OOoo0O00oOooon
9810 19970 11-21 11

Tabu Search Approach to CSP (Constraint Satisfaction Problem)
as a General Problem Solver

CSP(HI# T BRIE) 12 X 2 MAEMBEICHT 2IHAT VT X A

Koji Nonobe (Ef 4 %:7])
Department of Applied Mathematics and Physics
Graduate School of Engineering Kyoto University Kyoto, Japan 606
nonobe@kuamp.kyoto-u.ac.jp

Toshihide Ibaraki (XK #%735)
Department of Applied Mathematics and Physics
Graduate School of Engineering Kyoto University Kyoto, Japan 606
ibaraki@kuamp.kyoto-u.ac.jp

Abstract

As it is known that various combinatorial problems can be naturally formulated into CSP
(constraint satisfaction problem), we develop in this paper a tabu search based algorithm for CSP
in the hope of using it as a general problem solver. With our code, we solved various problems
selected from wide applications, e.g., graph coloring, block design, generalized assignment, set
covering, timetabling and nurse scheduling. The obtained results appear to be competitive with
those of existing algorithms specially developed for the respective problem domains. Among these
results, we report in this paper some computational results of graph coloring, timetabling, and
nurse scheduling.

1 Introduction

The constraint satisfaction problem (CSP) asks to find an assignment to its variables such that all
given constraints are satisfied (i.e., feasible). It is known that CSP is able to formalize a large variety
of combinatorial problems of practical importance, such as SAT (satisfiability), graph cdloring, graph
partitioning, set covering, scheduling, generalized assignment, timetabling and many others. There-
fore, an algorithm for the CSP can solve all such problems, and hence can be regarded as a general
problem solver. ' '

CSP has been studied mainly in the field of artificial intelligence [4, 5, 6, 12, 15]. There are two
main approaches to solving CSP; “constructive” backtracking approaches and “repair” (i.e., iterative
improvement or hill climbing) approaches. In the early literature, most of the efforts were directed to
backtracking methods, in which we start from a partial assignment which satisfies all constraints, and
enlarge the assignment step by step until all variables are assigned feasible values. Various techniques of
problem reduction and constraint propagation have been developed to enhance backtracking procedure
[4, 5, 6, 15]. In contrast, in repair type approaches, an initial solution which is an assignment to

12

all variables (but is not feasible) is gradually repaired in order to reduce the infeasibility until all
constraints are satisfied. Basic tools used for this procedure is local search and its variants. Recently,
this approach has been found to be very effective, particularly for large scale problems (10, 12, 14, 15].

It should be noted at this point that a repair type approach may fail to find a feasible solution
even if one exists, and cannot tell the fact if there exists no feasible solution. However, since CSP
is NP-complete (implying its intractability if exact solutions are needed), approximate or heuristic
methods which can find feasible solutions (or those satisfying most of the constraints) in reasonable
computation time are of great practical value. For such purposes, the repair type approach is better
suited because assignments to all variables, which satisfy most of the constraints, are usually available
even if the computation is cut off before normal termination.

This paper also pursues the same direction, and use the tabu search as a basic wheel to carry out
the repairing process. Tabu search is a metaheuristic method that has been proved successful in solving
many practical optimization problems 7, 8]. It consists of such building blocks as neighborhood, short
term memory (tabu list), long term memory, aspiration criteria, and criteria for diversification and/or
strategic oscillation.

To evaluate the performance of our approach, we tested various combinatorial problems such as
graph coloring, block designs, generalized assignment, set covering, timetabling, and nurse scheduling.
The tabu search based CSP algorithm developed in this paper turned out to be reasonably effective
to all these problems, even though it is still a preliminary version, indicating that the combination
of CSP and tabu search is a right choice as a general problem solver of this kind. In this paper, we
report some computational results of graph coloring, timetabling, and nurse scheduling.

