Duality Theorems on an Infinite Network

マンハイム大学 Werner Oettli 島根大学 山崎稀嗣 (Maretsugu Yamasaki)

1 Introduction and Preliminaries

Let $N = \{X, Y, K\}$ be an infinite network which is locally finite and has no self-loops. Here X is the countable set of nodes, Y is the countable set of arcs, $K: X \times Y \longmapsto \{-1, 0, +1\}$ is the node-arc incidence matrix. Local finiteness means that $K(x, \cdot)$ has finite support in Y for every $x \in X$.

We denote by \mathcal{X} the set of all real-valued functions on X, and by \mathcal{X}^* the set of all real-valued functions on X with finite support. Likewise we denote by \mathcal{Y} the set of all real-valued functions on Y, and by \mathcal{Y}^* the set of all real-valued functions on Y with finite support. For each $w \in \mathcal{Y}$, the divergence $\partial w \in \mathcal{X}$ is defined as

$$\partial w(x) := \sum_{y \in Y} K(x, y) w(y).$$

For each $u \in \mathcal{X}$, the discrete derivative $du \in \mathcal{Y}$ is defined as

$$du(y) := \sum_{x \in X} K(x,y) u(x) = u(b(y)) - u(a(y)),$$

where a(y) is the initial node and b(y) is the terminal node of arc y. Clearly, if $w \in \mathcal{Y}^*$, then $\partial w \in \mathcal{X}^*$, and if $u \in \mathcal{X}^*$, then $du \in \mathcal{Y}^*$, since N is locally finite.

For $w_1, w_2 \in \mathcal{Y}$ with either w_1 or w_2 in \mathcal{Y}^* , we define the inner product

$$< w_1, w_2 > := \sum_{y \in Y} w_1(y) w_2(y)$$
 .

For $u, v \in \mathcal{X}$ with either u or v in \mathcal{X}^* , we define the inner product

$$((u,v)):=\sum_{x\in X}u(x)v(x).$$

Note that the fundamental formula

$$((u,\partial w))=< du,w>$$

holds if $u \in \mathcal{X}^*$ or $w \in \mathcal{Y}^*$.

The space \mathcal{X} can be identified with the product space \mathbf{R}^X , and therefore can be given the product topology of \mathbf{R}^X . As usual, we call this the weak topology on \mathcal{X} . It is the topology of pointwise convergence, i.e., a sequence $\{\xi_{\nu}\}$ in \mathcal{X} converges weakly to some $\xi \in \mathcal{X}$ if and only if $\xi_{\nu}(x) \to \xi(x)$ for all $x \in X$. If \mathcal{X} is given the weak topology, then \mathcal{X}^* becomes the topological dual of \mathcal{X} , which means that the continuous linear functionals on \mathcal{X} are precisely those of the form $\langle u, \cdot \rangle$ with $u \in \mathcal{X}^*$. Henceforth, without exception, \mathcal{X} will bear the weak topology. Likewise \mathcal{Y} will always bear the weak topology, so that \mathcal{Y}^* becomes the topological dual of \mathcal{Y} . We observe that the mappings $w \longmapsto \partial w$ and $u \longmapsto du$ are continuous, if \mathcal{X} and \mathcal{Y} carry the weak topology. This follows from the fact that $K(x, \cdot)$ and $K(\cdot, y)$ have finite support.

2 Weak Duality

Let $F, G: \mathcal{Y} \longmapsto \mathbf{R} \cup \{+\infty\}$ be two convex, weakly lower semicontinuous functions which are mutually conjugate in the following sense:

For every $w_1 \in \mathcal{Y}^*$,

$$G(w_1) = \sup\{\langle w_1, w \rangle - F(w); w \in \mathcal{Y}\}, \tag{2.1}$$

and for every $w_2 \in \mathcal{Y}^*$,

$$F(w_2) = \sup\{\langle w, w_2 \rangle - G(w); w \in \mathcal{Y}\}. \tag{2.2}$$

From (2.1) and (2.2) it follows that

$$< w_1, w_2 > \le G(w_1) + F(w_2)$$
 (2.3)

for all w_1, w_2 in \mathcal{Y} with either w_1 or w_2 in \mathcal{Y}^* .

