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Introduction

In most literatures creation and annihilation operators in a Fock space are introduced as
operator-valued distributions though used in actual computation as if they were defined
pointwisely. On the other hand, it is also possible to give a rigorous definition of such
field operators at a point using a Gelfand triple or a rigged Hilbert space, see e.g., [1], [2].
The so-called white noise calculus initiated by Hida [3] offers one of such possibilities.

The foundation of white noise calculus is a Schwartz type distribution theory on a
Gaussian space (E*,u); more precisely, it is based on a particular choice of a Gelfand
triple:

(E) C L*(E*, 1) C (E)Y,

where L%(E*, ) is isomorphic to a Boson Fock space through the Wiener-It6-Segal iso-
morphism. Then a pointwisely defined annihilation operator, which is also called Hida’s
differential operator and is denoted by 8;, becomes a continuous operator on (E); and a
pointwisely defined creation operator 9; is a continuous operator on (E)*.

In a series of works [10]-[12] we have established a systematic theory of operators on
Gaussian space in terms of white noise calculus. The key role has been played by an
integral kernel operator of which formal integral expression is given as

/TM B(31,0 Sty by b )00, < OBy - Oyady -+ dsidty -+ - db, (1)

where « is a distribution in ! 4+ m variables. It should be emphasized strongly that an
integral kernel « can be a distribution. In fact, the composition 8}, - - - 95 8y, - - - 04, is well
defined (namely, normally ordered product) and becomes a continuous operator from (E)
into (E)*. Moreover, the dependence of the parameters s; and ¢ is smooth enough.
The kernel distribution & in (1) being regarded as a scalar operator-valued distributon,
we are led quite naturally to a generalization with an integral kernel being an operator-
valued distribution. In this note we shall introduce an operator in the following form:

/THm OO L(s1,Stytry ey )0 Bo sy -+ - dsidlty - -+ dt. 2)



138

Of course, this is a formal (but sometimes very descriptive) expression. For the precise
definition we need the characterization theorem for operator symbols and some properties
of operator-valued distributions. Those results are obtained in [10]-[12].

As application we discuss an operator-valued (or quantum) stochastic process of Hitsuda-
Skorokhod type. We shall observe that the classical case discussed in [4] (see also [7], [8])
is recovered as multiplication operator-valued processes. Our discussion is closely related
to quantum stochastic calculus, in particular, to representation of quantum martingales,
see (6], [9], [13], [14]. Further detailed study in this direction will appear in a forthcoming

paper.

ACKNOWLEDGEMENTS. I am very grateful to Professors I. Kubo and H. Watanabe for
interesting discussion and comments.

1 White noise functionals

We employ the standard setup for white noise calculus ([5], [10]-[12]) with the same
notation as used there. Let T' be a topological space with a Borel measure v(dt) = dt
which is thought of as a time parameter space when it is an interval, or more generally as
a field parameter space. Given a positive selfadjoint operator A on the real Hilbert space
H = L*(T,v;R) with Hilbert-Schmidt inverse, one may form a Gelfand triple:

EcCcH=L*T,;R) C E

in the standard manner; namely, E is the C°°-domain of A equipped with the Hilbertian
norms

€1, =14%¢l,, €€ H, peR,

where |- |, is the norm of H. Such a countably Hilbert space is called a standard CH-
space, see [11]. Since A™! is of Hilbert-Schmidt type, E becomes a nuclear space. The
canonical bilinear form on E* x E and the real inner product of H are denoted by the
same symbol (-, -) without contradiction.
One can think of £ and E* as spaces of test and generalized functions on 7', respectively.
In order to keep the delta functions §; within our discussion we assume:
(H1) for each ¢ € E there exists a unique continuous function £ on T such that £(t) = £(t)
for v-a.e. t € T}
(H2) for each ¢ € T a linear functional 6, : £ — £(t), £ € E, is continuous, i.e., §; € E*;
(H3) the map ¢ — é; € E*,t € T, is continuous with respect to the strong dual topology
of E*.
From now on we always assume that every element in F is a continuous function on T
and do not use the symbol €. For another reason we need one more assumption:
(S) inf Spec (A) > 1.
We then put

