarily orientable)
homogeneous selfdual cones and showed the relationship between these
cones and the Jordan Banach algebras. It is important to investigate
a positive map on a selfdual cone and we have many results of the
positive map (for example [Y1], [Y2], [I3]). A geometric interpretation
was given by B. Iochum [I1] to an algebraic notion of a conditional
expectation of a von Neumann algebra by using an orientation property
in a selfdual cone.

On the other hand, L. M. Schmitt and G. Wittstock [SW] charac-
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terized a matrix ordered standard form of a von Neumann algebra by
using a projection property in the family of selfdual cones instead of
orientation. Matrix ordered spaces were first introduced by M. D. Choi
and E. G. Effros [CE] as the appropriate objects to which completely
positive maps apply and enabled us to handle non-commutative order.
The author [M1] considered the relationship between a completely pos-
itive projection on L?(M) and a normal conditional expectation on a

o-finite von Neumann algebra M.

The purpose of this note is to consider the relationship between the
completely positive maps—-especially completely positive projections
and completely positive isometries—-on L?(M) and the corresponding
maps on M. In Section 2 we deal with the completely positive projec-
tions on a matrix ordered standard form of a (not necessarily o-finite)
von Neumann algebra and show that each of a completely positive pro-
jection and a conditional expectation induces the other. In Section 3 ‘
we deal with the completely positive isometries on the matrix ordered
standard form and investigate the relationship between those maps and

isomorphisms of von Neumann algebras.

We shall use the lecture note of Takesaki [T2] as references of the
standard results of the modular theory of operator algebras. We shall

also use the notation as introduced in [SW] for matrix ordered standard



forms.

1. Preliminaries

We begin with some basic definitions and results concerning matrix
ordered Hilbert spaces. For details and proofs we refer to [SW]. Let
M, ., and M, be the spaces of all complex n x m and n X n matrices
respectively. We write st:a — o* for the natural involution on M, .
Let H be a complex Hilbert space. We write H,, = H® M, (= M,(H))
for the tensor product of the Hilbert spaces. Let HY be a selfdual
cone in H. For any natural number n, we denote a selfdual cone in
H, by H}. We call (H,H;,n € N) a matrix ordered Hilbert space if
a € M, m then aHo* C HY. Let J = Jy+ be the induced involution

on H. We then have a natural involution
Jn,m = J@StH@Mn’m "‘*H®Hm,n

defined By [&:.5] — [J€;.:]) and we write J,, for Jp .. If (H,Hf,n €N)
a matrix ordered Hilbert space, then J, = Jy+.

Let (H®, HY* neN)and (H®, H* be matrix ordered Hilbert
spaces. A linear map p of H 1) into H® is said to be n-positive, if
Pn = p® 1, maps H,(Ll}+ into H%ZH, where 1,, denotes the identity on
the n x n matrices M,,. If p is n-positive for all n € N, then p is said

to be completely positive.
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Let (M,H,J,H") be a standard form of a von Neumann algebra.
Let HY(Hf = H*,n € N) be a family of selfdual cones in H,. We
call (M,H,H} n € N) a matrix ordered standard form, if for every
a€EMSM,n,

aJnmal(HY) C HY
holds. Let ¢ be a faithful normal semi-finite weight on M, and (7, H,)

be a GNS-representation of M by ¢. Put
(Hw): = '66{[7@,(ai)J¢W¢(aj)J¢§]2j=1|a1, e an € MEE H:}-

Then (7,(M), H,, (H¢):,n € N) is a matrix ordered standard form.

Conversely, let (H, HY,n € N) be a matrix ordered Hilbert space. Put

for every Z € H and all n € N},

where diag(z1,z2,- - ,:rn) denotes the n X n matrix with entries a;; =
1
6;;zi(z; € B(H)) and {z€y’} = §(mJyJ£+JyJ:c§). It is shown that if

the completed face (Fi¢y)*+ generated by £ € H;} is projectable for all
£ € HY n €N, then (M,H,H} n € N) is a matrix ordered standard

form.

2. Completely positive projections
We shall first show that a conditional expectation induces a com-

pletely positive projection. To prove it, we need a lemma.
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Lemma 2.1. Let M and ¢ be as in Section 1. Then there exists a

completely positive isometry u of H onto H,.