2 Formulation of CSP

The CSP is formally defined by (V, D, C) [4, 12, 15]: V is a finite set of variables {X1, Xo,- -+, X},
D is a set of the corresponding domains {D1, Ds, - - -, Dy}, where D; is a finite domain of variable X,
and C is a finite set of constraints {C1,C,- -+, C,}, where each constraint is defined by

Ci(X1y, Xy, -+, X1,,) € Diy X Dy X -+ x Dy, ,

that is, a set of all the legal #;-tuples on variables Xy, aXl:,- Throughout this paper, we assume for
simplicity that

Dy=---=D, =D,

and that [D| = d. A feasible solution of an instance of CSP is an assignment of exactly one value
in D to each variable X;,7 = 1,2,---,n such that all constraints C;,Cs, - - -, C, are satisfied. In this
paper, we are mainly interested in finding one feasible solution (or a solution satisfying most of the
constraints), even if there may be many feasible solutions.

Let us introduce a value-variable z;; for each variable-value pair such that

1, if variable X; takes value j (€ D),
Tij = (1)

0, otherwise.

There are }7i; |D;| = dn value-variables. With these value-variables, an assignment to all variables
X; can be represented by a dn dimensional 0-1 vector & = (zij |1 =1,2,--+,n, j € D). For example,

13

if V= {X3,X2,X3,X4} and D = {1,2,3}, an assignment (X; « 2,Xy « 1,X;5 « 1, Xy « 3)
is represented by a 0-1 vector & = (010/100/100/001). In this formulation, we always assume the

constraints,

injzl, i=1,2,~--,n, (2)
JjeD
so that all variables X; are respectively assigned exactly one value. We shall always consider constraints
(2) implicitly in our tabu search algorithm (i.e, the search is restricted only to these solutions satisfying
(2)).

At this point, we note that each constraint C; can be described in different ways. In this paper,
we take a view that the basic tool to represent a constraint Cj is a set of linear inequalities, since any
constraint C; can always be represented in this way, and we know from the experience in operations
research that such formulations are usually very efficient to represent various constraints arising in
practical problems. For example, the constraint that at most (resp., at least) K variables X; in set
V'(C V) must take a value j is given by

Z zi; < K resp., Z -z;; < —K |, J €D,
X;ev! X; eV’

the constraint that any two variables X; , X;, in set V"(C V) must take different values is given by

> oz <1, JE€D,
X;ev!

and the constraint that the total cost must be less than ¢y, when the cost coefficient of z;; is ¢;;, is
given by

Zcijﬂfzj < ¢g.
i!j

In this paper, we assume that an instance of CSP is described by the following inequalities of 0-1
variables:

Zahija:ij < bha h = 1,2,"'771,
i 3)
z;j =0 or 1, 1=1,2,---,n, j€D,

in addition to constraint (2) of the value-variables. Our goal is to find a feasible 0-1 vector « € {0, 1}dn
that satisfies all these constraints.
3 Basic implementation of tabu search

During the entire search process, we assume that constraint (2) is always satisfied; i.e., we consider

only the following search space X* of value-variables:

X*=¢ x| > ay=1 i=12,---,n,. (4)
JED

14

Starting with an initial solution & € X*, we repeat modifying & so that the number of violated
constraints (or conflicts) may decrease. For this, we introduce the penalty function p(x) defined by

p@) = 3" wiph(a), (5)
h=1

where

pa(x) = max [) apijzi; — by, 0,
i’j
and wp, > 0 is a weight given to constraint 3, ; anijz; < bp.
Function p satisfies p(x) = 0 if and only if = is a feasible solution of the given CSP instance. In

other words, we treat CSP as a minimization problem:

minimize p(x) (6)

subject to x € X*.
Determination of appropriate weights wy, of inequalities is an important issue, because the performance
of the search highly depends on them. Furthermore, when the optimal value is not 0 (i.e. the CSP has
no feasible solution), we may want to find an acceptable solution that violates only a small number of
less important inequalities. In this case, the resulting solution is obviously influenced by such weights,
and we may have to tune them carefully so that satisfactory results may be reached.