§=|A"lis <00,  p=] A" |lop = (inf Spec(4))™".
The obvious inequalities

0<p<1; lglpSpq|€Ip+q? éeE’ peR’ q207
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are used throughout with no special notice.
The Gaussian measure u is by definition a probability measure on E* of which charac-
teristic function is:

1 .
exp (—— ¢ I§> =/ e@8y(dz), ¢E€E.
2 E*
The probability space (E*, ) is called a Gaussian space. We put
(L?) = L*(E*, 11;C)

for simplicity.
The canonical bilinear form on (E®")* x (E®") is denoted by (-, -) again and its C-
bilinear extension to (EE")* x (EE") is also denoted by the same symbol. For z € E* let

:2®": be defined as a unique element in (E®");  satisfying
) on €®n ) 1
pe@) =3 (0% n ) =exp ({5, -5 (6,0), (€Be ()
n=0 :

This “normalized” exponential function ¢, is called an ezponential vector. In particular,
Po is the vacuum. As is well known, each ¢ € (L?) is expressed in the following form:

#(z) = i <:$®":, fn> , reE*, f,€ Hg", (4)
n=0

where each z — (:z®":, f,,) and the convergence of the series are understood in the
L?-sense. Expression (4) is referred to as the Wiener-Ité ezpansion of ¢. In that case,

16118 = [ 16()u(de) anfnao (5)

Thus we have a unitary isomorphism between (L?) and the Boson Fock space over Hc,
which is the celebrated Wiener-It6-Segal isomorphism.
The second quantized operator of A, denoted by I'(A), is an operator in (L?) defined

by '

r(A)g(z) =Y (2%, A1),

n=0

where ¢ € (L?) is given as in (4). Equipped with the maximal domain, I'(A) becomes
a positive selfadjoint operator on (L?) and we obtain a standard CH-space which will be
denoted by (£). That I'(A) admits a Hilbert-Schmidt inverse is guaranteed by hypothesis
(S). Therefore, (E) becomes a nuclear Fréchet space and we come to a complex Gelfand
triple:

(E) € (L*) = L*(E*, 15 C) C (). |
Elements in (£) and (E)* are called a test (white noise) functional and a generalized

(white noise) functional, respectively. We denote by ((-, -)) the canonical bilinear form on
(E)* x (E) and by || - ||, the norm introduced from I"(A), namely,

o]

1911, = I T(A)7 Nl = 3 nll (AP fu I = Zn'lfn p (6)

n=0 n=0
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where ¢ and (f,.)7%, are related as in (4). Thus (5) is a special case of (6). As is easily seen
from (6), ¢ € (L?) belongs to (E) if and only if f, € EE" for all n and T2y n! | fu |2 < 00
for all p > 0.

We use a similar (but formal) expression for a generalized white noise functional. Every
® € (E)* is written as

o(z) =Y (:2®":, F,), (7)
n=0
where F,, € (E@")z,m and
Ie|?, = 20 n!| F 2. (8)

By construction || @|_, < oo for some p > 0, and hence for all sufficiently large p > 0.
Expression (7) is also called the Wiener-Ité expansion of @. In that case,

(@, 9) = i SN NAY

where ¢ € (F) and its Wiener-It6 expansion is given as in (4).

2 Integral kernel operators

For any y € E* and ¢ € (E) we put

¢(z + by) — 4(z)
0 )

It is known that the limit always exists and that D, € L((E),(F)). Since the delta

functions é; are elements in E* by hypotheses (H1)-(H3), we may define

D,4(s) = lim z € E". (9)

8t=D6” teT.

This is called Hida’s differential operator. Obviously, 0; is a rigorously defined annihi-
lation operator at a point ¢ € T. It should be therefore emphasized that 9; is not an
operator-valued distribution but a continuous operator for itself. The creation operator
is by definition the adjoint 0; € L((E)*,(F)*) and we come to the so-called canonical
commutation relation:

[asaat] =0, [a:’a:] =0, [63,8;] = 63(t)I7 s,t €T. (10)

The last relation is understood in a generalized sense.
For ¢,1 € (E) let 54 be a function on T*™ defined by

Now(81, 58ttty o tm) = (0 -+ 020y, 01y ¥)). (11)

Then 14y € ES’"*’") and (¢,¥) — (k, 1s4) 18 a continuous bilinear form on (E) for

any k € (E¢ (1+m))*. By general theory there exists a unique continuous linear operator
Zim(k) € L((E),(E)*) such that

