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Abstract

We forlnulate the notion of detailed balance at a given beta for a
discrete Markov chain, and show that it implies that one time-step in
the chain is a contractioll in tlue norm $||\cdot||_{\beta)}$

. this is defined on the set
of states as tlle dual to tlle $\mathrm{n}\mathrm{o}\mathrm{r}\mathrm{n}\mathrm{u}$ on the random variables given by the
classical KM $\mathrm{S}$ state.
Key words: $\mathrm{R}\cdot \mathrm{e}\mathrm{e}$ ellergy; relative entropy

1 Introduction and Notation
Suppose that $\Omega$ is a countable space, with points labelled by integers $i,j\ldots$ .
Denote by $A$ the (abelian) algebra of bounded real-valued random variables
$f$ on $\Omega$ with $\sup$ norm, and by $A^{*}$ the dual space (of continuous linear
maps, $Aarrow \mathrm{R}$). The positive, normalised elements of $A^{*}$ are the probability
measures on $\Omega$ , also called the states on $A$ . A typical state will be denoted
by $p$ ; they form $\mathrm{t}1_{1}\mathrm{e}$ convex set $\Sigma(\Omega)$ . In fact, $\Sigma(\Omega)$ is a simplex, whose
extreme points, the corners, are the Dirac measures on the points of $\Omega$ , thus
for any subset $\Omega_{0}\subseteq\Omega$ ,

$\delta_{j}(\Omega_{0})$ $=$ 1 if $j\in\Omega_{0}$ (1)
$=$ $0$ otherwise (2)

Any probability measure $p\in\Sigma$ can be written uniquely as a sum

$p= \sum_{i}p_{j}\delta j$
where $p_{j}\geq 0,$

$\sum_{i}p_{j}=1$ . (3)
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The $p_{j}$ will be called the components of $p$ . The duality between $A$ and $A^{*}$

reduces on $\Sigma$ to the expectation:

$\langle p, f\rangle=\sum_{j\in\Omega}pjf_{j}$

$p\in\Sigma,$ $f\in A$ . (4)

Let $T$ : $A\neg$ $A$ be a linear map. Its adjoint, $\tau*$ , maps $A^{*}$ to $A^{*}$ and is
defined by

$\langle T^{*}p, f\rangle=\langle p, Tf\rangle$ $p\in A^{*},$ $f\in A$ . (5)

In order for $\tau*$ to map $\Sigma$ to itself it is necessary and sufficient tllat $T$ be a
stochastic $\mathrm{m}\mathrm{a}_{1^{)}}$ , that is

1. If $f\geq 0$ , then $Tf\geq 0$

2. $T1=1$ .

The components of an element of $A^{*}$ define a bounded function on $\Omega$ , and
so give us an element of $A$ . The components of the Dirac measure $\delta_{i}$ define
a function that we shall denote by $\triangle_{i}$ . Then $\delta_{i},$ $\triangle_{j}$ form a dual basis as we
vary $i$ and $j:\langle\delta_{i}, \triangle_{j}\rangle=\delta_{ij}$ . If $T$ is a stochastic map, then $\tau*$ is determined
by its matrix elements

$T_{ij}^{*}=\langle T^{*}\delta_{j}, \triangle_{i}\rangle=\langle\delta_{j}, T\triangle i\rangle$ . (6)

Clearly, $T_{ij}^{*}\geq 0$ . Also

$\sum_{i\in\Omega}T_{ij}^{*}$

$=$
$\langle T^{*}\delta_{i}, \sum_{i}\triangle i\rangle=\langle T^{*}\delta_{j}, 1\rangle$

(7)

$=$ $\langle\delta_{j}, T1\rangle=\langle\delta_{j}, 1\rangle=1$ (8)

for all $j$ . Thus $T_{ij}^{*}$ is a Markov matrix in the usual sense.
Suppose now that $\mathcal{E}$ : $\Omegaarrow \mathrm{R}$ is a positive random variable, not nec-

essarily bounded, interpreted as the energy. We shall assume that $e^{-\beta \mathcal{E}}$ is
summable, so that the partition function