We next describe the neighborhood N(x) used in our implementation of tabu search. Let @(z;; «

1) denote the solution obtained from « by changing z;; from 0 to 1 (which then incurs the change
x;5 < 0 for the value-variable z;; that currently satisfies z;;; = 1, as a result of the constraint
x € X*). N(x) denotes the set of solutions obtained by such modifications, i.e.

N(x)={x(xij<—1)‘| 25 =0, i=1,2,--,n, j € D}, (7)

where |N(x)| = (d —1)n holds. In each iteration k of tabu search, the current solution z(*) is replaced
by @ +1) = (*)(z;.;» « 1), which is the best solution in N(z®)) \ 7T in the sense that

p(e® (@sse = 1)) <p (2P (zi; 1)) for all 2®)(z;; — 1) € N(@®)\ T. (8)

In this case, we say that &(**1) is obtained from *) by a move T — 1.

The above set T in (8) is called a tabu list (or short term memory). Let ¢t = |T'|, which is a program
parameter called tabu tenure. Tabu list T stores t solutions obtainable from the current solution z(F)
by reversing the moves chosen in the most recent ¢ iterations. The idea of T is to suppress a move
that brings the current solution z(¥) back to a solution that was recently tested, whereby preventing
a cycling over a small set of solutions. Although not explicitly stated in the above, we incorporate an
additional rule in our implementation that if x;; < 1 is the move used in the k-th iteration, no move
z;5 < 1 is allowed in the next iteration for the same 1.

As a standard equipment of tabu search, we also maintain an array LTM of long term memory,
where LT M (x;;) records the number of times the move z;; « 1 has been chosen. To include the
effect of LTM in the choice of moves, we modify the selection rule (8) as follows: Choose 1) =
m(k)(xi*j* — 1) € N(z®)) \ T such that

15

p(2®(zis- — 1)) + aLTM(zirjr) < p (20255 — 1)) + LT M (ay5),

(9)
for all m(k)(mij —1)€ N(m(k)) \T,

where a > 0 is also a program parameter. The incorporation of LT'M makes the selection of z;; « 1
difficult if the move z;; < 1 has been used frequently in the past iterations.

The aspiration criteria is also incorporated in our code; i.e., if a tested solution w(k)(:z:ij —1)is
better than the currently best solution found so far (in the sense of having a smaller penalty), it is
selected as (1) even if it belongs to T

Before proceeding further, we briefly mention some implementation issues of the above algorithm.
First, since the m x dn coefficient matrix A = (ap;;) of (3) is usually sparse for large-scale applications,
we keep only nonzero elements in the form of linked lists, in which pointers are constructed so that
the nonzero coefficients can be retrieved efficiently both column-wise and row-wise. Using this data

structure, the difference
Apa®)(zy; — 1) = p(a® (zi; — 1)) — p(=V) | (10)

can be computed only by looking at relevant nonzero coefficients, and, from this information, the move
xi«j« «— 1 of (9) can be efficiently determined.

To make the references to T efficient, instead of keeping t solutions in T explicitly, we implement
T in the form of an array such that component T'(z;;) keeps the iteration number k at which the move
z;j < 0 has occurred most recently. In this way, the condition whether @(z;; < 1) € T or not can be
checked in constant time. ‘

'All the algorithms in this paper are coded in C, and run on Sun SPARC classic 4/15 (59.1MIPS,
4.6 MFLOPS).

Graph coloring problem. We first apply the above tabu search algorithm to the graph coloring
problem (GCP). GCP is the problem to assign a color to each vertex of a given undirected graph
G(V, E), so that every pair of adjacent vertices gets different colors. To handle GCP in the framework
of CSP, we consider GCP as a decision problem that asks whether k colors are sufficient or not. The
GCP can be formulated as CSP by introducing variables X; corresponding to vertices i = 1,2,---,n,
domain D = {1,2,---, k} representing possible colors, and value-variables x;; such that

1, if vertex ¢ gets color j,
Ty =
Y 0, otherwise.

Then constraint Cy(X;,, X;,) is prepared for each edge (i1,i2) € E by
Tij + Tiny <1, j€D.

