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Duality Theorems on an Infinite Network

X UNA LR Werner Oettli
BARKRZE  |LIGHRT (Maretsugu Yamasaki)

1 Introduction and Preliminaries

Let N = {X,Y, K} be an infinite network which is locally finite and has no self-loops. Here
X is the countable set of nodes, Y is the countable set of arcs, K : X x Y s {—1,0,+1}
is the node-arc incidence matrix. Local finiteness means that K(z, -) has finite support in
Y for every z € X.

We denote by X the set of all real-valued functions on X, and by X* the set of all
real-valued functions on X with finite support. Likewise we denote by ' the set of all
real-valued functions on Y, and by Y* the set of all real-valued functions on Y with finite
support. For each w € ), the divergence dw € X is defined as

duz) =Y K(z,y)u(y).
For each u € X, the discrete derivative du € Y is defined as
du(y) =) . K(z,y)u(z) = u(b(y)) — u(a(y)),

where a(y) is the initial node and b(y) is the terminal node of arc y. Clearly, if w € }*,
then 0w € X*, and if u € X*, then du € Y*, since N is locally finite.
For wy, w, € Y with either w; or uy in Y*, we define the inner product

<wiwp >i=3 0 wi(y)wa(y).
For u,v € X with either u or v in X*, we define the inner product
(0) =Y u(z)o(a).
Note that the fundamental formula
((u, 0w)) =< du,w >
holds if v € X* or w € Y*.
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The space X can be identified with the product space R*, and therefore can be given
the product topology of RX. As usual, we call this the weak topology on X. It is the
topology of pointwise convergence, i.e., a sequence {£,} in X converges weakly to some
£ € X if and only if §,(z) — &(z) for all z € X. If X is given the weak topology, then X*
becomes the topological dual of X, which means that the continuous linear functionals on
X are precisely those of the form < u,- > with v € X*. Henceforth, without exception,
X will bear the weak topology. Likewise ) will always bear the weak topology, so that Y*
becomes the topological dual of ). We observe that the mappings w +—— 0w and u — du
are continuous, if X and ) carry the weak topology. This follows from the fact that K (z, -)
and K( -, y) have finite support.

2 Weak Duality

Let F,G: Y —— R U {400} be two convex, weakly lower semicontinuous functions which
are mutually conjugate in the following sense:
For every w; € Y*,

G(wy) = sup{< w1, w > —F(w);w € Y}, (2.7)
and for every wy € V¥,
F ) = sup{< w,w, > —G(w);w € V}. (2:2)
From (2.1) and (2.2) it follows that
< wy,we >< G(w) + F(we) (2.3)

for all wy,ws in Y with either w; or wy in Y*.

‘Now let X; and X, be two disjoint subsets X such that X = X; UX,. Let f1, f2 € X be
given such that the support of f; is contained in X; and the support of f, is contained in
X;. In order to introduce dual pairs of optimization problems on the network N we deﬁne
a primal objective function £ : Y —— R U {+co} as

E(w) := F(w) — ((f1,0w)) forall we),
and we define a dual objective function E* : X —— R U {+oo} as

E* (w) == —G(du) + ((u, ) for all u e X.
In order to make E well-defined we shall émploy the following hypothesis:
(E.1) fre &~
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In order to make E* well-defined we shall employ the following hypothesis:
(B2) f2 € X",

However, if E is restricted to Y*, then (E.1) is not needed, and if E* is restricted to
X*, then (E.2) is not needed. The functions £ and —E* are convex and weakly lower
semicontinuous, with values in R U {+o0}.

If we Yis aflowon the arcs y € Y, then F(w) may be considered as a generalized
energy of w. And if u € X is a potential on the nodes = € X, then G(du) may be considered
as a generalized Dirichlet sum of u.

We consider two pairs of optimization problems as follows:

To the primal problem

(P) inf{E(w);w € ¥, 0w(z) = fo(z) on X5}
we associate the dual problem

(Do) sup{E*(u);u € X*,u(z) = f1(z) on X;}.
And to the primal problem

(R) inf{ E(w); w € Y*,0w(z) = f2(x) on X3}
we associate the dual problem

(D) sup{E* (u);u € X,u(z) = fi(z) on X1}

We adopt the convention that the infimum over the empty set equals +o0o, and the supre-
mum over the empty set equals —co. Obviously the only difference between (P) and (P)
and between (D) and (Dj) consists in the underlying spaces. In case N is a finite network,
a similar problem was treated in [1], p. 162.