$Z_{\beta}= \sum_{\omega}e^{-\beta}\mathcal{E}(\omega)$ (9)

is finite. A Markov matrix $T_{ij}^{*},$ $i,j\in\Omega$ , is usually said to obey “detailed
balance” at beta $\beta$ if

$T_{ij}^{*}=e^{-\beta(\epsilon_{i}\mathcal{E})}-j\tau ji*$ $(i,j\in\Omega)$ . (10)
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If $\beta=0$ Eqn.(10) says that $\tau*$ is symmetric. For some applications of
Markov chains such as neural nets there is no good reason for $\tau*$ to be
symmetric, even for $\beta=0$ . In this paper we suggest a generalisation of (10)
which avoids the symmetry, but which nevertheless enables us to derive
thermodynamics. We show that the Gibbs state is a fixed point of the chain
if and only if generalised detailed balance holds. We use the “dual KMS
norm” coming from the Gibbs state and show that the Gibbs state is the
state of minimum norm, and that $\tau*$ is a contraction. We obtain an estimate
for the loss in free energy at each time-step in terms of this norm. Finally,
a short proof of the second law of thermodynamics for a quantum Markov
chain is presented.

2 The Detailed Balance Condition

Let $A_{c}$ be the subalgebra of functions on $\Omega$ zero except at a finite number
of points, and for $f,$ $g\in A$ define the scalar product

$\langle f,g\rangle_{\beta}=Z_{\beta}^{-1}\sum_{i\in\Omega}e-\beta \mathcal{E}_{i}$
figi $\cdot$ (11)

This idea is borrowed from the theory of quantum statistical mechanics, [1].
In this paper, the importance of the analyticity of the Green’s functions
found by Kubo, and by Martin and Schwinger, is emphasized. So we call
the corresponding scale of norms

$||f||_{\beta}=(Z_{\beta}^{-1} \sum e^{-}|j\beta \mathcal{E}_{j}f(j)|^{2})1/2$ (12)

the KMS norms. Let $A_{\beta}$ be tlle completion of $A_{c}$ in the metric given by $||\cdot||$ .
The dual spaces of these Banach spaces are the completions of Span $\Sigma(\Omega)_{c}$ ,
of real measures of compact support, in the topology defined by the dual
norms

$||p||_{-\beta}=(Z_{\beta} \sum_{j}e|\beta \mathcal{E}_{r}2)^{/2}p_{j}|1$ (13)

We shall see that these are the natural norms governing the convergence of
states under isothermal conditions, rather than the $L^{1}$ -norms usually used
for measures. Convergence in the KMS-norm $||\cdot||_{-\beta}$ with $\beta>0$ is a much
stronger notion than $L^{1}$ convergence since the rising exponential $e^{\beta \mathcal{E}_{j}}$ forces
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the high-energy tail of the probability to converge very fast, and captures
some of the information in the theory of large deviations.

Since we assulne that $Z_{\beta}$ is finite, the unit function lies in $A_{\beta}$ . Let $T$ be
a bounded operator on $A_{\beta}$ , and denote by $T^{(\beta)}$ its adjoint relative to $\langle\cdot, .\rangle$ .
Note that $T^{(\beta)}$ acts on $A_{\beta}$ , which is a Hilbert space.

Definition 1 We say that $T:A_{\beta}arrow A_{\beta}$ obeys detailed balance (relative to
$\mathcal{E})$ if $T$ and $T^{(\beta)}$ are both stochastic maps.

In particular, if $T$ satisfies detailed balance, then $T1=T^{(\beta)}1=1$ . We note
that the Gibbs measure $p_{\beta}$ lies comfortably in $A_{\beta}^{*}$ . We have an easy lemma:

Lemma 2 A stochastic matrix $T$ obeys detailed balance if and only if $p_{\beta}$ is
a fixed point of $\tau*$ .