Now let X_1 and X_2 be two disjoint subsets X such that $X = X_1 \cup X_2$. Let $f_1, f_2 \in \mathcal{X}$ be given such that the support of f_1 is contained in X_1 and the support of f_2 is contained in X_2 . In order to introduce dual pairs of optimization problems on the network N we define a primal objective function $E: \mathcal{Y} \longmapsto \mathbf{R} \cup \{+\infty\}$ as

$$E(w) := F(w) - ((f_1, \partial w)) \text{ for all } w \in \mathcal{Y},$$

and we define a dual objective function $E^*: \mathcal{X} \longmapsto \mathbf{R} \cup \{+\infty\}$ as

$$E^*(u) := -G(du) + ((u, f_2)) ext{ for all } u \in \mathcal{X}.$$

In order to make E well-defined we shall employ the following hypothesis:

$$(E.1) f_1 \in \mathcal{X}^*.$$

In order to make E^* well-defined we shall employ the following hypothesis:

$$(E.2) f_2 \in \mathcal{X}^*.$$

However, if E is restricted to \mathcal{Y}^* , then (E.1) is not needed, and if E^* is restricted to \mathcal{X}^* , then (E.2) is not needed. The functions E and $-E^*$ are convex and weakly lower semicontinuous, with values in $\mathbb{R} \cup \{+\infty\}$.

If $w \in \mathcal{Y}$ is a flow on the arcs $y \in Y$, then F(w) may be considered as a generalized energy of w. And if $u \in \mathcal{X}$ is a potential on the nodes $x \in X$, then G(du) may be considered as a generalized Dirichlet sum of u.

We consider two pairs of optimization problems as follows: To the primal problem

$$(P) \qquad \qquad \inf\{E(w); w \in \mathcal{Y}, \partial w(x) = f_2(x) \text{ on } X_2\}$$

we associate the dual problem

$$(D_0)$$
 $\sup\{E^*(u); u \in \mathcal{X}^*, u(x) = f_1(x) \text{ on } X_1\}.$

And to the primal problem

$$(P_0) \qquad \qquad \inf\{E(w); w \in \mathcal{Y}^*, \partial w(x) = f_2(x) \text{ on } X_2\}$$

we associate the dual problem

$$\sup\{E^*(u); u\in\mathcal{X}, u(x)=f_1(x) \text{ on } X_1\}.$$

We adopt the convention that the infimum over the empty set equals $+\infty$, and the supremum over the empty set equals $-\infty$. Obviously the only difference between (P) and (P_0) and between (D) and (D_0) consists in the underlying spaces. In case N is a finite network, a similar problem was treated in [1], p. 162.

Henceforth we denote by V(P), $V(D_0)$, $V(P_0)$, V(D) the optimal values of the problems (P), (D_0) , (P_0) , (D) respectively. We shall study duality relations between (P) and (D_0) and between (P_0) and (D), and describe an application of our results to the potential theory on locally finite networks.

We have the following weak duality result:

Theorem 2.1 (1) Assume that (E.1) holds. Then $V(P) \geq V(D_0)$. (2) Assume that (E.2) holds. Then $V(P_0) \geq V(D)$.

Proof. (1) The claim is obviously true, if (P) or (D_0) have no feasible solutions. So let w and u be feasible solutions for (P) and (D_0) respectively. Then

$$egin{array}{lcl} E(w) - E^*(u) & = & F(w) + G(du) - ((f_1,\partial w)) - ((u,f_2)) \ & = & F(w) + G(du) - ((u,\partial w)) \ & = & F(w) + G(du) - < du, w > \ & \geq & 0, \end{array}$$

from (2.3), since $u \in \mathcal{X}^*$. Thus $E(w) \geq E^*(u)$ for all feasible w and u, which implies $V(P) \geq V(D_0)$. The proof of (2) is similar. \square

From (E.1) it follows that problem (D_0) has a feasible solution, i.e., there exists $u \in \mathcal{X}^*$ such that $u = f_1$ on X_1 . Likewise we have

Proposition 2.1 Assume that (E.2) holds and that $X_1 \neq \emptyset$. Then problem (P_0) has a feasible solution, i.e., there exists $w \in \mathcal{Y}^*$ such that $\partial w(x) = f_2(x)$ on X_2 .

