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Abstract

A statistical parameter estimation theory for quantum pure state models is pre-
sented. First, we formulate the one—barameter estimation theory in an ana.logous
way to that of strictly positive models, and clarify the differences between them. We
next investigate the multi-parameter estimation theory based on theé right logarithmic

~derivatives.

1 Introduction

A quantum statistical model is a family of density operators p& defined on a certain sepa-
rable Hilbert space H with' finite-dimensional real parameters § = (95 i which are to be
estimated statistically. In order to avoid singula.rities, the conventional quantum estima-
tion theory [1][2] has been often restricted to models that are composed of strictly positive
density operators. It was Helstrom [3] who successfully introduced the symmetrized log-
arithmic derivative for the one-parameter estimation theory as a quantuni counterpart of
the logarithmic derivative in the classical estimation theory. The right logarithmic deriva-
tive is another successful counterpart introduced by Yuen and Lax [4] in the expectation
parameter estimation theory for quantum gaussian models, which provided a theoretical
background of optical communication theory. Quantum information theorists have also
kept away from degenerated states, such as pure states, for mathematical convenience [5].
Indeed, the von Neumann entropy cannot distinguish the pure states, and the relative
entropies often diverge.

In this l)a.pér, however, we try to construct an estimation theory for pure state models,
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and clarify the differences between the pure state case and the strictly positive state case.
First, we formulate the one-parameter pure state estimation theory, which seems quite
analogous to the strictly positive case, but reveals the features of the pure state estimation
th.eofy. We next investigate the multi parameter estimation theory. Even in the strictly
positive case, there is no general theory for multi parameter quantum estimation as yet.
So, we restrict ourselves here to the theory based on the right logarithmic derivatives. All

the results are presented without proofs. They will be found in future publications.

2 Review of the conventional theory

We first give a brief summary of the conventional quantum parameter estimation theory.
Let
S={peipe=pp>0,Trpg=1,0€ 0 CR"} (D

be the statistical parametric model composed of strictly positive density operators. Here, 6
is the parameter to be estimated statistically. Let M(df) = M(d6" ---df") be a generalized
measurement [1][2] which takes values on ©. The corresponding probability distribution
at the state py is PM(B) = Tr ppM(B), where B is a Borel set on ©. In the following,
we identify the estimator for # with the measurement on ©. The expectation vector with

respect to the measurement M at the state py is defined as
Eg[M] = / oM (df).

The measurement M is called unbiased if Eg[M] = 8 holds for all # € O, i.e.,

/éjpel\l(dé) = 0]', (.7 =1,.-, 7?) (2)
Differentiation yields

.0 . : '

/ojwpal\/[(do) :6is (J,k: 1"'.’12')' (3)

If (2) and (3) hold at a certain 0, M is called locally unbiased at . Obviously, M is unbiased
iff M is locally unbiased at every 6 € ©. Letting M be a locally unbiased measurement at
f, we define the covariance matrix Vy[M] = [vé"] € R™" with respect to M at the state
Po by

ot = / (0% — 7)(8* — 0%)PM(df). (4)



In order to obtain lower bounds for Vy[M], let us consider a quantum analogue of the

logarithmic derivative denoted by Lg:

Opp _ 1 x
567 = glpeLe + Liipal. (5)
I'or instance,
6/)9 1 x :
907~ §[P9Lgs,j + Lg,jl)o], Lg,j = Lg,j‘ (6)

defines the symmetrized logarithmic derivative (SLD) Lg, ; introduced by Helstrom [3], and

dpe "
367 = "ol (7)

defines the right logarithmic derivative (RLD) Lff,j introduced by Yuen and Lax [4]. Thus,
(5) defines a certain class of logarithmic derivatives. Correspondingly, we define the quan-
tum analogue of Fisher information matrix Jp = [(Lgj, Lo k)s,), Where the inner product
(+y+)p is defined by

(A,B), =TrpBA™. (8)

Then, the following quantum version of Cramér-Rao theorem holds.
Theorem 2.1 For any locally unbiased measurement M, the following inequality holds:
Vo[M] > (Re Jp)™ 1, (9)

where Re Jo = (Jg + Jg)/2. In particular, for the SLD, J§ = ReJy = [Re (Lg’j,Lf’k)pe] is

called the STD-Fisher information matriz. Moreover, for the RLD,

ValM] > (J7)! | (10)
holds, where JI = [(L{’fj, L(I;'k),,e] 1s called the RLD-Fisher information matriz.