For the proof, note that if $T^{*}p_{\beta}=p_{\beta}$ , then we have

$\langle 1, f\rangle_{\beta}$ $=$ $\langle p_{\beta}, f\rangle=\langle\tau_{p_{\beta}}^{*}, f\rangle$

$=$ $\langle p_{\beta}, Tf\rangle=\langle 1, Tf\rangle_{\beta}=\langle\tau^{(\beta)}1, f\rangle_{\beta}$

for all $f\in A_{c}$ . Hence, as $A_{c}$ is dense in $A_{\beta}$ , we get $T^{(\beta)}1=1$ as required.
The converse is obtained by working backwards.

So our forlnulation of detailed balance is the most general that could
lead to the convergence of the Markov chain $\{(T^{*})^{n}p\}_{n}=0,1\ldots$ to the thermal
state $p_{\beta}$ . At $\beta=0$ , the definition (1) reduces to the condition that $T$ is
bistochastic. This is enough to ensure that entropy is increased by $\tau*$ . At
$\beta>0$ , we shall get the corresponding result, that $\tau*$ reduces the free energy.

Theorem 3 The unique probability measure with the smallest norm $||p||\beta$

is the Gibbs state $p_{\beta}$ .

This is proved by using a Lagrange multiplier $\lambda\sum_{j}p_{j}$ to fix the $L^{1}$ norm.
We now come to the main result of this section.

Theorem 4 If $T$ obeys detailed balance, then $\tau*$ is a contraction in $||\cdot||_{-\beta}$ .
If in addition $T$ is irreducible, then $l^{j}\beta$ is the only. fixed point of $\tau*$ acting
on $A_{\beta}^{*}$ and if $p\neq p_{\beta}$ then $||T^{*}p||_{-\beta}<||p||_{-\beta}$ .

Note: $T$ irreducible means that for any $\dot{i},j\in\Omega$ there is a chain of finite
length $i_{1}=i,$ $i_{2}i_{3}\ldots i_{N}=j$ such that $T_{i_{k},i_{k}+1}^{*}>0$ , $k=1,$ $\ldots N$ .
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Proof.
Obviously for any sum over a finite subset $\Omega_{0}\subseteq\Omega$ we have for any $p,$ $q\in$

$\Sigma(\Omega)$ :

$\sum_{i,j}z_{\beta}\tau*eji-\beta \mathcal{E}i(^{\beta\epsilon_{J}\epsilon_{;_{p_{i}}}}eqj-e^{\beta}\mathrm{I}2\geq 0$ (14)

and this inequality persists in the limit as $\Omega_{0}$ increases to $\Omega$ if the terms
converge. Let $q=T^{*}p$ . The first term is the sum of non-negative terms

$Z_{\beta} \sum_{i,j}T*\mathcal{E},-\mathcal{E}_{j}ejie^{-\beta()}q\beta \mathcal{E}_{j}2j=z_{\beta}\sum_{i,j}T^{()_{e}\mathcal{E}}\beta jqjij\beta\cdot 2$.

By detailed balance the sum of $T_{ji}^{\langle\beta)}$ over $i$ converges to 1 as $\Omega_{0}$ increases to
$\Omega$ . So the first term reduces to

$Z_{\beta} \sum_{j}e^{\beta}\epsilon jq_{j}^{2}=||T^{*}p||_{-\beta}^{2}$
.

The cross-terms are also of one sign,

$-2Z_{\beta} \sum_{ij}T^{*}jie^{\beta\epsilon_{j}}qjp_{i}$

and the sum over $i$ is
$\sum_{i\in\Omega}\tau_{j}*pii=q_{j}=(T^{*}p)_{j}$ .

The $\mathrm{c}\mathrm{r}\mathrm{o}\mathrm{s}\mathrm{S}- \mathrm{t}\mathrm{e}\Gamma \mathrm{n}\mathrm{l}\mathrm{s}$ thus give us

$-2||\tau_{P}^{*2}||-\beta$ .