Henceforth we denote by V(P),V(Dy), V(R), V(D) the optimal values of the problems
(P), (Do), (Fy), (D) respectively. We shall study duality relations between (P) and (Do)

and between (Fp) and (D), and describe an application of our results to the potential theory
on locally finite networks.

We have the following weak duality result:

Theorem 2.1 (1) Assume that (E.1) holds. Then V(P) > V(D).
(2) Assume that (E.2) holds. Then V(Fp) > V(D).

Proof. (1) The claim is obviously true, if (P) or (Dy) have no feasible solutions. So let w
and u be feasible solutions for (P) and (Dp) respectively. Then
E(w) - E'(w) = F(w)+G(du) — ((f1,0w)) — ((u, )
F(w) + G(du) — ((u, Ow))
F(w) + G(du)— < du,w >
0,

I
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from (2.3), since v € X*. Thus E(w) > E*(u) for all feasible w and u, which implies
V(P) > V(Dy). The proof of (2) is similar. O

From (E.1) it follows that problem (Dp) has a feasible solution, i.e., there exists u € X*
such that u = f; on X;. Likewise we have

Proposition 2.1 Assume that (E.2) holds and that X; # 0. Then problem (Fp) has a
feasible solution, i.e., there exists w € Y* such that Ow(x) = fa(z) on Xs. '

Proof. Fix zg € X;. For every a € X, select a finite path p, € Y* from zy to a, i.e., p, is
the path index of a path from zy to a (cf. [6]). Then p, is a unit flow from z; to q, i.e.,
Opa(a) = +1, Opa(zo) = —1 and Op,(z) = O for all other z. Let us consider

w(y) =Y . f2(a)pa(y)-

Then w(y) is well-defined, since f> has finite support in Xz, and it is easily seen that w has
the requested properties. O

For later use we denote by € 4 the characteristic function of asubset A C X, i.e.,e4(z) =1
for z € Aand egq(z) =0 for z € X \ A

3 A General Duality Theorem

Our main tool will be a general duality result studied in [5](cf. [4]). We prepare it below
for the sake of completeness.

Let U be a real vector space, let Z be a locally convex topological vector space, and let
W be the topological dual of Z. Let ¢ : Y — RU {+c0} and ¥ : Z - R U {—o0} be
given. Let C be a nonempty subset of U/ and @ be a nonempty subset of Z. Let T be a
transformation from Y/ into Z.

Let us consider the following general extremum problem (V) and its dual problem (V*):

V) V = inf{p(§) —¥(T€);§ € C, T € Q},
v*) V* = sup{y*({) — r(¢); ¢ € W},
where

Y*(¢) = inf{¢(n) —v(n);neqQ},
or(¢) = sup{{(T€) —p(§);€ € C}.

It is always true that V' > V*. We have by [5]
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Theorem 3.1 Assume that the set

E:={(2,8) € ZxR;z2=n—-T¢E s > (&) —9¥(n),£ € C,neQ}

13 convex and closed in Z x R. If V s finite, then V = V* holds and there exists £ € C
such that T¢ € Q and V = @(§) — y(T€).

Proof. Clearly, V = inf{s;(0,s) € £}. Let V be finite. Then (0,V) € &, since £ is
closed, and this gives the existence of £ € C' with the claimed property. In order to prove
V <V* lett < V. Then (0,t) ¢ £. Hence from the strong separation theorem there exists
(¢,7) € W x R such that

CO)+ 7t <{(2)+T1s V(z,s) €€. (3.1)

Since (0,V +r) € £ for all r > 0, we obtain from (3.1) that 7 > 0. Dividing (3.1) by 7 and
rewriting /7 as (, we obtain

t<((z) +s V(z,3)€E,
hence in particular

t <((n—TE) + (&) —¥(n)

for all £ € C, n € Q, and therefore t < ¥*({) — ¢4(n) < V*. Since t < V was arbitrary, we
obtain V < V*. O

4 Duality between (P) and (D)

We are going to derive the strong duality relation V(P) = V(Dp) from Theorem 3.1. We
assume (E.1) and specify the data of Theorem 3.1 as follows:
U=Y,Z=E W =X5C:=),Q:={n€eX;n=faon Xu};
T¢:=0¢, (&) =F(&), ()= (fun), <m):=(n0)

forall { € Y,ne€ X,{ € X*. Then we have for all £ € Y

¢(§) — ¥(T€) = F(§) — ((f1,08)) = E(§).
Therefore V = V(P). For all { € X* we have

er(Q) = sup{((¢,06)) — F(£);£ € C}

sup{< d(,§ > —F(£);€ € Y} = G(dC),
inf{((¢ — f1,m);n € Q}

inf{((¢ — f1,mex, +mex,));n € Q}
(¢, f2)) + inf{(({ — f1,mEx,)); m € Q).