«El,m(h:)¢> 1/)» = (":’ 77¢,1/1)a ¢?¢ € (E) (12)
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In other words, = ,(k) is defined through two canonical bilinear forms:

«El,m(";)¢7 "/)» = <K” <<a.:1 e 8:1611 e atm¢7 lb>>> 9 ¢,¢ € (E)

This suggests us to employ a formal integral expression:
Sim(K) = /THm K(S1, Sty t1, ey tm)0py -2 030y - Os,ds1 - -dsidty - - - diy,

We call Z),,(x) an integral kernel operator with kernel distribution k. It is noteworthy

that =i (k) is defined for any k € (E®(l+m)) and becomes a continuous operator in
L((E),(E)*). For any p > 0 with | |_, < co we have

I Z0m(K)B 1, < Clomp [ K1, I 811, ¢ € (E), (13)
where (1+m)/2
= p~P l,,m 1/2 p—p___
Clomip = (lm ) (—Qpelogp '

This estimate is useful. Recall that | % |_, < oo for all sufficiently large p > 0.
The kernel distribution is not uniquely determined due to relation (10); however, for

the uniqueness we only need to restrict ourselves to the subspace (E®(+’"))sym(, my Of all

€ (ES (l+m)) which is symmetric with respect to the first [ and the last m variables
independently.

3 Symbol and Fock expansion

For = € L((E),(E)*) a function on E¢ x E¢ defined by
5(6777) = «5¢€’ ¢71» ’ £a77 € E‘C7 . (14)

is called the symbol of =. Since the exponential vectors {¢¢; £ € Ec} spans a dense sub-
space of (E), the symbol recovers the operator uniquely. For an integral kernel operator,

Erm(K)(&n) = (K, n® @ £5™ ) el&om, (15)
or equivalently,
{Zim (k) de, ¢n» = <<<"‘7 77®l ® §®m> Pe, ¢n>> (16)

where £, € Ec and Kk € E® Hm) 1t is straightforward to see that @ = &, = ¢
L((E),(E)*), possesses the followmg two properties:
(O1) For any &,&1,n,m € Ec, the function

ZawHQ(Z€+€1’wn+nl)7 Z,'LUGC,

is entire holomorphic;
(02) There exist constant numbers C > 0, K > 0 and p € R such that

o < CexpK (1€ +Inl),  &ne Ee
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More important is that the converse is also true.

Theorem 3.1 Any C-valued functzon © on E¢ x E¢ satzsfymg conditions (O1) and (02)
is the symbol of an operator = € L((E),(E)*), i.e., = = 6.

In fact glven such a function @, there exists a unique family of kernel distributions

Kim € ) )iym(i,m) Such that

9(67 77) = f: «sl,m(’fl,m)éﬁa ¢n» ’ €’7I € E(C-

1,m=0

Moreover, the series

[>¢}

E¢ = Z El,m(/‘:l,m)ﬁﬁa ¢ € (E)v (17)
{,m=0
converges in (E)*, and thereby we obtain = € L((E),(E)*) of which symbol is ©. In
particular, the symbol of = € L((E), (E)*) satisfying (O1) and (02), the above argument
reproduces an operator = in terms of integral kernel operators. Expression (17) is called
the Fock expansion of =.

In some practical problems operators on Fock space are only defined on the exponential
vectors {@¢; £ € Ec} due to the fact that they are linearly independent. Theorem 3.1 is
therefore crucial for checking whether the operator comes into our framework. In fact,
our later discussion will depend on this point heavily. For detailed proof and further
discussion see [10]. Here we do not mention anything about the case of L((E), (E)) which
is also important from some applications. For complete information see [11].

4 Operator-valued distributions

In [12] we studied £(€,&*)-valued distributions in general, where £ is a standard CH-
space. Here we recapitulate some results for £ = (E).
Let {e;}32¢ be the normalized eigenfunctions of the operator A. Fori = (4y,---,4) and

j = (.jl)' "vjm) we put
6(i)=6i1®---®651, c(j):ejl Q- e,

For a linear map L : Eg(l“”) — L((E),(E)*) and p, q,r,s € R we put

4 € (5) i
I L Wt mipygir,s = SUP {ZI((L(C( ®e(d)g I [e@ [21eG) 5 181, < }
ij I, <
By definition for any p,q,r,s € R we have
ZI (), UNI*1e@) 3 1eG) [} S NI ppae 1612, 1012, (18)

and
“ L ”l,m;p ;7§ — plp +mq ” L ”l m;ip+p’,q+q'sr+r!,5+5' 0 pl7 ql) r,’ 'SI 2 0 (19)
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For brevity we put

|| L “p = ” L ”l,m;p,p;p,p ’ ” L ”I,m;p,q = ” L ”Iym;PﬂBPrq :

The next result will be useful, for the proof see [12].