Proof. By [H2, Theorem 2.3] there exists an isometry u of H onto H,

such that
7o(z) = uzu™! (Vz € M), J, =uJu™', H,¥ =uH™.

If €507 =1 € H,%(&; € H), then for any 24, ,z, € Mand ¢ € H,*
we have
(unléis], [mp(zs) Jpmo(25) JoC]) = Z (7o (2:") (@) Jpuijs €)

3,5=1

=) (uzi*Jz;* J&ij, C)
1,j=1

— (u[ﬂ?l*, v ’xn*]Jl’n[xl*, s ,xn*]Jn[fzJLC)

> 0.

It follows that u,H,* C (H,)!. O

Proposition 2.2. Let (M, H,H,* n € N) be a matriz ordered stan-
dard form of a von Neumann algebra M, and L be a von Neumann
subalgebra of M. If € is a normal conditional expectation of M onto L
with respect to a faithful normal semi-finite weight ¢ on M, then there

exists a completely positive projection e on H satisfying the following

conditions:
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i) L=Mn{e}.
ii) (LleH,eH, e, H,* ,n € N) is a matriz ordered standard form.

iii) eH™* is a separating set for M.

Proof. By Lemma 2.1 we may consider (M, H, H,",n € N) as (mo(M), Hy, (Hy),

N). Let e be a projection on H, defined by

eny(z) = ny(e(x)), z € A,

It suffices by [T'2, Theorem] to prove iii). Choose an arbitrary element
z in M. Suppose that m,(z)§ = 0 for all £ € e, C A,. For every

n € A, we have

To(@)7(E)n = mo(2)7 (M) = 7' (n)p(2)E = 0.

Let {y;} be a net in n(A,) which converges strongly to 1. Since &
is normal, (y;) — £(1) = 1. This implies the existence of a net in -
m(e,) converging strongly to 1. Hence z = 0. It follows that eH, is
a separating set for 7,(M). This means that eH, is a cyclic set for
To(M)" = J,my(M)J,. Since eJ, = J,e and the span of eH, " is eH,,,
iii) holds. O

We shall next consider the converse of the above proposition. We

need two lemmata.
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Lemma 2.3. Suppose that (M,H,H},n € N) is a matriz ordered
standard form of a von Neumann algebra M. If e is a completely posi-
tive projection on H ,then there exists a von Neumann algebra N such

that (N,eH, e, HT ,n € N) is a matriz ordered standard form.

Proof. One easily sees that (eH,e,H},n € N) is a matrix ordered
Hilbert space. By [I2, Proposition I1.1.6, Proposition I1.1.3 i)] e, H;f
is regular. Therefore, the completed face (F{g})“' generated by ¢ is
projectable for every £ € e,HY,n € N. There then exists the von

Neumann algebra N by [SW, Theorem 4.3]. [

Lemma 2.4. Let (M, H, H,%*.n € N) be a matriz ordered standard
form of a von Neumann algebra M, and e be a 2-positive projection on

H such thateH™ is a separating set for M. Assume that (N,eH, J.g+,eH™)
and (M2(N),eaHo, Jo, g+, ea Hy ) are standard forms of von Neumann
algebras N and My(N), respectively. If we put L = M N {e}’, then
LleH = eM|eH = N. Furthermore, there exists an orthogonal system
{&;;i € I} ineH™ such that ¢ and |L defined by p(a) =D ;cywe;(a) (a €

M) are faithful normal semi-finite weights on M and L, respectively.

Proof. The first part of this proof is due to [M1, Lemma 2]. We put
K = eH, Kt = eH" K, = e;H; and K = e;H,F. By assumption,
one easily sees that eJ|K = Jg+,eaJ2|Ks = Tt Take a deriva-

tion 6 € D(HF). By [C, Lemma 5.3] e26, belongs to D(K). Since
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(M2(M), Hz, Jo, H)Y) is a standard form, for each X = [x 0] €

0 0
M>(M) there exists by [I2, Theorem VL1.2 ii)] Y = [zl Zz] <
3 Ya

M, (N) satisfying
ex(X + JoX )2 = (Y + Tt Y+ )E, VEE€ K.