When the model is one dimensional, the inequalities in the theorem become scalar.
In this case, it can be showﬁ that the lower bound (ReJp)™! - (Jp)~! becomes most
informative, i.e., it takes the maximal value, iff the SLD is adopted, and the correspondihg
lower bound (J§)™! = 1/.Tr‘ po(L§)? can be attained by the estimator 7' = 61 + L3 /J7,
where I is the identity. Thus, the one-parameter quantum estimation theory is quite

analogous to the classical one when the SLD is used.
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On the other hand, for the dimension n > 2, the matrix equalities in (9) and (10) cannot
be attained in general, because of the impossibility of the simultaneous measurement of
non-commutative observa.bles.. We must, therefore, abandon the strategy of finding the
measurement that minimizes the covariance matrix itself. Rather, we often adopt another
strategy as follows: Given a positive definite real matrix G = [gjx] € R™ ", find the

measurement M that minimizes the quantity
tr GVo[M] = Y gjnv}’ (11)
ik

If there is a constant C such that tr GVg[M ] > C holds for all M, C is called a Cramér-Rao
type bound or simply a CR bound, which may depend on both G and 6. For instance, it

can be shown that the folowing two quantities are both CR bounds [6).

¢’ = tr GUJH)Y,
CR

tr GRe (J§H) ™! + tr abs G Im (J§%) 1.

Here ImA = (A — A)/2i and tr abs A denotes the absolute sum of the eigenvalues of
A. These CR bounds are called, respectively, the SLD-bound and the RLD-bound. The
most informative CR bound is the maximum value of such C for given G and #. Yuen
and Lax [4] proved that the above CT is the most informative for the gaussian model,
and they explicitly constructed the optimum measurement which attains CR. Holevo [2]
derived another CR bound which, though an implicit form, is not less informative than
C5 and C™. Nagaoka [6] investigated in detail the relation between these CR bounds.
He also derived a new CR bound for 2 dimensional models, which is not less informative
than Holevo's one, and obtained explicitly the most informative CR bound specific to the
spin 1/2 model. The coﬁstruction of the general quantum parameter estimation theory for

n > 2 is left to future study.

3 One-paremeter pure state model estimation theory

In this section, we give an estimation theory for one-parameter pure state models :

S=1{ps; ps=pe, Trpg=1,0€0CR}. (12)



Let £ and L,, are, respectively, the set of all the (bounded) linear operators and all the
self-adjoint operators on ‘H. An unbiased estimator for # is a self-adjoint operator T such
that Tr poT = @ holds for all #. The SLD for the model § is also defined by (6). In this
case, however, SLD is not uniquely determined. Denote the set of all the SLD’s at § by
T3 (po). Furthermore, let us define a pre-inner produr_:t_on L by

1

{A,B), = —2-Trp[BA’* + A*B], A,BeCL,
which depends on the state p. Note the sesquilinear form (-,-), becomes an inner product
on L iff p > 0, and (A, B), = Re(A, B), holds when A, B € L. Denote by Ks.(p) the
set of such self-adjoint operators K satisfying (K, K), = 0. The following theorems show
that the one-parameter estimation theory for the pure state models is quite analogous to
that for the strictly positive models.
Theorem 3.1 The SLD-Fisher information J§ = (L3, L§),, is uniquely determined on
the SLD tangent space T5(pg)/Koa(pe), and is identical to
d 2
S _ T . __eg) . 1

Theorem 3.2 For any unbiased estimator T, the following quantum Cramér-Rao inequal-

ity holds:

Vo[T) > ~1§ (14)
o J5 ~
The equality at @ holds iff
2 d o
T =00+ 4 Ko, YEp € Koalpo)- (15)
J3 de

Since dpy/df and Ky do not commute in general, the measurement which attains the lower
bound (11) is not determined uniquely. This fact provides significant features in the pure

state estimation theory.

Example 3.1 Let us consider a model of the form

po = eioﬂ{/hl)o e_ieilfjn.