Therefore, in this formulation, there are k|V| = kn value-variables and m = k|E| inequalities (in
addition to those in X™* of (4)). ,
To see the performance of our tabu search algorithm, some of the DIMACS benchmarks are tested
by solving each problem instance ten times. In each run, we set the maximum computational time as
600 seconds. If a feasible solution is found before 600 seconds, it is considered a success; otherwise a
failure. The computational results are shown in Table 1, where k is set to the number of colors obtained
by the approximate graph coloring algorithm developed by Goto [9], and ¢ is a tabu tenure |T'|. For all

16

instances, a program parameter « is set to 0.01. This approximate algorithm performs very well and
usually gives better k than other well known heuristic coloring algorithms such as DSATUR [1] and
COSINE [11], though it usually consumes more computation time (it is an O(n?) time algorithm).
The column “success rate” denotes the number of success runs (out of 10), and column “CPU time”
denotes the average CPU time (in seconds) of one run. It is observed that our CSP algorithm is about
1.5 - 9 times slower than the above heuristic graph coloring algorithm [9]. However, in view of that our
algorithm is general purpose and use many value-variables for its formulation (the program of Goto
[9] uses only n variables), the results may be considered encouraging because our algorithm could find
solutions of the same quality with high probability (except for a few instances).

Table 1: Computational results for DIMACS benchmarks of the graph coloring problem (GCP).

instances |V |E| optimum! k ¢ success rate CPU time
mulsol.i.l.col 197 3925 — 49 20 10/10 35.0
mulsol.i.2.col 188 3885 — 31 20 10/10 18.4
mulsol.i.3.col 184 3916 — 31 20 10/10 18.4
mulsol.i4.col 185 3946 — 31 20 10/10 18.6
mulsol.i.5.col 186 3973 - — 31 20 10/10 18.8
zeroin.i.l.col 211 4100 — 49 20 10/10 36.6
zeroin.i.2.col 211 3541 — 30 20 10/10 16.8
zeroin.i.3.col 206 3540 — 30 20 10/10 16.6
le450_5a.col 450 5714 5 5 30 9/10 277.8
le450_5b.col 450 5734 5 30 4/10 415.2
le450_5c.col 450 9803 5 5 30 10/10 73.3
le450_5d.col 450 9757 5 5 30 10/10 102.2
le450_15a.col 450 8168 15 17 30 10/10 161.3
le450.15b.col 450 8169 15 17 30 10/10 161.7
le450_15c.col 450 16680 15 19 30 0/10 600
le450_15d.col 450 16750 15 19 30 0/10 600
le450_25a.col 450 8260 25 25 30 10/10 81.7
le450_25b.col 450 8263 25 25 30 10/10 70.2
le450_25c.col 450 17343 25 28 30 1/10 583.8
le450_25d.col 450 17425 25 29 30 6/10 393.6

1. The minimum number of colors needed; ‘—’ means that the optimal

value is not known.

4 Problems from real applications

As emphasized in the introduction, our CSP code is designed as a general purpose problem solver.
From this view point, it is important to test it against a wide variety of problems encountered in

17

practical applications. We are currently collecting problem data from real world applications. Here,
we report the results of two case studies on timetabling at a high school and nurse scheduling in a
hospital.

Timetabling. The data is taken from a real high school located in the suburb of Tokyo. This
high school has 30 classes, 60 teachers, 30 classrooms and 3 rooms designed for some special subjects
(such as painting and cooking). There are a total of 780 lectures, each of which is defined by its
subject, class and teacher, and 13 meetings, each of which is defined by a set of teachers to attend.
All of these lectures and meetings must be assigned to 34 periods in a week (6 periods a day from
Monday through Friday, and 4 periods in Saturday morning) under various constraints to be described
shortly. To formulate this problem as CSP, we introduce n = 780+ 13 = 793 variables X; and domain
D = {1,2,---,34} corresponding to the periods in a week; i.e., there are 793 x 34 = 26962 value-
variables z;;. ‘