The last term is exactly $||p||_{-\beta}^{2}$ , since $\tau*$ is stochastic. We conclude that

$-||T^{*}p||2+-\beta||p||2\geq-\beta \mathrm{o}$

as desired. For the strict inequality we follow [3]. We get a proper contrac-
tion unless

$e^{\beta_{\mathrm{c}}^{c_{J}}}qj=e^{\beta \mathcal{E}_{i}}p_{i}$ for all $i,$ $j$ with $T_{ji}^{*}>0$ .
Starting with $i=0$ and taking $\mathcal{E}_{0}=0$ we get

$q_{j}=e^{-\beta \mathcal{E}_{j}}p0$
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for all $j$ linked to $0$ by one step. But then we get

$q_{j’}=e^{-\beta(\prime}\mathcal{E}_{j}-\mathcal{E}_{j})_{e}-\beta\epsilon_{j}p0$

for all $j’$ linked to $j$ by one step, so

$q_{j’}=e^{-\beta\epsilon_{g}\prime}p0$

for all $j’$ linked to $0$ by two steps. In this way we get

$q_{k}=e^{-\beta \mathcal{E}_{k}}p0$ for all $k$ .

Similarly we get
$p_{k}=e^{-\beta^{c_{k}}}q_{0}$ for all $k$

so both $p$ and $\mathrm{r}_{\mathit{1}}$ are $p_{\beta}$ .

3 The Free-energy Theorem

Definition 5 Let us say $tl_{l\mathit{0}}t$ a state $p\in\Sigma(\Omega)$ is close to equilibrium $(C,\beta)$

if there exists $C\geq 1$ such that

$p(j)\leq CZ_{\beta}^{-1\beta \mathcal{E}_{j}}e^{-}$ for all $j\in\Omega$ .

This includes all Gibbs states of beta greater than $\beta$ , all states with a max-
imum energy, and all states of the form $fp_{\beta}$ with $f\in A$ .

Lemma 6 If $p$ is close to equilibrium $(C,\beta)$ and $T$ obeys detailed balance
$(\beta)$ , then $T^{*}p$ is close to equilibrium $(C,\beta)$ .

For, $\tau*$ being positivity preserving,

$T^{*}(cz_{\beta}^{-1}e^{-}p)\beta\epsilon_{-}(j)\geq 0$ .

Since $\tau*$ leaves $p\beta$ fixed, we get

$CZ_{\beta}^{-1-\beta}e\mathcal{E}J-(T^{*}p)j\geq 0$

which proves the lemma. The next theorem relates the relative entropy to
the KMS-norm, and is proved ill [2].

Theorem 7 If$p$ is close to $equilibriu’ n(C,\beta)$ then the relative entropy obeys

$S(p_{\beta}|p)= \sum p\beta(j)(\log p\beta(ij\mathrm{I}-\log p_{j})\geq(2C^{2})^{-1}||p-p\beta||^{2}-\beta\cdot$
(15)
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This says that for a sequence of states close to equilibrium, if the relative
entropy converges to zero, then the states converge to equilibrium in $||\cdot||_{-\beta}$ .
We now give an estimate for the decrease in free energy under a map obeying
detailed balance, following [3] where a special case is proved.

Theorem 8 $Su_{l^{)}I}$)$ose$ that $T$ obeys detailed balance $(\beta)$ and let

$F(p)=\beta\langle p, \mathcal{E}\rangle-S(p)$

denote the free energy, defined on a subset of $\Omega$ . Then

$F(T^{*}p)\leq F(lJ)$ .

If $furtller_{P}$ is close to equilibrium ( $C,\beta\grave{)}$ , then

$F(T^{*}p)-F(p)\leq-(2C)^{-1}(||I^{y||_{-\beta}-}2||T^{*}p||2-\beta)$ .

Our proof uses the

Lemma 9 Let $s(x)=-x\log x$ and $x= \sum\lambda_{j}x_{j},$ $\lambda_{j}\geq 0,$ $\sum\lambda_{j}=1$ . Then if
$x\neq x_{j},j=1\ldots n$ we ltave

$\sum\lambda_{j}s(X_{j})=S(X)-\frac{1}{2}\sum\lambda_{j(}X_{j}-X)^{2}/\xi j$

where $x_{j}<\xi_{j}<x$ or $x<\xi_{j}<x_{j}$ .