By setting = = 8 g] with £ € K we have

o o~ | o y3&

[0 e:cf} . [Jszf (y1+Jy4J)€}

so that yo = y3 = 0 and ex = y1£ + JysJE. Moreover, if we set

m

= [0 0] with £ € K then

0 ¢
[8 8] B [8 (y4+8y4~7)€] '

It follows that exf = (y1 — y4)¢,€ € K. Hence eM|K C N.

We shall next prove that N C L|K. Note that in a standard form
(M, H,J,H") the map q — qJqJH? is an order isomorphism of the set
of all projections in M onto the set of all closed faces in H* (see [SW,
Proposition 3.4], [I2, Corollary VI.2.3]). Hence, if p is a projection

in N, then [g (1)] Tis [g (1)] T+ Kf, which will denoted by F, is

a closed face in K;' and Pp = [‘8 (1)} JKZ+ [15 (1)] JK;. There then

exists a projection P = [5* g] in My(M) such that P¢ps, = PJoPJ,,

where Pcps denotes a projection on the closed linear span of the face



< F > generated by F in H,. It follows from [I2, Lemma II.1.7] that

Pr= = eaPcps= for all Z € Ky. By setting = = [8 g] we have

p€ = eaJcJE for all £ € K. On the other hand, since e; Pres < Pcps,

we have for all £ € K
OO'p0J4p0J00’
0 &] [0 17K |0 1|7k |0 ¢

[a b a b 0 0
b c] J2 [b* c] J2 [0 f]
[ bJbJE bJcJE
| cJbJE cJcJE |

We then have b¢ = 0 by [SW, Corollary 3.3]. It follows that b = 0

because K is a separating set for M. Since ¢ = cJcJ& = ¢, we have
¢ = 1. Therefore, p§ = ea& for all £ € K. Since eoPcps = Pcpsey by
[I2, Lemma II.1.7], i.e.,

eaJaJ ea
eJaJ e

we have ea = ae. Therefore, LIK =eM|K = N.

aJaJe ae
JaJe e |’

Recall that for £,7 € H*, £ L n if and only if p(¢§) L p(n), where
p(€) denotes the support projection of a vector functional we on M.
By Zorn’s lemma there exists a maximal family {£; : i € I} C eH™
such that {p(&;)} is mutually orthogonal. By maximality we have
Y icrp(&) = L ‘Then ¢ is a faithful normal semi-finite weight on

M. In fact, for any finite subset J of I we put

pa(a) =) we(a),a € MY,
i€d

65
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Then ¢(a) = limy p3(a),a € M™*, so that ¢ is a normal weight on M
because {3} is monotone increasing. Put ey = supp(py) = Y ;5 (&)
Then p(a) = p3(a),a € egMTe;. Hence ¢ is semi-finite. If p(a) =
0,a > 0, then we,(a) = 0 for all i € I. This implies a*/?p(&;) = 0. Since
Y ictP(&) = 1, we have a = 0. Thus ¢ is faithful.

We shall next show that ¢|L is a faithful normal semi-finite weight
on L. Put @o(2°) =3 ;crwe, (2°),2° € N*t. Since

YONEG=Y Jg+eN& =e() TME) =) M'€) = leg,

i€l i€l i€l i€l
©o 1s a faithful normal semi-finite weight on V. Since eH is a separating
set for M, the map v € L + z|eH € N is an onto *-isomorphism. Using
the equality ¢(z) = po(z|eH),z € L, we see that the set {z € L|p(z) <

oo} is strongly dense in L. This completes the proof. [

Theorem 2.5. 1) Let (M, H,H,% ,n € N) be a matriz ordered stan-
dard form of a von Neumann algebra M, and e be a projection on H
with eH = K such that eH" is a separating set for M. Then the
following three conditions are equivalent: |

i) e is completely positive.

ii) For every n € N, e, H is a selfdual cone in K, and e, HY =
HYNK,.

iii) e is 2-positive and there exists a family of selfdual cones K,*

in K, with Kt = eHt and Kot = e Hy" such that (K, K, ,n € N)
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is ‘a matriz ordered Hilbert space and any completed face (Fyey
K, is projectable for every £ € K," . neN.