There are a large number of constraints to be satisfied. Some of them are common to all timetabling
problems, but others reflect special requirements from subjects, teachers and classes. We list here part

of such constraints:
e Each lecture or meeting is assigned to exactly one period.
° Eacﬂ class receives at most one lecture in each period.
e Each teacher has at most one lecture or meeting in each period.
e FEach special room receives at most one lecture of the corresponding subject in each period.

e For each class, each teacher and each special room, there may be some periods which have
already been scheduled, or which must not be assigned for some reason. (In other words, the
corresponding value-variables are fixed beforehand.)

e For each teacher, the number of lectures and meetings in a day must not exceed a given upper

bound (which is typically 4).
e Some lectures must be assigned to successive periods on the same day.
e Some lectures of similar subjects must not be scheduled on the same day.

These constraints are described by 12747 linear inequalities.

We ran our tabu search algorithm with 50 minutes upper bound on computational time, using
t = 15 and « = 0.01, and could find a solution that satisfies all constraints except one. By analyzing
the violated constraint and the related ones, however, we could show that it is not possible to satisfy
all constraints. Hence the solution found by our tabu search turned out to be best possible.

There are a number of papers on timetabling such as [2, 3, 16]. Among these, [3] contains com-
putational results on large scale instances with similar side constraints, which are also taken from an
existing high school. Although it is difficult to make precise comparison, our CSP algorithm appears
to be as good as this special purpose algorithm in [3].

Nurse scheduling. The nurse scheduling problem is also discussed in various papers (e.g., [13]).
In this problem, each nurse must be assigned every day one of the five alternatives: day shift, evening

18

shift, night shift, scheduled meeting and day off. Our example, which is based on the real data in a
hospital in Tokyo, has 25 nurses. To make a schedule of these nurses on 30 days (one month), CSP
formulation has 25 x 30 = 750 variables X; and domain D = {day shift, ..., day off} with d = 5; hence
750 x 5 = 3750 value-variables z;;. This problem also has many constraints, some of which are quite
complicated. We list here some representative ones.

e The nurses are divided into two teams A and B, where team A has 13 nurses and team B has
12 nurses. Among 25 nurses, 6 in A and 5 in B are regarded as leaders, respectively.

e In each shift of each day, the predetermined numbers of nurses and leaders (which vary depending
on the days) must be selected evenly from the two teams (more precisely at least min{4, |k/2]}
members must be selected from A and B respectively, if the total size is k). Typically, a day
shift consists of 10 nurses, among which 4 nurses are leaders, an evening shift requires 4 nurses
including 2 leaders, and a night shift requires 3 nurses including 2 leaders.

e Each nurse may have some days which have already been scheduled (e.g., scheduled meetings
and days off).

e The numbers of day shifts, evening shifts, night shifts, scheduled meetings and days off assigned
to each nurse during 30 days must be within their lower and upper bounds, respectively.

e Each nurse must get day shift and day off at least once a week, respectively. The pattern of (day
off, duty, day off) should be avoided.

e The following severe patterns must be avoided: (i) 3 successive night shifts, (ii) 4 successive
evening shifts, (iii) 5 successive day shifts, (iv) day shift, evening shift or meeting after a night
shift, (v) day shift or meeting after an evening shift. '

e An isolated night shift must be avoided (i.e., we need two successive night shifts). After a series
of night shifts is over, the next night shift should be avoided for at least 6 days.

The resulting formulation has 9731 inequalities to describe the above and other constraints. It turns
out, however, that there are some conflicting constraints which make a solution satisfying all con-
straints impossible to exist. Therefore, we are asked to achieve certain compromise among constraints,
by taking into account the fact that some constraints are not very rigid and can be ignored if there is
other compensation. In our computation, we set our target to minimize the number of day shifts which
do not have the required number of leaders, under the condition that all the important constraints
are satisfied (but some of the constraints of less importance may be violated). To achieve this, we
introduced weights wy, of (5) to all inequalities and manually controlled them so that the target can
be achieved smoothly.

