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Single-valued Wave Function of Aharonov-Bohm Problem
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(Abstract)

The wave function of a charged particle orbiting around a confined magnetic
flux is single-valued. On the basis of this, the Aharonov-Bohm effect is studied

In conélusion. it is found that the flux-dependent diffraction originated from
the interference between the two splitted waves is impossible although the
amplitude of each wave function is a periodic function of the ap;lied flux.
Futhermore, we obtain a greatly depressed cross section for a rigid wall tube.

(Text)

There has been a controversy whether the wave function of a particle orbiting
around a confined magnetic flux @ is single-valued ¥ or multi-valued. ¥ ©
In this paper, the single-valued wave function is obtained. On the basis of a
single-valued wave function, we examine the so-called Aharonov-Bohm effect ®
consisting of three issues; (i) a charged beam splitted into two parts gives
rise to a GD;dependent diffraction pattern ¥ *-% (i) an energy eigenvalue
of a particle is influenced by @ ® - % | (i) a scattering cross section
of the beam is a function of @ %% '0,

Our wave function W( 7t ) satisfies the Schrodinger equation i b oV /

0t =H W , where the Hamiltonian H is
- 7)° (1)
= -4 - + .
H Z}*( ihv-qgA) qe
In the present analysis, the magnetic flux @ is confined within a rigid tube

-
of radius a running along z- axis. Therefore the wave function W( r,t ) is

. . —+ -) . _’ —’
defined in a region r 2 a. Let us divide A ( »,t ) into two parts, A ( r,t )=
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- - - — - _
A( v )+ A( r,t ), where Ao and A, respectively represent a d.c part
- -
and an a.c part of the total A. Under the condition VXA =0, the wave

function takes a factorized form

=l

N )
W(;::t)=exp[iq3 T(r’,t)d?’/ﬁ] ¢(:,’t). (2)

ot

_g e
The pseudo wave function ¢ ( »,t ) satisfies a pseudo Schrodinger equation

X T
iﬁ—"—¢v(?,’t)=[~~ﬁ—v2—qg (T t)dTrIe (Tt ). (3)
3t 2 >

—
where ¢( r ,t_') = () has been chosen. To obtain Eq.( 3 ) , a path-independent

s -, - -
equality VS_,A dr’=A(rt)yielded from VXA =0 has been used.
To -
With the use of Faraday’s law § E, d?:—aCDl( t )/ @t inEq.(3), we

obtain a multi-valuedness of ¢(?,t ),

¢ (r,0+2n,t ) =exp [ -2rxia(t)+i2 1 ¢ (r,0,t). (4)
Here a.(t) isa scaled flux a.(t) =q®d,(t)/h, and A is an
integral conétant composed of two parts, A =1, + A’. A part A, is originated
from Zo( —1?) and plays an essential role of the problem, whileA’ is an
irrelevant part. In this paper, we set A’= (0. For the purpose of finding the
explicit form of A,, let us consider a case where only the static vector
potential Z:( ?) exists. In this case, the pseudo Schrodinger equation ( 3 )
takes the form of free particle’s type. However ¢ (:t ) is governed by the
(static) magnetic flux ®,. This can be shown if the system is rotated on the
axis of the flux tube. In the system rotating at an angular velocity 2 = /T,

-

our 7o in the factorized phase also rotates with the same angular velocity.

Thus we obtain the pseudo Schrbldinger equation

.4 O - _ __f\_z 2,9 7 .—) 2 o 5
1ﬁs—g¢r(7,t)—[ 7_PLV qat?’o(t)Ao(To(t))]f/’r(?’,t). (5)
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The solution of Eq.( 5 ) has a form W(?t )=exp (i v (t ))xO(—;,t)

where - v ('t ) represents the rotation of the system

Ry (t)=am(m(t D2m(t), (6)
ot ot ,

while .x.,(?,t ) is a solution of the free Schrgdinger equation i K dxo/ @
t=-h?*/2u+V? x,in the rest frame.