2) Under the condition 1), if L = MN{e}, then (L|eH,eH,eH, " n €
N) is a matriz ordered standard form. In addition, there exists a faith-
ful normal conditional expectation e with respect to the faithful normal

semifinite weight @ on M as defined in Lemma 2.4. Furthermore, we

have L|eH = eM|eH.

Proof. 1) )& ii): If e, H} C H}, then H} N K, is a selfdual cone
in K,. In fact, let £ € K, belong to a dual cone of H} N K, then
(&,1m) = (£,eqn) > 0 for all n € HY. Hence £ € Hf N K,. Since
HY N K, C e, H;} and each cone of both sides is selfdual, they are
equal. ii)= i) is trivial.

i)= iii): We apply Lemma 3.3,

2) Let M,K and e as in assumption of 1), and let iii) hold. By
[SW, Theorem 4.3] there exists a von Neumann algebra N such that
(N,K,K »T,n € N) is a matrix ordered standard form. For any z in M
there exists uniquely by Lemma 2.4 o(z) in L such that ex{ = a(z)§
for all € in K, since eHt is a separating set for M. We may consider
by Lemma 2.1 (M, H,J,Ht) as (r,(M),Hy, J,,H,*). Then B =
{n.(z) € Y|z € L} is a left Hilbert subalgebra of A, with completion

eH,. Let z be an arbitrary element in 7(2,), and let {&;} be a net in

67



68

B’ such that {7'(&;)} converges strongly to e. For any element ¢ in 2’

we have

(576(2),0) = (np(a*), €0) = lim(x' (€)1, (a*), eC)
= lim(z"¢;, eC) = lim(&;, a(2)e)
= lim(&, 7' (O)n(a(2))) = lim(x' (FO&, 7, (a(2)))
= (F¢,ng(a()),

using the fact that the invariance

p(a(z)) = Z(a(x)£i7£i) = Z(fﬂfi,fz‘) =p(z), € MT
implies < <

pla(z) a(r)) < p(z*z) < 0o,z € A,
Hence eSn,(z) = Sn,(a(z)), z € W(Ql;p). ’In addition, since

Ne((2)) = lima(2)¢; = lim ex; = en(2),
it followé that eS coincides with Se on 2.,. Hence eS = Se, so that
eA, = Age, and L is invariant under A, (V¢ € R). We see from the
theorem of Takesaki [T2, Theorem] the existence of the conditional
expectation e.

1) iii)= 1): We apply Proposition 2.2. This completes the proof. [

We remark in Theorem 2.5 2) that the conditional expectation ¢ is
uniquely determined under the condition that a faithful normal semi-

finite weight ¢ is represented by the cone e HT.



3. Completely positive isometries

Let (M,H,Ht,n € N) and (M,H,H} n € N) Be matrix ordered
standard forms of von Neumann algebras. Then Lemma 2.1 shows
the following fact: If p is a *-isomorphism of M onto M, then there
exists a completely positive isometry u of H onto H such that p(x) =

uzu~l,x € M.

Theorem 3.1. Let (M,H,H} ,n € N) be a matriz ordered standard
form of a von Neumann algebra, and (ﬁ,ﬁ;{',n € N) be a matriz or-
dered Hilbert space. If u is a completely positive isometry from H onto
fI, then there exists a von Neumann algeme of which (M, ﬁ, IA{;{', n €

N) is a matriz ordered standard form. In addition, we have ulM u~l =

~

M.

Proof. We shall first show that if G is an arbitrary completed face in
H* n € N, then G is projectable. Since u,H} = H7F, G is writen
as G = u, F for some completed face F in H}. By assumption, F is
projectable. It follows that u, Pru; g + C u, F, where Pr denotes a
projection of HY onto the closed linear span [F] of F. Therefore, it

suffices to prove that P, r = uanugl.