Proposition 4.1 For a linear map L : Eg(Hm) — L((E),(E)*) the following four condi-
tions are equivalent:

(i) L € L(EEW™, L((E), (E)"));

y ne B, ), <1
(ii) sup {l (L(m)s, ¥) |5 ¢, v €(E), lol,<Llvl,<1

(iii) || L ||, < oo for some p > 0;
(V) 1 Ll pmipgirs < O© for some p,q,r,s € R.

} < o0 for some p > 0;

In that case, for any p,q,r,s € R we have

| (L) DY <N L Mlimimpr—gimrms | 7 limipg S Tl (20)

and
” L(ﬂ)¢ “—r S ” L ”l,m;—p,—q;—r,-—s |77 |I,7n;p,q ” ¢ ”s ’ (21)

where n € ES™™ | 6,9 € (E).
Each L € L(ngm),ﬁ((E),, (E)*)) is justifiably called an L((F), (E£)*)-valued distri-

bution on T'*™. If L((E),(E)*) were a Fréchet space, one would have a canonical iso-
morphism

CEZH™ L(B),(E)) = (EE"™) @ L((E), (E)*)

by the kernel theorem; however, L((E), (E)*) is not a Fréchet space. (It is known that
L(E,E*) is Fréchet if and only if € is a Hilbert space.)

5 Generalization of integral kernel operators

With each L € £(Eg(l+m),£((E),(E)*)) we associate an operator = € L((E),(E)*) by

the formula:
(Z0c, dn) = (LO® ®E®™)ge, 6,)), &1 € Ec. (22)

We must check that the definition works; namely, conditions (O1) and (O2) in §3 are to
be verified for

O = (L1 & €™)pe, ), &€ Be. (23)

In fact, the verification of (O1) is straightforward. As for (02), it follows from (20) in
Proposition 4.1 that

Ol < ILI, 11 @1, el 116, 1,
1
ILI, 0l 1€ exps (1R +1nE).
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Hence one may find p > 0, K > 0 and C > 0 such that

O <CexpK (16 +1Inl),  &ne Ee,

which shows (02). It then follows from the characterization theorem (Theorem 3.1) that
© is the symbol of an operator = € L((E), (E)*); namely, there exists a unique operator
= € L((E),(E)") satisfying (22). It is reasonable to write

5_—_/Ta;‘1---0:,L(51,~--,s,,t1,--~,tm)6t1---Otmdsl_---dsldtl.--dtm. (24)

—

The above constructed operator = is a generalization of an integral kernel operator intro-
duced in §2, compare (22) and (16).
This generalization occurs in an integral kernel operator. Let & € (ES ('+m))* y and

sym(l,m

consider an integral kernel operator =;,,(«x). To go further we need contraction of tensor

products. For g; € EE' and g, € EE" we define k ®' (g ® gn) € (Eg(m+"))* as a unique
element satisfying ,

(k@ (9 ®gn), () = (k@ go, 0 ®C), (€ EZ™.

Then k ®' g is defined for any g € Eg(l“”) by continuity and is called a left contraction.
Moreover, it is easily verified that

n I+m)y l+n
[F & glp <™ FI,lgl,,  Fe By, geBg™.  (2)
The right contraction £ ®; g is similar. For detailed argument see [11].