Integrating Eq.( 6 ) aldng a path ;:)o( t ) going around the flux tube, we
have Ay=y (T)- 7 (0)=-2ma, Asignof the equality reflects the
direction of the path ‘r-;( t ) which is opposite with respect to the direction
6 —>6+2n introduced in Eq.( 4 ) . Thus the pseudo wave function ¢,( ;),t )

: -
acquires an additional phase A7y =- 27 a, after a revolution of 7o( t ) ;

¢ (70, t+T)=exp (~2nias) ¢.(v,0,t). (7)

The additional phase Ay =-2mao in Eq.( 7 ) could be interpreted, in a
wide sense, as Berry’s phase ' . The reason why the opposite direction of ;:)
(t ) is chosen is that the rotation of the system in such a direction , 6( t
) >6.(t+T)=6.t)-2 n, is physically equivalent to the coordinate
transformation 6@ —>60 + 2x. In other words, the role of 9—>9‘ + 2n can be
replaced by 9o(t ) =»600( t +T ) = 64(t) -2 x' The validity of this

replacement is readily seen from the explicit form of the factorized phase in Fg
2]

(2), je fo( Y)rde’'=d,/2x( 6 - 6.t ) ) obtained from V X
- s ()
A = 0. Considering this equivalence we have, fromEq.( 7 ), Ao = - 2m a, in

Eq.( 4 ). As to such an equivalence, a more general viewpoint is possible. That
is, the present equivalence is merely an example of the equivalence between the
rotation of a system and a transformation 8 =@ + 2z, which is widely accepted
in the theory of quantum mechanics '®’- Hence, we are led to the conclusion that

—
the wave function ¥ ( r,t ) given in Eq.( 2 ) is single-valued. That is, an
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additional phase 2r a( t ) of the factorized phase factor for the revolution
Bo(t)—= 0o(t)-2nx (or equivalently 8—6 *+ 2z ), is exactly
cancelled out by the acquired phase - 2ray (t )+ Ao ( Ao =-2mao) of
. -
the pseudo wave function ¢ ( 7t -
- 4 - q q .

The single-valuedness of ¥ ( 7,t ) ( for a static Ae( 7 ) ) is found by
another method. Let us consider a particle orbiting around the flux @ within a
loop‘ofradius Eo. Here the flux @ is assumed to switch over from an a.c
&, (t)toadc ®,att=0. Fortunately, the exact solution of Eq.( 3 )

for t < 0 is obtained ;

t «
B 0,t)=New (i \E(t)dt'/RI B (0. t). (8)
. t,
where 8. ( 6, t)=expli(n-a.(t)) 6 JandE.(t)=R*(n-
ar (t))?*/2 £ Eo®. It is important to note that ¢, satisfies the
circular condition ( 4 ) withi, = 0. Since there is no d.c part.ofz.(?:t )
int<0 A.=00f ¢. is reasonable. Thus the wave function given by Eq.( 2

) is single-valued. The solution ( 8 ) develops into, as @,( t ) smoothly
approaches to @, an extrapolated form ¢ .o( 9,t )=Nexp i E.(0) t/h
Jexp [ i(n- ao) 6 1. This extrapolated form ( of the pseudo wave function

) is consistent with the wave function really existing in the region t 2 0.

The eigenvalue equation in t= O is ,
IV
— ( —L(XO) enj(g)zEni enl(e) (9)
2pis 98

Equation ( 9 ) has, formally, many solutions ©.;( 6 ) = exp (i la;6 /)
where la; are canonical angular momenta l.; = (n-jaes )R (nandjare0,
+], +2, £3,+ ). The energy eigenvalues of ©.; are Ea; = ( la; -

% a0 )t/ 2 uko? Among these solutions, there is one solution physically
realistic. To find this, let us consider the conservation law of energy-angular

momentum, which is satisfied at the linking of two wave functions respectively



given in the regions t < 0 and t=2 0. Under this restricticn, the wave function
in ¢t < 0. which is single-valued, links up only to ©..( 8 ) alsc-single- -
valued. Therefore we are led to the s_ingle—va'lued wave function.