Here, K is the time independent Hamiltonian of the system, h the Planck’s constant, and

9 the time parameter. Now, Ly = —2iH/h is a logarithmic derivative which belongs to (5)
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and the corresponding Cramér-Rao inequality (9) becomes

e |
VOl 2 g (16)

where T' is an arbitrary unbiased estimator T' for the time parameter 6. This inequality is
nothing but a time-energy uncertainty relation. If pg > 0, then the general theory mentioned
in section 2 says that this lower bound cannot be attained for any T since Ly is not an
SLD. On the other hand, if po is pure, then the SLD-Fisher information (13) becomes
J§ = 4Vy[H]/h?, and the corresponding Cramér-Rao inequality (14) is identical to (16).
Moreover, Theorem 3.2 asserts that the equality can be attained locally. This is a significant
(l’{fj’ﬁf‘ﬁﬂ(:@ between the strictly positivé models and the pure state models. Since both the
logarithmic derivative Ly = —2i3/h and the SLD-Fisher information (13) can be obtained
divectly from the Liouville—von Neumann equation, this result is not specific to the case

where the Hamiltonian is time independent, but is quite general.

Example 3.2 An unbiased estimator T is called efficient if the equality in (14) holds for

all @ € O. Let us consider a model of the form

po = 6if(B)ApO e—if(())A,

where f(8) is a real monotonic odd function and A € L. If po > 0, then it can be shoun
that there exists an efficient estimator for § only when A is a canonical observable [7]. On
the other hand, if po is pure, then there may exist an efficient estimator even if A is not
canonical, because of the uncertainty Ko € Ksqa(pg) in (15). For instance, the spin 1/2

model

1 .« _ 1 1 1
f0)=5G -0, A=on m=3| |,

has an efficient estimator o, for the parameter 8.

4 Multi-parameter pure state. model estimation theory

As was mentioned in section 2, there is no prototype for general theory of quantum multi-
parameter estimation theory. So, let us restrict ourselves here to seeking the estimation

theory based on the RLD. Since the RLD is defined by (7), it does not exist for degenerated



states. However, what we need is not the RLD itself but the inverse of the RLD-Fisher
information matrix, as is understood by (10). Following Holevo [2], we define the commu-

tation operator O on LI;,,, by
, 1 ' _
i(Ap=pA) = 5 (DA +p(DA)), A€L (1)
Note that D A is uniquely determined for the given p and A iff p > 0.

Lemma 4.1  Ifp is pure, then D A is determined except for an uncertainty of the element

of Ksa(p).

From this lemma, © can be regarded as a super-operator on Lsq/Kse(p). The following
theorem gives the counterpart of the Holevo's result thich' was originally obtained in the

strictly positive case [2, p. 280].

Theorem 4.1 Suppose we are given a pure state model pg. Let {po(g) ; € > 0} be a family
of strictly positive density operators pg(e) having a parameter € which satisfy lim, o pg(e) =
po, and denote the corresponding RLD by LE(e). If the SLD~tangent space T5(pg)/Ksa(po)

is O -invariant, then

i (70)” = () 45 (0%) 0 ()

holds, where JR(¢) = [(LF(e), LE(€)) po(e)) s 75 = (L5115 06 and D = [iTr pol2, L5

From this theorem, the inverse of the RLD-Fisher information matrix can be calculated
directly from SL‘D, without using the diverging RLD-Fisher inforﬁmtion matrix itself.
Then, it may be important to investigate the condition for the SLD-tangent space to
he D-invariant. The following theorem characterizes the structure of ®-invariant SLD-

tangent space.

Theorem 4.2 The D-invariant SLD-tangent space T5(pg)/Ksa(pg) has an even dimen-
sion and is decomposed into direct sum of 2 dimensional D-invariant subspaces. Moreover,

by taking an appropriate basis of T5(ps)/ Ksa(pg), the operation of D can be written in the
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form
[ L 1 [o 2 11 L$ ]
L -2 0 L
L§ 0 2 §
Dl is |= =20 : 5 . (18)
L5y 0 2 L3y
L3, | ] -2 0| L3,

Definition 4.1 The basis {if}fﬁl of the SLD-tangent space T5(pg)/Kou(pe) which is

subject to the transformation law (18) is called pg—symplectic.

From Theorem 4.2, it is sufficient to consider a 2-dimensional D-invariant SLD tangent
space. Indeed, the RLD-bound is decomposed as CF = ;’.‘:1 C]R, where Cf is the RLD-

bound with respect to the 2 dimensional subspace span{f;gj_l, flzsj} and is given by

\/aetu‘ ~ -
Cff = CF + Yo [T ol 1, 15| (19)
J .