Proof.
By Taylor’s theorem with Lagrange remainder,

$s(x_{i})=s(x)+(x_{i}-x)[-1-\log X]+(x_{i}-x)^{2}(-1/(2\xi_{i})$ .

Multiply by $\lambda_{i}$ and sum; we get the lemma, since $\sum\lambda_{i}(x_{i}-X)=0$ .
Try this lemma with

$\lambda_{i}=T_{ji}^{*}e^{-}\beta(\mathcal{E}i-\epsilon_{j})=T_{j}^{(\beta)}i$

for each $j$ , and with $x_{i}=e^{\beta \mathcal{E}_{i}}$ . Then

$x= \sum\tau_{ii}^{*}e^{-}\dot{l}\beta\epsilon i+\beta \mathcal{E}_{j}ep_{i}\beta\epsilon i=e^{\beta \mathcal{E}_{j_{(\mathit{1}j}}}$
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where $q=T^{*}p$ . So for each $j$

$- \sum_{i}T_{j}^{*}ie^{-\beta(}.-\mathcal{E}j\rangle(^{\beta}\epsilon.\mathcal{E}_{1pi}.(\log pi+\beta \mathcal{E}_{i}))e$
$=$ $-e^{-\beta \mathcal{E}_{j}}qj(\log qj+\beta \mathcal{E}_{j})$

$- \sum_{i}T_{j}^{*}ie^{-\beta(}\mathcal{E}|.-\epsilon j)(e^{\beta \mathcal{E}_{i}}pi-eq\beta\epsilon_{j)^{2}j/}(2\xi_{ii})$ .

Cancel $e^{\beta^{c_{j}}}$ to get

$\sum_{1}$.
$T_{ji}^{*}(-I^{)}i\log p_{i}-\beta pi\mathcal{E}i)$ $=$ $-q_{j}\log q_{j}-\beta q_{j}\mathcal{E}j$

$\sum_{i}T_{ji}^{*}e^{-\beta}\epsilon|$

.
$(e^{\beta \mathcal{E}_{i}}pi-e^{\beta}q\mathcal{E}_{j)j)}2/(2\xi ij\cdot$

Now either
$e^{\beta \mathcal{E}_{i}}p_{i}<\xi_{ij}<e^{\beta \mathcal{E}_{j}}q_{j}<Z_{\beta}^{-1}C$

or
$e^{\beta \mathcal{E}_{\mathrm{J}}}q_{j}<\xi_{ij}<e^{\beta \mathcal{E}_{\mathrm{i}}}p_{i}<Z_{\beta}^{-1}C$.

In either case, $1/\xi_{ij}>Z_{\beta}C^{-1}.$ Sumlning over $j$ we get

$S(p)-\beta\langle p, \mathcal{E}\rangle$ $\leq$ $S(q)-\beta\langle q, \mathcal{E}\rangle$

$\frac{Z_{\beta}}{2C}\sum_{ij}T^{*}jie^{-}\beta \mathcal{E}_{i}(e^{\beta \mathcal{E}_{i}}p_{iqj}-e^{\beta})^{2}\mathcal{E}_{j}$ ,

which gives tlle result, in view of the proof of theorem(4).
It follows that if $p$ is close to equilibrium and $T$ is irreducible, then