Let us examine (i) ~ (@) . (i) An incident wave is splitted into two
waves Wcy and Wc, travelling along the right-hand ( C ,) and the left-hand (
C 2) of the flux . These splitted waves get together at a point P on a screen,
Weivee (P) =We (P )+ Weo( P ). According to the existing theory where
the pseudo wave function is assumed to be single-valued, | Weivcz (P )17 =4
1@ (P) 1%*cos’( wao ) ¥ Y% is obtained. The factor cos’(zw as )
comes from the interference phases =* g § c[-CJZ d?’/‘ri =% 2r ao
appearing in the mixed terms We¢, (P ) W™ cx( P )and U* ¢ (P ) ¥ 2 (P ).
Contrary to this. such an interference is cancelled out, in the present theory,
by the counter-interference phases ¥ 2 m a, respectively arising from ¢ c.(
P) ¢ce® (P)and ¢* c.( P) ¢ca( P ). Hence we have | Weivoe (P )12 =
4 1Q (P)|* The present @ ( P ) is expressed by-Q (P) =°Ej ixp (in 6, )
laa (1w 1) J ilre ) #ba (1w l) (7. )] Here thne~Besse1

functions Jyw( 7 ) satisfy the radial part of the equation,

Ar‘l = 2
"zp[rir(r:],)—]ii}R(r).:ER(r), (v=n-ao).(10)

The a,-dependence of 'tHe present 1Q ( P ) 1% is quite similar to the one of |
Weivea (P)I12=41Q(P)!1%cos’( mao ). because it is, as readily
seen, a periodic function of @, with 2 period ao = [ . Therefore, it seems
important that the special care should be used, even in the excellent experiment
19 not to confuse the observed ao-dependence of 1@ ( P ) | % with the (
unreal ) ao-dependent interference expressed by cos®( 7 ao ) .

(i) It is found that the energy eigenvalue {s a function of a., because it is
determined by Eq.( [0 ) which explicitly contains a.. An example has been
already given in Eq.( 9 ). Here, let us give a brief comment on the equality j =

2,
-qd E(® ) /add 7. A probability current density j ( 7, t )
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satisfying o /8t + V-?:O( o= | ¥ |? and ?:(‘E/Z pi JIW* VY -
UV I-(a/u)IWITA) is
i s - - - N -
j(r,t)=—i—};z-[ ¢* (r,t)V</)(r,t ) - ¢(nt)ver (rt)l(11)
If a particle confined within a loop of radius £, is considered, we have, from
Eq.( 11 % j=h(n-ao)/2nuEos® for a normalized pseudo wave function

| ¢ 12=(2x &, ) ~'. Combining this with E. =h 2 (n-as) /2 ué&,*

. wereach j =-qd E( ® ) /00. M1MMUMrmmmnmer=SUQEo Xuj)Ea
d @ = (n-a,) yielded from ;‘(';:t ) is a kinematical o;e ', Contrary
to this, the canonical angular momentum is I .o =fin ¥ , as seen from L «in.=
hin-ao).

(i) Supposing that it seems considerably difficult to measure the cross
section in the actual condition, let us study, providing for the future, the
differential cross section o (@) . For the thin filament (a=0), o (6)
=sin?( mrao)/ nksin?®( 6/2) % 'Y has already been given. In the
present case where the radius of flux tube is finite, o (@) is depressed by
the additional k — dependence, while the ao.-dependence ié basically the same.
Since the problem can be studied either by the wave function or by the pseudo
wave function, the pseudo wave function will be used . An incident particle

moving in a x- directionu ; (v, @) =exp (i krcos @) is represented by

ui(r,b‘):ozoexp(inrr/2)J,,(kr)exp(in9), (12)

na=~o0
which carries a current density j =Th k/u ( see Eqg.( 11 )). On the other

hand, the scattered wave is represented by

v, (r80)-= A,.(v)exp(inn/Z)Hlu‘l”(kr)exp(ive).(13)

T M3

where H,, (" ( kv ) describes the outgoing wave and exp ( iv @ ) reflects the

167
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multi-valuedness of the pseudo wave function. From the inpenetrating condition
of the flux tube, u; (@, 0)+u.(a6)=0.weobtaind., (v )=
A (v)ed(-inn /2):

o . =) .
-t sin(mwy) sin(mwivl) Z (-1) Jm(Ra)

- CI+)
1T[J-wl(RQ)“Q-LWWIJIUI(!‘Q)J m=-00 m-v

A (v )=
[n Eq.( 14 ) we have used sin ( x| v |)<H, " (2z)=-iJwm(z)-
exp (i xlvi)Jyy(z)]. letusnote A" (v )=4."(lvl)
resulting fromJ - (2 ) =(-1)™Ja(2z).