Here, the subscript j denotes the restriction of the corresponding quantities onto the above
2-dimensional subspace. The following theorem gives the condition for the model to have

a 2-dimensional D-invariant SLD-tangent space at pg.

Theorem 4.3  For the pure state model {pg = |0){8]}, the following two conditions are
equivalent.
(i) '{I/f}j:l,g is a |@)(8|-symplectic basis.
(i) (E§ +il5)l6) = 0.
The linear span of such basis span{L$, L5} is D-invariant.
The condition (ii) is nothing but the definition of the coherent states in quantum theory.

Thus the D-invariancy is equivalent to the coherency of the model. Furthermore, the next

theorem characterizes a global structure.



Theorem 4.4 Consider the pure state model of the form pg = UppoUy; where {Us} forms a
unitary group. This model has D -invariant SLD-tangent space for all 8 iff T5(po)/Ksa(po)
is D -invariant, i.e., the model has a pg—-symplectic basis. Indeed, if {I/f}j:l’g i8 @ po—

symplectic basis, then {UgL3UZ} ;=12 becomes a pg—symplectic basis.
ymy 7 Ug }i=1, Pa—symp

Example 4.1 Let us consider the family of canonical coherent states p, = |2){z| in a one
dimensional harmonic oscillator with frequency w, where z = (wq + ip)/2h € C. This can
be regarded as a 2-parameter pure state model which has real parameters ¢ and p. It can

be shown that the representative elements of SLD are

B5=2@Q-0,  Li=-(P-0)
and
DL =wli, DI = —%Lg.
Letting
=35i=w@-0.  B=555-r-n

we have
7S _o71S rsS TS
DL, = 2L, DL, =-2L;.
This indicates that {Eg , f,;f } forms a p,-symplectic basis. Therefore, from Theorem 4.3,

(LS +iL5)|2) = w(Q - q) + (P - p)]|z) = 0,

which is nothing but the definition of canonical coherent states. Furthermore, from Theorem
11,
2 .
o thf2
gryr=|
—ih/2 o}
where 0p = hw(2, 63 = /2w, and the corresponding RLD-bound

9pVp[M] + goVo[M] > gpoh + good + h\/dPge

is identical to the pure state limit of the most informative CR bound obtained by Yuen and

Lax [4].
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Example 4.2 We neat show that the 2 dimensional spin coherent state model has D-
invariant SLD—-tangent space at every point. Let (8, ) be the polar coordinates where the
north pole is § = 0 and 2-azis corresponds to ¢ = 0. The spin coherent state |6, ) is
defined as

16,0) = R[0, ¢]|5) = exp [i0(J sinp ~ Jy cos )] |7),

where

7} is the highest occupied state in the spin j system. It can be shown that the SLD
at the north pole in the direction of ¢ = 0 and ¢ = 7 /2 are, respectively, 2J,, 2J, and the
operation of © becomes DJ, = 2.Jy, DJ, = —2J,. Therefore, I =J, and I§ = Jy form

a |7)(j|-symplectic basis and

(L +4L§) 14) = T4l = 0,

where Jy = J, + 1Jy is the spin creation operator. This is nothing but the definition of
the terminal state |j). From this fact, we can immediately conclude that the model which

comprises the totality of the spin coherent states

Pose = 10,0)(0, 0] = RIB, ]l5)(i| RO, ]

has D-invariant SLD tangent space at every poz’ni on the sphere. Indeed, since R[8, ]

forms a compact Lie group, Theorem 4.4 asserts that
{RI6. (LT R0, 01", RIS, Q)ESRIO, )71}

forms a |0, )(0, p|-symplectic basis. Especially, a 2 parameter spin 1/2 model has -

invariant SLD tangent space and

A(’]R)_l_ 1 sin?@ —isiné

) ..
sin“f | iging 1

The corresponding CR bound is

‘ 9o 2
M V,[M] > L A /T
9o VoM + g,V [M] > go + =55 T g V90

This bound is the most informative CR bound for the model because it is identical to the

pure state limit of the most informative CR bound obtained by Nagaoka [6].



5 Conclusions

A quantum estimation theory of the pure state models was presented. First, we constructed
the one-parameter pure state estimation theory, which seems quite analogous to the strictly
positive case, but discloses the characteristics of the pure state estimation theory. We
next investigated the multi-parameter estimation theory, based on the right logarithmic
derivatives. The construction of the general quantum multi-parameter estimation theory

is left to future study, as is the strictly positive model case.
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