We ran our CSP algorithm several times, consuming 30 minutes each time, and could find a number
of acceptable solutions, where we used t = 35 and « = 0.001. An example is illustrated in Figure 1. In
this schedule, the numbers of leaders on day shifts are not sufficient for 6 days, the numbers of nurses
on day shifts are not sufficient for 2 days, and there are the following additional violations:

o Nurse 1 does not have the required interval of 6 days between the night shift on day 19 and the
night shift on day 25. -

19

e Nurse 2 has an isolated night shift on day 8.
e Nurse 2 has a pattern of three successive night shifts from day 20 to day 22.

e Nurse 17 has a day shift after the night shift on day 10.

5 Conclusion and discussion

We developed in this paper a tabu search algorithm for CSP in order to use it as a general problem
solver. Judging from the computational results for the problems chosen from a wide variety of appli-
cations, our CSP algorithm appears to be competitive with special purpose algorithms devéloped in
the respective domains.

However, the algorithm contains some program parameters, such as tabu tenure t, weights o of the
long term memory, and weights wy, to constraints, all of which must be adjusted beforehand (usually
by preliminary experiment) to attain its maximum efficiency. To make our algorithm more easily
usable, it would be important to establish a guide line for adjusting such parameters, or preferably,
to develop some automatic mechanism for that purpose.

As our project is still on-going, we plan to increase its power and applicability by further elabora-
tion. Toward this goal, the following points may deserve consideration:

1. More sophisticated elements of tabu search, such as strategic oscillation, path relinking and

target analysis, may be worthwhile to include.

2. Incorporation of neighborhoods other than N () may also be useful. Flexible choices of neighbor-
hood structures will enlarge the applicability of our algorithm, but at the same time necessitate
establishment of a rule of choosing an appropriate neighborhood from many possibilities.

3. Most of the problems tested in this paper are combinatorial in the sense that all the coefficients
ani; in constraints (3) are 0 or +1. However, our algorithm may not be very effective for the
problems with general ap;;. To overcome this, it appears necessary to exploit mathematical pro-
gramming techniques (e.g., linear programming) in order to extract global structural information
of the entire feasible region and to use it in the search process.

4. To make the system easily accessible from many users, it should be equipped with a friendly
interface so that the user can easily input his/her problem in the CSP form and execute the
CSP algorithm effectively. Development of such an interface is an important future project.

Acknowledgments

We appreciate M. Watanabe and K. Kaneko of C & C Research Laboratories, NEC Corporation for the
data of timetabling in Section 4, and A. Ikegami of Seikei University for the data of nurse scheduling
also in Section 4. This research was partially supported by the Scientific Grant in Aid by the Ministry
of Education, Science and Culture of Japan.

20

days
nurses 1 2 3 4 5 6 7 8 9101112131415161718192021222324 252627282930

~ I~ I~~~ 1 ll~11
o~~~ 1~ 1mmn 1
P~ 1 0 W~10 1 1 ~1>"1
~ o~~~
Mo~~~ 11 1 ~1 11 I~
M~~~ 1~ 1 1 I I~
~ 1 L I~ 1t 1 ~1 1>
B~ 1~ 1 1~ 1t~
P~~~ 11 1t 1 1
~ o~~~ 11
~ w4+ 1 e~~~
B o~~~ 11 1 | 1 /Il ~
] I [I N
o~ 1 b~~~ 1t 11 I~ 11
~ W~~~ +++
o~~~ 1 mn~111
Ao~~~ r~mtrnrr~
P~ b~~~
P~~~ 1 | ~~ 11 W
~ I P~ 1 WM I~ ~1 I -
M~ 11 I~ 1~
M~ 1 1 1 0~~~
T~~~ 1 Il ~1
o~~~ 1 I~ 1 ~4
~ M~ 1 ~S~~