Proof. Fix $x_0 \in X_1$. For every $a \in X_2$ select a finite path $p_a \in \mathcal{Y}^*$ from x_0 to a, i.e., p_a is the path index of a path from x_0 to a (cf. [6]). Then p_a is a unit flow from x_0 to a, i.e., $\partial p_a(a) = +1$, $\partial p_a(x_0) = -1$ and $\partial p_a(x) = 0$ for all other x. Let us consider

$$w(y) := \sum_{a \in X_2} f_2(a) p_a(y).$$

Then w(y) is well-defined, since f_2 has finite support in X_2 , and it is easily seen that w has the requested properties. \square

For later use we denote by ε_A the characteristic function of a subset $A \subset X$, i.e., $\varepsilon_A(x) = 1$ for $x \in A$ and $\varepsilon_A(x) = 0$ for $x \in X \setminus A$.

3 A General Duality Theorem

Our main tool will be a general duality result studied in [5](cf. [4]). We prepare it below for the sake of completeness.

Let \mathcal{U} be a real vector space, let \mathcal{Z} be a locally convex topological vector space, and let \mathcal{W} be the topological dual of \mathcal{Z} . Let $\varphi: \mathcal{U} \to \mathbf{R} \cup \{+\infty\}$ and $\psi: \mathcal{Z} \to \mathbf{R} \cup \{-\infty\}$ be given. Let C be a nonempty subset of \mathcal{U} and Q be a nonempty subset of \mathcal{Z} . Let T be a transformation from \mathcal{U} into \mathcal{Z} .

Let us consider the following general extremum problem (V) and its dual problem (V*):

$$(V) V := \inf\{\varphi(\xi) - \psi(T\xi); \xi \in C, \ T\xi \in Q\},$$

$$(V^*) \hspace{1cm} V^* \coloneqq \sup\{\psi^*(\zeta) - arphi_T^*(\zeta); \zeta \in \mathcal{W}\},$$

where

$$\begin{array}{lcl} \psi^*(\zeta) &:=& \inf\{\zeta(\eta)-\psi(\eta); \eta \in Q\}, \\ \varphi_T^*(\zeta) &:=& \sup\{\zeta(T\xi)-\varphi(\xi); \xi \in C\}. \end{array}$$

It is always true that $V \ge V^*$. We have by [5]

Theorem 3.1 Assume that the set

$$\mathcal{E} := \{(z,s) \in \mathcal{Z} \times \mathbf{R}; z = \eta - T\xi, s \geq \varphi(\xi) - \psi(\eta), \xi \in C, \eta \in Q\}$$

is convex and closed in $\mathbb{Z} \times \mathbb{R}$. If V is finite, then $V = V^*$ holds and there exists $\xi \in C$ such that $T\xi \in Q$ and $V = \varphi(\xi) - \psi(T\xi)$.

Proof. Clearly, $V = \inf\{s; (0, s) \in \mathcal{E}\}$. Let V be finite. Then $(0, V) \in \mathcal{E}$, since \mathcal{E} is closed, and this gives the existence of $\xi \in C$ with the claimed property. In order to prove $V \leq V^*$, let t < V. Then $(0, t) \notin \mathcal{E}$. Hence from the strong separation theorem there exists $(\zeta, \tau) \in \mathcal{W} \times \mathbf{R}$ such that

$$\zeta(0) + \tau t < \zeta(z) + \tau s \quad \forall (z, s) \in \mathcal{E}.$$
 (3.1)

Since $(0, V + r) \in \mathcal{E}$ for all $r \ge 0$, we obtain from (3.1) that $\tau > 0$. Dividing (3.1) by τ and rewriting ζ/τ as ζ , we obtain

$$t \leq \zeta(z) + s \quad \forall (z,s) \in \mathcal{E},$$

hence in particular

$$t \le \zeta(\eta - T\xi) + \varphi(\xi) - \psi(\eta)$$

for all $\xi \in C$, $\eta \in Q$, and therefore $t \leq \psi^*(\zeta) - \varphi_T^*(\eta) \leq V^*$. Since t < V was arbitrary, we obtain $V \leq V^*$. \square