Il

¥*(0)

I
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Therefore ¥*(¢) = ((¢, f2)) if { — fi = 0 on Xj, and ¥*({) = —oo otherwise. Thus
V* = V(D).
In order to apply Theorem 3.1 we need another hypothesis:

(H.1) The level sets {£ € ); F(&)% <w, £ ><a} (a€R)

are weakly compact in Y for all w € Y*.

Theorem 4.1 Assume that (E.1) holds, that V(P) is finite and that (H.1) is satisfied.
Then V(P) = V(Dy) and problem (P) has an optimal solution.

Proof. The result follows from Theorem 3.1. We only have to show that the convex set

E={(z,5) € X x R;z=1n— 03,5 > (&) —¢¥(n),§ € C,n € Q}

is closed in X x R, where X bears the weak topology. Since the set X of nodes is countable,
X is a metrizable space under the weak topology (cf. [2], p. 32). Therefore the weak
closedness in X means the sequential weak closedness (cf. [2], p. 20). Thus we have to
show that £ is sequentially closed. Let {(z,,sn)} be a sequence in £ such that z, — 2
pointwise and s, — 5 in R. There exist &, € C and 7, € Q such that 2z, = n, — 0&,,
sn 2 F(&) — ((f1,7m))- Then

80 = F(&) — ((f1,0 + 20))
= F(&)— <dfi,6 > —((f1,2))-

Because of (E.1), {((f1,2.))} converges to ((f1, Z)). Thus the sequence {((f1,2,))} remains
bounded. Since {s,} is also bounded, we see that the sequence {F(&.)— < dfi,&, >} is
bounded from above. Thus, because of (H.1), all &, are contained in a weakly compact
subset of Y. Since the set Y of arcs is countable, ) is metrizable under the weak topology.
Hence the weak compactness of a closed set in )) means the sequential weak compactness (cf.
[2], p- 21). So, by choosing a subsequence if necessary, we may assume that {£,} converges
pointwise to some £ € C. Then 8¢, — O£ pointwise, and 1, = 0, + zn = = +Z € Q
pointwise. Thus zZ = j—0€ and 5 > F(€)—((f1, 7)), since F' is weakly lower semicontinuous.
Thus (z,5) € £, and £ is closed. O ’

5 Duality between (F,) and (D) |

Now we are going to derive the duality relation V(R) = V(D). We assume (E.2) and
specify the data of Theorem 3.1 as follows: '
U=X,Z=Y W =Y5C={e€X;{=fion X;1},Q =)

T¢ = d§, ¢(n) == —G(n), v(§) := —((§, f2)), ¢(n) == — < n,{ >
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forallé e X,ne Y, (€Y.
Then for all £ € X there holds

(&) — () = —((§, f2)) + G(dE) = —E*(§).
Therefore V = —V(D). For all { € Y* there holds
¥*(Q) = inf{—<n,{>+G(n);neQ}=—-F(),
or(Q) = sup{— <d§,{>+((§ f2);§ € CY

= sup{((§, —0¢ + f2)); £ € C}
= sup{(({ex,, —0C + f2));§ € C} — ((f1,0()).

Therefore ¢3.(¢) = —((f1,0()) if —0¢ + fo = 0 on X5, and ¢i(¢) = +oo otherwise. Hence
P*(¢) —1r(¢) = —E() for all { € Y* which are feasible for (P), and ¥*({) — p5(¢) = —co
otherwise. Thus V* = —V(FR). /

We prepare

Proposition 5.1 Let {{,} C X, and let a € X. If {d¢,} converges pointwise and if
{&n(a)} converges, then {£,} converges pointwise to some ¢ € X.

Proof. For every z € X select a finite path p, € Y* from a to z. Then
< d&a, Pz >= ((§n, Opz)) = &n(z) — &nla).

Since {< d&,,ps >} converges and {£.(a)} converges, {£,(z)} converges, too. Since this
holds for every z € X, {£{,} converges pointwise to some £ € X. O
We further introduce the following hypothesis:

(H.2) The level sets {n € V;G(n)— < n,w ><a} (a€R)
are weakly compact in Y for all w € Y*.

Theorem 5.1 Assume that (E.2) holds, that V(D) is finite, that X, # 0, and that (H.2)
is satisfied. Then V(Fy) = V(D) and problem (D) has an optimal solution.