Considering the asymptotic behavior of H,,,'" (z ) at z = o, H,,,"V(z)
=(2/7z) " expli(z-(2 |v| +1)x/4) ], wehave a scattering
amplitude f (@) , defined by u .( 7,6 )>exp (i kv ) f(0)/ Yr (r >
Joasf(0)=(2/ nk) P exp(-in /4)-L A (v )ep (-ilvl
m /21-exp (i v @ ). Thus an expression of the differential cross section
o (6) =1f(6)1% is

2 o

cr(9)=W'ln§_£n’(|vl)exb(-inlul/Z)ext(i ve )1: US)
[t is found that o (@) is a periodic function of @, ( a, will be restricted
within0< ao < 1 ). If somevlinear combination of ( positive order ) J,, (
kr ) is adopted in place of # /’( k7 ), the expression fora=0 ¥ ¥ '
is reproduced from Eq.( I5 ). |

Let us study the interesting case ka € [ where J , (ka) = [ andJ . (
ka) =0 (n # 0). In this case, an expression of ¢ (6) . because of | v |

vesin( rv )=sin (x| v |), becomes

0 (6)=2/nk - 1S sinrlvl)ep(ive)/D(kilvl) |%(6)

nz-o

where
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D(k; lv!))=(ka/2) Mexp(inlv!/2)T(1+ 1vl)
(ka2 ep (~inlv1/2) (1~ 1vl) (17)

Here the equalities T ( v )I'( [ - v )=n /sin(zxv) ( v# 0, %I, X2

e eee)and vI'( v )=T( 1+ v) have been used to rewrite the expansion Jy|u|
(ka)s= (ka/2)¥"YT(12+1v1 ) ka< ] ). Let us note that an
additional k - dependence, besides the factor 2/ =k, appears in o (6)

through the denominator D ( & ; | v |) . This differs from ¢ (&) obtained for
the flux filament with a = 0. Unfortunately, it seems formidably difficult to

carry out the summation in Eq.( [6 ). Therefore we restrict our analysis to the

s -component of o (@) whose contribution is principal in kB a < [. In a non-

magnetic region ao, € ka < [, we have

™ " .
ao=€’;-'|7—i7r /2+In(ka/2) 172 [ 1+ (nae/2)%17(18)
where T([+2z)=1- yz+ + + « has been used ( 7 is Euler’'s number 7 =
0.57721 « « « «). On the other hand, an interesting result is found in the

magnetic region ka << ao (ka1 ) ;
Z o,
ao:-’r—TE-sinz(nao)[(ka/Z)/F(1+ao)]z‘(19)

Comparing this expression with o, obtained from ¢ (@) =sin?® ( wa, )/ =«
ksin?(60/2)=2sin?( nao)/ nk [ 1+cos @ +(cos@ )P+ =+
» « «], it is found that the present o, is modified by the depressing factor
(ka/2)* (note T(1)=T(2)=1and T ([+as) = 1for0< as
< 1). The depression by (ka/2)*orby Iln(ka/2)|? seems
reasonable. The incident wave, as widely known to the physicists, becomes more
insensitive to the tube as its wave length becomes longer. The depression in the

magnetic region, explicitly depending on the value of a,, is much larger than
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the one arising in the case a, = 0 ( see Eq.( I8 ) ). Hence such an
extraordinarily sm;ll 0o can be considered as an experimental evidence of the
®- dependent scattering, if it is observed in the magnetic region.

The author would like to thank Professor S. Takagi for helpful discussions. He
is also grateful to colleagues of Kyoto University for stimulating discussions
and the critical check of the calculations.
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