4 Duality between (P) and (D_0)

We are going to derive the strong duality relation $V(P) = V(D_0)$ from Theorem 3.1. We assume (E.1) and specify the data of Theorem 3.1 as follows:

$$\mathcal{U}\coloneqq\mathcal{Y},\,\mathcal{Z}\coloneqq\mathcal{X},\,\mathcal{W}\coloneqq\mathcal{X}^*;\,C\coloneqq\mathcal{Y},\,Q\coloneqq\{\eta\in\mathcal{X};\eta=f_2 \text{ on } X_2\};$$

$$T\xi:=\partial\xi,\quad arphi(\xi):=F(\xi),\quad \psi(\eta):=((f_1,\eta)),\quad \zeta(\eta):=((\eta,\zeta))$$

for all $\xi \in \mathcal{Y}, \eta \in \mathcal{X}, \zeta \in \mathcal{X}^*$. Then we have for all $\xi \in \mathcal{Y}$

$$arphi(\xi) - \psi(T\xi) = F(\xi) - ((f_1, \partial \xi)) = E(\xi).$$

Therefore V = V(P). For all $\zeta \in \mathcal{X}^*$ we have

$$\begin{split} \varphi_T^*(\zeta) &= \sup\{((\zeta, \partial \xi)) - F(\xi); \xi \in C\} \\ &= \sup\{\langle d\zeta, \xi \rangle - F(\xi); \xi \in \mathcal{Y}\} = G(d\zeta), \\ \psi^*(\zeta) &= \inf\{((\zeta - f_1, \eta)); \eta \in Q\} \\ &= \inf\{((\zeta - f_1, \eta \varepsilon_{X_2} + \eta \varepsilon_{X_1})); \eta \in Q\} \\ &= ((\zeta, f_2)) + \inf\{((\zeta - f_1, \eta \varepsilon_{X_1})); \eta \in Q\}. \end{split}$$

Therefore $\psi^*(\zeta) = ((\zeta, f_2))$ if $\zeta - f_1 = 0$ on X_1 , and $\psi^*(\zeta) = -\infty$ otherwise. Thus $V^* = V(D_0)$.

In order to apply Theorem 3.1 we need another hypothesis:

(H.1) The level sets
$$\{\xi \in \mathcal{Y}; F(\xi) - \langle w, \xi \rangle \leq \alpha\}$$
 $(\alpha \in \mathbf{R})$

are weakly compact in \mathcal{Y} for all $w \in \mathcal{Y}^*$.

Theorem 4.1 Assume that (E.1) holds, that V(P) is finite and that (H.1) is satisfied. Then $V(P) = V(D_0)$ and problem (P) has an optimal solution.

Proof. The result follows from Theorem 3.1. We only have to show that the convex set

$$\mathcal{E} = \{(z, s) \in \mathcal{X} \times \mathbf{R}; z = \eta - \partial \xi, s \ge \varphi(\xi) - \psi(\eta), \xi \in C, \eta \in Q\}$$

is closed in $\mathcal{X} \times \mathbf{R}$, where \mathcal{X} bears the weak topology. Since the set X of nodes is countable, \mathcal{X} is a metrizable space under the weak topology (cf. [2], p. 32). Therefore the weak closedness in \mathcal{X} means the sequential weak closedness (cf. [2], p. 20). Thus we have to show that \mathcal{E} is sequentially closed. Let $\{(z_n, s_n)\}$ be a sequence in \mathcal{E} such that $z_n \to \bar{z}$ pointwise and $s_n \to \bar{s}$ in \mathbf{R} . There exist $\xi_n \in C$ and $\eta_n \in Q$ such that $z_n = \eta_n - \partial \xi_n$, $s_n \geq F(\xi_n) - ((f_1, \eta_n))$. Then