Indeed, since u,Pru,, lisa
projection and F is a selfdual cone in [F)], the above equality holds.
There then exists by [SW, Theorem 4.3] the von Neumann algebra M

such that (M H, I:T,'f ,n € N) is a matrix ordered standard form.
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fll gln
Choose an element z € M. We then obtain for all = = : :
£n1 fnn
HY
{diag(uzut,1,--- ,1)=diag(uzu="t,1,- -, 1)j} =
—u:cujljuxujlffll uru~ 1, uru~1E, ]
1 Juzu™tJ & €22 Eon
2 : s z
juxu“ljfnl fnz gnn |
—fuxy‘lfumy“lfu uzu~ 1o urzu~ €, ]
Juzu~! J€o €22 £2n )
+ . . .
jumu_ljfnl En2 Enn
uzJzJu=1E  uruTlE, uru~ &,
B uJ.’EJu_lle 522 £2n
uJzJu~ En2 .. Enn
= updiag(z,1,--- ,1)Jydiag((z, 1, - ,1)Jpu,'Z,
which belongs to I:I,j' because u, is a completely positive map. This

implies uzu~! € M ,ie., uMu™! C M. Taking the implementation by

A

J, we obtain the converse inclusion.

O

Let (H,H,n € N) be a matrix ordered Hilbert space. We shall

write L(HT) for the 1-positive bounded maps on H. Put

U(HY)={u € L(H")|u is a unitary}
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and
CPU(H') = {u € L(H")|u is a completely positive unitary}.

Moreover, let (M, H, H} n € N) be a matrix ordered standard form of

a von Neumann algebra. Put
CPU°(H') = {uJuJ|u is a unitary in M}.

One easily sees that CPU(H™) is a topological grbup under the strong
operator topology. Since H7 is generated by the elements [a;Ja;J €17 =1 (ar,
M,& € HY), uJuJ is completely positive. One then sees that CPU°(H+ ) C
CPU(HT). In the following proposition we shall show that there exists

a one-to-one correspondence between CPU(HT) (resp. CPU°(H )
and a group of the automorphisms Aut(M) of M (resp. the inner

automorphisms Int(M)).

Proposition 3.2. Keep the notation above. If we put c,(z) = uzu™,z €
M, then the map: u — o is a homeomorphism of CPU(H™) ont

Aut(M). In addition, CPU°(H™) is homeomorphic to Int(M).

Before going into the proof of the above proposition, we shall state

the following lemma.

Lemma 3.3. Let (M, H,J,H) be a standard form of a von Neumann

algebra. If u € U(H) belongs to M or M', ten u = 1.
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Proof. By symmetry it suffices to prove in the case u € M’. Take an
arbitrary element { € H. Then ¢ is written as £ = &; — & + (€3 — &)
such that & L & and & L &, & € H*. Since uf = JuJé, u = Jul.
Hence u € M N M’ and v = u*. In addition, since s(£;) L s(&) and
5(€3) L s(&), where s(¢) denotes the support projection of a vector

functional we on M, and uHt = H*t, we have

4
(u€, &) =) (u&,&) 2 0.
=1
Hence u is a positive operator, and sou=1. O

Proof of Proposition 8.2. If a, = o, for u,v € CPU(H"), then v~ luz =
zv~ly for all z € M, i.e., v"'u € M’. Hence Lemma 3.3 shows that
u = v. It follows from Theorem 3.1 that CPU(Ht) and Aut(M) are
isomorphic. By [H2, Proposition 3.5] CPU (H *) is homeomorphic to
Aut(M).

It is now clear that CPU°(H™) is isomorphic to IntM). O

In the above proposition, if uJuJ = vJvJ for unitaries u,v € M,
then v*u = Jvu*J € M’. Then there exists a unitary w in the center

of M such that u = vw.

Proposition 3.4. Let (M,H,H} ,n € N) and (N,K,K},n € N) are
matriz ordered standard forms of von Neumann algebras. If H = K

and Hf = K, then there exists a projection p on H satisfying the
1 1



following conditions:

i) p,1 — p are completely positive.

i) p, HY C K} and (1 —p,)H}' C K} for every n > 2, where H;Y'

denotes the set of all transposed elements of H .

Proof. By [H1, Theorem 5.10] there exists a central projection p in

M such that N = pM + (1 — p)M’. We then have p = pJpJ and

1—p = (1—p)J(1—p)J, which are completely positive maps. Therefore,

i) holds. Since the corresponding family of selfdual cones to the matrix

ordered standard form of the commutant M’ coincides with H;Y',n € N,

ii) holds. O
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