Proof. This follows from Theorem 3.1. As in the proof of Theorem 4.1, we shall show
that the convex set

E={(23) €Y xR;z=n—df s> (&) —y(),E €C,neQ}

is sequencially weakly closed in Y x R.. Let {(2,, s,)} be a sequence in £ such that z, — Z
pointwise, and s, — 5. There exist &, € C and 7, € @ such that

Zpn = Mn — d{-na Sn Z _((gna f2)) + G(n‘")
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By Proposition 2.1, there exists w € Y* such that dw = f; on X5. From &, € C we obtain
then

((6n, f2)) = ((6n, Ow)) — ((f1,0w))
= < dﬁn,w > _((fla&w»
= <N —zn,w > —((f1,0w)).

Thus
Sn 2< Zp, W > +((f1,6’ll)))— < T, W > +G(77n)

Since {< zn, w >} converges to < Z,w >, we see that the sequence {— < 7., w > +G(1,)}
is bounded from above. Using hypothesis (H.2), by the same reasoing as in the proof of
Theorem 4.1, we may assume that {7,} converges pointwise to some 7j € J. Then {d¢,}

converges also pointwise to 77 — Z. Since X; # @ and &, € C, we see that &,(a) = fi(a) for

some a € X;. From Proposition 5.1 it follows that {£,} converges poitwise to some £ € C.
Then {d€.} converges pointwise to d€, so that d§ = 7j — z. Altogether we obtain that

Z=1—dE, 5> (¢ f)) +G@),

since G is weakly lower semicontinuous. Thus (z,5) € £, and £ is closed. O

6 Applications

As applications of our duality results, we obtain generalizations of some fundamental inverse
relations from [3] and [6] which play important roles in the discrete potential theory (cf.
7). ‘
We let F' and G be as before. In addition we assume that F' and G are nonnegative and
symmetric, and that G is homogeneous of degree ¢ > 1 and G is homogeneous of degree
p>1,with1/p+1/q=1.
In connection with problems (Fy) and (D) we choose fo = 0 (so that (E.2) holds), and

we assume that f, # 0 (so that X; # @). For all n € V* we let I(n) = ((f1,07n)). We
define

B = inf{pG(du);u € X, u= f; on X1}
ap = inf{qE(n);n € Y*, n=00n X, I(n) = 1}.

It is obvious that 8 > 0, ag > 0, and

V(D) = "?1;3.
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Moreover we have
V(R) = inf{F(w)—I(w);w €Y, Ow=0on Xz}
= inf{inf{| ¢t |? F(n) —t;n € V*,0n=00n Xy, I(n) = 1};t € R}
el t]?ao
= 1nf{T —_ t;t (S R}

1 _
_ __aop/q_

4
So, if V(D) is finite and # 0, the duality relation V(FP) = V(D) takes the form
BY "a(l,/ 7_ 1.
From Theorem 5.1 we obtain therefore

Corol}ary 6.1 Assume that 8 is finite and % 0, and that (H.2) is satisfied. Then
BY Pa(l) 1=1.

On the other hand, if we define
Bo = inf{pG(du);uv € X*, u= fi on Xy}
a = inf{gE(n);n €Y, dn=00n X,, I(n) =1},
then V(Dy) = —fBo/p and V(P) = —a"?/1/p. We obtain from Theorem 4.1

Corollary 6.2 Assume that (E.1) and (H.1) are satisfied, and that o is finite and # 0.
Then By/Pal/1 = 1.

From Corollary 6.1 we can obtain Theorem 5.1 in [3]. To be more specific, assume that
A is an arbitrary subset of X, and B is a nonempty subset of X which is disjoint with A.
Let us take :
X1 = AUB, X2 :X\ (AUB), f1 ‘= €&Bp, f2 = 0.

Then
1) =Y, n().
In case On = 0 on Xa, I(n) is called the strength of  on B. Let, as in [3],

dp(A,B) := inf{pG(du);u€ X, u=0onA, u=1onB}=p
dyo(A,B) = inf{qF(n);ne€ Y*,0n=00n X\ (AUB), I(n) =1} = a,.

Notice that Corollary 6.1 gives a sufficient condition for the validity of the inverse relation

(dp(A, B))'? - (dy (A, B))V = 1.
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Observe that from 77 € Y* and 9 = 0 on X \ (AU B) it follows that

ZzeB On(z) = - ZxEA on(z)-
Remark 6.1 Let r € Y be strictly positive and take F' as

F(0) == 2 3,0 r) )
Then we have .
Glw) = 2 3, oy 7 PP

Notice that pG(du) = Dj(u)(Dirichlet sum of u of order p) and qF (w) = H,(w)(the energy
of w of order g) (cf. [3]). We see that F satisfies (H.1) and that G satisfies (H.2).
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