$T^{*n}parrow p_{\beta}$ as $narrow\infty$ in KMS-norm. Our theorem is $\mathrm{t}\mathrm{l}\iota \mathrm{e}$ classical, discrete-
time version of the deep result of Majewski [4], who shows that a continuous
$\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{n}\mathrm{t}_{\mathrm{U}\mathrm{n}1}$ stochastic semigroup on a $C^{*}$-algebra, obeying a suitable detailed
balance condition, is a contraction in the $\mathrm{G}\mathrm{e}\mathrm{l}\mathrm{f}\mathrm{a}\mathrm{n}\mathrm{d}_{- \mathrm{N}\mathrm{a}}\mathrm{i}\mathrm{m}\mathrm{a}\mathrm{r}\mathrm{k}$ -Segal Hilbert
space given by the KMS state. It is remarkable that he does not need
to assume complete positivity. Majewski’s version of “detailed balance”
expresses microscopic reversibility in quantum mechanics, and is similar to
the formulation of Agarwal [5]. A useful account of $\mathrm{q}\mathrm{u}$.antum dynanimical
semigroups can be found in [6].

4 An Easy Result on Quantum Entropy

There is a parallel theory in quantum mechanics, and our notation has been
designed to bring out the similarities. The observables form a $C^{*}$ -algebra
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$A$ and the states, the positive normalised linear maps $\rho$ : $Aarrow \mathrm{R}$ , make up
a convex subset $\Sigma$ of the dual space $A^{*}$ . A stochastis map is a linear map
$T:Aarrow A$ which takes positive operators to positive operators, and takes
1 to 1. It then follows that $\tau*$ takes $\Sigma$ to $\Sigma$ . We say that $T$ is bistochastic
if it is stochastic and trace-preserving, which makes sense on the class of
trace-class operators. For a state $\rho$ in a suitable domain we can define the
quantum entropy of a $\rho$ by $S(\rho)=-\mathrm{T}\mathrm{r}(\rho\log\rho)$ .

I. Amah [7] has noticed that we can reduce some questions in quantum
statistical dynamics to the corresponding classical question.

Theorem 10 Let $T$ be a $bi_{St_{oC}}l\iota asti_{C}$ map on a represented $C^{*}$ -algebra.
Then for any normal state $\rho$ we have

$S(T^{*}\rho)\geq S(\rho)$ .

Proof.
The states $\rho$ and $\sigma=T^{*}\rho$ are of trace class; let $\rho=\sum\rho_{i}P_{i}$ and $\sigma=\sum_{j}\sigma_{j}Q_{j}$

be their spectral resolutions. We take it that $P_{i}$ and $Q_{j}$ are one-dimensional
projections, and that multiplicity is accounted for by repetition. Since both
are self-adjoint, the $P_{i}$ can be chosen mutually orthogonal. The same goes
for the $Q_{j}$ . Define the infinite matrix

$T_{ij}=\mathrm{T}\mathrm{r}(Q_{i}(\tau Pj))$ . (16)

The point is that this is a Markov matrix: $\sum_{j}T_{ij}=$ Tr $(Q_{i}(T \sum_{jj}P))=$

$\mathrm{T}\mathrm{r}(Q_{i}\tau 1)=\mathrm{T}\mathrm{r}(Q_{i})=1$ . Its elements are non-negative, since $TP_{j}$ is a
positive operator, and $Q_{i}$ is a density matrix. In the same way, we show
that if $T$ is bistochastic in the quantum sense, then $[T_{ij}]$ is bistochastic.
Moreover, it is immediate that $\sigma_{i}=\sum_{j}\tau_{ij\rho_{j}}$ . Therefore the entropies of
$\rho$ and $\sigma$ obey the inequality $S(T^{*}\rho)\geq S(\rho)$ by appealing to the classical
result. The gain in $\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{u}\ln$ entropy can also be estimated using a classical
estimate.

5 Conclusions

We have advocated the use of the dual KMS-norms for studying the conver-
gence of Markov chains obeying detailed balance. Such an operator is shown
to be a contraction in this norm. The same proof works for a generalisation
of the notion of detailed balance, which reduces to bistochasticity when beta
is zero. The concept of a state’s being close to equilibrium is formulated,
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and it is shown that this condition is stable under one time-step. The defi-
nition gives a restriction on the class of initial states for which convergence
of the chain holds in the KMS-norm. The condition always holds if $\Omega$ is
finite, and for all states in the salne representation space as the Gibbs state
in question.
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