b b~ 4t~ 1 1~ 111

o~~~ 1~ 1 11
P~ 10 b~~~

_
_//___:_/___/___
~ P~ I~ ~+4+ 1~

* %X Kk X ¥ ¥
O = AN Mm
1234567891111

<

P~ 4+ +++ 10
P~~~ 1~~~
P~~~ I~ 1 ~111
~ M 1t i~
~ 1 1~~~
| e N [B B
M~~~ 1 I ~ 1 1~ 11
I | 1y BN T I [
~ W~~~
o~~~ 1 ¢~ 1 1umn
ol ~~+~ 1 1 | ~ 1 il
B~~~ ~~
P~ W~~~ 11t
~ 0 P~~~ 11 ~1W
~ b 1w+~~~
Mo~~~ 1 ~ 01 &I~ 111
M~ 1~ F~~ 1111
FIE+ 4+ b~~~
~ I~ I~ 11t 1~
~ bt~ 1 ~1 11
+ i~~~
bW~ 1~
b~ W~
~>~ 1~ 4+t Wi
T~ 1~

~~ 1 I I~~~ 11
e~ 1 1 0 1~~~
P~~~ 1~ 1 1~
o~~~ 11m1

14*
15*

*_ %
© -
Lan B o

18*

OO = NN
AN ANANANNA

m

0 H M ©
S <+ moow
S o ow
S ¢ <o~
St ow
D Mmoo
S o w
D ow
S <+t m o oo
ST R
o+ MmN
S o ow
S v wmwo o
S <+ m o
W M W ©
S <+ < o~
S ¢ moow
I~ < o ™ 00
St mow
St mow
00 W +H N b~
D PO,
S v mow
00 < H N P~
S oo ow
S tmow
S o ow
S <+ moow
S < mow
00 H M N

L+~

total

—: day shift

: evening shift
night shift
+: meeting
/ : day off

* . leader

Figure 1: A schedule of 25 nurses on 30 days.

21

References

[1]

2]

8l

[4]

[5]

[13]

[14]

[15]

[16]

Brélaz, D., “New methods to color the vertices of a graph”, Communications of the ACM 22
(1979) 251-256.

Carter, M.W., Laporte, G., and Lee, S.Y., “Examination timetabling: algorithmic strategies and
applications”, Journal of the Operational Research Society 47 (1996) 373-383.

Costa, D., “A tabu search algorithm for computing an operational timetable”, European Journal
of Operational Research 76 (1994) 98-110.

Decher, R., and Pearl, J., “Network-based heuristics for constraint-satisfaction problems”, Arti-
ficial Intelligence 34 (1988) 1-38.

Freuder, E.C., “A sufficient condition for backtrack-free search”, Journal of the Association for
computing Machinery 29 (1982) 24-32.

Freuder, E.C., “Complexity of K-tree structured constraint satisfaction problems”, Proceedings
of the Ninth National Conference on Artificial Intelligence (AAAI) (1990) 4-9.

Glover, F., “Tabu search - Part I, ORSA Journal on Computing 1 (1989) 190-206.

Glover, F., “Tabu search fundamentals and uses”, Technical Report, University of Colorado
(1995).

Goto, M., “An approximate algorithm for the graph coloring problem”, Graduation thesis, De-
partment of Applied Mathematics and Physics, Kyoto University (1993).

Gu, J., “Local search for satisfiability (SAT) problem”, IEEE Transactions on Systems, Man,
and Cybernetics 23 (1993) 1108-1129.

Hertz, A., “COSINE: A new graph coloring algorithm”, Operations Research Letters 10 (1991)
411-415.

Minton, S., Johnston, M.D., Philips, A.B., and Laird, P., “Minimizing conflicts: a heuristic repair
method for constraint satisfaction and scheduling problems”, Artificial Intelligence 58 (1992) 166-
205.

Randhawa, S.U., and Sitompul, D, “A heuristic-based computerized nurse scheduling system”,
Computers and Operations Research 20 (1993) 837-844.

Selman, B., Levesque, H., and Mitchell, D., “A new method for solving hard satisfiability
problems”, Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI) (1992)
440-446.

Tsang, E., Foundations of constraint satisfaction, Academic Press, London, 1993.

Wright, M., “School timetabling using heuristic search”, Journal of the Operational Research
Society 47 (1996) 347-357.