Lemma 5.1 Fiz integers 0 < a <l and 0 </ <m. Given k € (Eg(l"'m)):ym(,,m),

LO(nla"' anaa'fl" v 7€ﬁ) = El—a,m—ﬁ ((Ii ®ﬁ (51 & ®§ﬁ)) ®* (771 Q- ®na))

becomes a continuous (o + B)-linear map from Ec into L((E),(E)*).
ProOOF. For simplicity we put

A=k (6 ® - ®8))® (MO @7a)
Take p > 0 with |x|_, < co. Then by (25) we have

M, < TRl 16l 18sl, tm - I mal, - (26)
On the other hand, in view of (13) we have
l «Lo(ﬂl, RS YSPRER ’€B)¢’ QP» ] < Cl—a,m—ﬁm | A |-—-p ” ¢ ”p “ (2 Hp : (27)

Given bounded subsets By, By C (E), we see from (26) and (27) that
sup l«LO(nlv"'anaaél,"'aﬁﬁ)¢7 ¢>>|

#€B1,%€B>
S Croom-pp SUP | 91l, SUp ¥ 1l, | £ 1y 1 &0l 1€a 1, [naly - 1maly
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which implies the desired continuity of Ly. qed
By Lemma 5.1 there exists L € E(E®(°’+ﬂ L((E),(E)*)) such that ‘

Lm®@ - ®na®& @+ ®&s) = Lo(M, -+ Mas €15+ €p)-
In other words,
Lm® - @1a®&L® - ®&s)
= Zlam-p (B (6@ ®&) " (MO ©1a)) - (28)
Theorem 5.2 (FUBINI TYPE) Fiz integers 0 < a < land 0 < f < m. Given k €
(EEH™) et I € L(ESP) L((E),(E)*)) be defined as in (28). Then,
Sm(k) = [ 0% O Lty Satry ey 16)0t - Oipdsy -+ dsadty - dbp.

PROOF. The symbol of the right hand side is ((L(7®* ®£®P) ¢, ¢y,)) by definition (22).
In view of (28) we obtain

(L @ )¢, ¢0)) = {(Zicam-s((5 @ E%) @ 15%)¢¢, 6, )
= <(,{, ®p §®ﬁ) Q% %, ®(1-°t) ® §®(m—ﬁ)> el
— <K, % ® §®m> e E,n).
The last expression coincides with the symbol of =, (k) by (15) and hence follows the

assertion. qed

The above result is essential to discuss “canonical form” of an adapted operator-valued
process. This topic will be discussed in a forthcoming paper.

6 Operator-valued Hitsuda-Skorokhod integrals

In this section we take

d2
>’
According to the discussion in the previous section we have a generalized integral kernel
operator:

T=R, A=1+¢- E = S(R).

[onwa, L e L(Be,L(E),(B)).
In this section we shall introduce a “stochastic integral” of the form:
t ,
/0 0; L(s) ds, t>0.

For that purpose L should possess a stronger property that L is continuously extended
to a linear map from E¢ into L((E), (E)*). Note the natural inclusion relation

L(Eg, L((E), (E))) C L(Ec, L((E), (E)))-

For L € L(E¢, L((E),(E)*)) we write L, = L(J,) for simplicity. Then {L,} is regarded
as an operator-valued (or quantum) stochastic process with values in L((E),(E)*).
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Lemma 6.1 Let L € L(EG, L((E),(E)*)). Then for any f € E¢ there exists an operator
M; € L((E),(E)*) such that

«Mf¢§7 ¢77» = «L(fn)¢€’ d)n» ,' ‘5177 € E‘C'
Moreover, f — M; is continuous, i.e., M € L(E¢,L((E), (E)*)).
PRrOOF. First note that, for any p > 0 there exist ¢ > 0 and A,, > 0 such that

|€77 lpSAP,q|£|p+q|?7lp+q7 f,UEEC-

Then, by duality we obtain

|f77 I—(p+q) S Aqu If |—p l n Ip+q ’ n € EC) f € E‘E' (29)

On the other hand, using the canonical isomorphism
L(Eg¢, L((E), (E)) = L(Eg, ((E) @ (E))),
which comes from the kernel theorem, we find L* € L((E) ® (E), E¢) such that
(L()g, ) = ([, I"(¢® %)),  feEg ¢,9¢€(E)

By continuity, for any p > 0 there exist ¢ > 0 and B, , > 0 such that

| L (0@ ¥) |, < Bogll 8llppg 1 ¥ llpigs 6% € (E). (30)
We now consider

O;(&,n) = (L(fn)de: ¢a)) = (fn, L™ (¢e © 4n)) -

Suppose p > 0 is given arbitrarily. Take ¢ > 0 with property (29). In view of (30) we
may find 7 > 0 such that

S Apvq If l—p | 77 lp-{v—q BIH"I:" ” ¢E ||p+q+'r ” ¢77 ||p+q+r

, L 2
S AP:QBP'*'Qﬂ'p If |—p I n [p+q+r exp —2— (If |p+q+r + IT, lp+q+‘r) :
Consequently, for any p > 0 we have found constants C > 0, K > 0 and s > 0 such that
O <CIflexp K (1€R,, +1nlk.),  feEs &neBe  (31)

Hence by the characterization theorem (Theorem 3.1), for any f € Eg there exists an
operator My € L((F),(E)*) such that

(Mye, ¢a)) = O7(6,m) = (L(fn)¢e, ¢a,  &m € Ec.

Obviously, f — My is linear. Inequality (31) implies the continuity on the Hilbert space
{f € Eg;| f]_, < oc}. Since E¢ is the inductive limit of such Hilbert spaces, we conclude
that M € L(Eg, L((E),(E)Y)). qed
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The operator M; constructed above is denoted by

M; = /T £(5)0* Lyds.

In particular, for f = 14 we write
t
0, = / O:Lyds, >0,
0

which forms a one-parameter family of operators in L((E),(E)*). This is called an
operator-valued integral of Hitsuda-Skorokhod type. To be sure we rephrase the defini-
tion:

((‘Qt¢fv ¢n» = <(L(1[0,t]77)¢6’ ¢n»? €,n € Ec. (32)

It is interesting to observe how our operator-valued process {2} generalizes the Hitsuda-
Skorokhod integral.

For that purpose we quote the definition of the Hitsuda-Skorokhod integral following
[4]. Let &, € (E)*, t > 0, be given. Since 9; € L((E)*,(E)*) for any t, for any ¢ € (E)
one obtains a function: ¢ — {(0;®;, ¢)). Assume that the function is measurable and

[ 1400, o) 1ds <0, t20.

Then, it is proved that there exists ¥, € (E)*, t > 0, uniquely such that

(W, ) = [ (0., 0 ds, B (B)

The above obtained ¥, is denoted by
t
@:/@@@
0

and is called the Hitsuda-Skorokhod integral. As is well known, the Hitsuda-Skorokhod
integral coincides with the usual It6 integral when the integrand {®;} is an adapted L2
function with respect to the filtration generated by the Brownian motion

Bi(z) = <I, 1[0’t]>, zeE", t>0.

In this connection see also [7], [8]. _

We need one more remark. Each ¢ € (FE)* gives rise to a continuous operator in
L((E), (E)*) by multiplication since (¢,%) — ¢% is a continuous bilinear map from (E) x
(E) into (E). This identification extends to a natural inclusion relation L(Eg,(E)*) C
L(Ez, L((E), (E))). )

Now suppose we are given ¢ € L(Eg,(E)*). Let @ denote the corresponding multipli-
cation operator, i.e., ® € L(Eg, L((E), (E)*)). Then one has an operator-valued integral
of Hitsuda-Skorokhod type:

t - ‘ .
0 = /0 a:d.ds, >0, (33)



as well as the Hitsuda-Skorokhod integral in the original sense:

i
¥, = / O:d.ds, >0
0
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(34)

In fact, since the both maps ¢t — 6, € E* and t — ;¢ € (FE) are continuous, so is

t — (07 D:, ¢). Therefore ¥, is well defined.

Theorem 6.2 For any ® € L(E¢, (E)*) let 2, be the operator-valued integral of Hitsuda-
Skorokhod type defined as in (33) and let ¥ be the Hitsuda-Skorokhod integral in the

original sense defined as in (34). Then,
| O, = Qidy, 130,
where @g is the vacuum.
PrRoOOF. By definition (32) we have

(Leg0, 8 = (B(1pgn) 0, $n)) = (S(1pan), ¢1)) -

In terms of the adjoint operator ¢* € L((F), E¢) the last expression becomes

(@(10am). 62)) = (1an, #°6n) = [ 1(5)(@6,)(s)ds.
Moreover, note that

1(8)(@"¢n)(s) = n(s) (6s, D"dy) = n(s) (2(65), én))
= «¢(5s)a as¢77» = «azés’ ¢77)> ‘

Consequently, t
(20, 60) = [ (0184, 9u) ds = (&, du),

and we come to ;¢ = ¥, as desired.
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