$$s_n \geq F(\xi_n) - ((f_1, \partial \xi_n + z_n))$$

= $F(\xi_n) - \langle df_1, \xi_n \rangle - ((f_1, z_n)).$

Because of (E.1), $\{((f_1, z_n))\}$ converges to $((f_1, \bar{z}))$. Thus the sequence $\{((f_1, z_n))\}$ remains bounded. Since $\{s_n\}$ is also bounded, we see that the sequence $\{F(\xi_n) - < df_1, \xi_n > \}$ is bounded from above. Thus, because of (H.1), all ξ_n are contained in a weakly compact subset of \mathcal{Y} . Since the set Y of arcs is countable, \mathcal{Y} is metrizable under the weak topology. Hence the weak compactness of a closed set in \mathcal{Y} means the sequential weak compactness (cf. [2], p. 21). So, by choosing a subsequence if necessary, we may assume that $\{\xi_n\}$ converges pointwise to some $\bar{\xi} \in C$. Then $\partial \xi_n \to \partial \bar{\xi}$ pointwise, and $\eta_n = \partial \xi_n + z_n \to \bar{\eta} = \partial \bar{\xi} + \bar{z} \in Q$ pointwise. Thus $\bar{z} = \bar{\eta} - \partial \bar{\xi}$ and $\bar{s} \geq F(\bar{\xi}) - ((f_1, \bar{\eta}))$, since F is weakly lower semicontinuous. Thus $(\bar{z}, \bar{s}) \in \mathcal{E}$, and \mathcal{E} is closed. \Box

5 Duality between (P_0) and (D)

Now we are going to derive the duality relation $V(P_0) = V(D)$. We assume (E.2) and specify the data of Theorem 3.1 as follows:

$$\mathcal{U}:=\mathcal{X},\,\mathcal{Z}:=\mathcal{Y},\,\mathcal{W}:=\mathcal{Y}^*;\,C:=\{\xi\in\mathcal{X};\xi=f_1 ext{ on } X_1\},\,Q:=\mathcal{Y};$$

$$T\xi \coloneqq d\xi, \; \psi(\eta) \coloneqq -G(\eta), \; arphi(\xi) \coloneqq -((\xi,f_2)), \; \zeta(\eta) \coloneqq -<\eta,\zeta>$$

for all $\xi \in \mathcal{X}, \eta \in \mathcal{Y}, \zeta \in \mathcal{Y}^*$.

Then for all $\xi \in \mathcal{X}$ there holds

$$\varphi(\xi) - \psi(T\xi) = -((\xi, f_2)) + G(d\xi) = -E^*(\xi).$$

Therefore V = -V(D). For all $\zeta \in \mathcal{Y}^*$ there holds

$$\begin{array}{ll} \psi^*(\zeta) &=& \inf\{-<\eta, \zeta> + G(\eta); \eta \in Q\} = -F(\zeta), \\ \varphi^*_T(\zeta) &=& \sup\{-< d\xi, \zeta> + ((\xi, f_2)); \xi \in C\} \\ &=& \sup\{((\xi, -\partial \zeta + f_2)); \xi \in C\} \\ &=& \sup\{((\xi \varepsilon_{X_2}, -\partial \zeta + f_2)); \xi \in C\} - ((f_1, \partial \zeta)). \end{array}$$

Therefore $\varphi_T^*(\zeta) = -((f_1, \partial \zeta))$ if $-\partial \zeta + f_2 = 0$ on X_2 , and $\varphi_T^*(\zeta) = +\infty$ otherwise. Hence $\psi^*(\zeta) - \varphi_T^*(\zeta) = -E(\zeta)$ for all $\zeta \in \mathcal{Y}^*$ which are feasible for (P_0) , and $\psi^*(\zeta) - \varphi_T^*(\zeta) = -\infty$ otherwise. Thus $V^* = -V(P_0)$.

We prepare

Proposition 5.1 Let $\{\xi_n\} \subset \mathcal{X}$, and let $a \in X$. If $\{d\xi_n\}$ converges pointwise and if $\{\xi_n(a)\}$ converges, then $\{\xi_n\}$ converges pointwise to some $\xi \in \mathcal{X}$.

Proof. For every $x \in X$ select a finite path $p_x \in \mathcal{Y}^*$ from a to x. Then

$$< d\xi_n, p_x> = ((\xi_n, \partial p_x)) = \xi_n(x) - \xi_n(a).$$

Since $\{\langle d\xi_n, p_x \rangle\}$ converges and $\{\xi_n(a)\}$ converges, $\{\xi_n(x)\}$ converges, too. Since this holds for every $x \in X$, $\{\xi_n\}$ converges pointwise to some $\xi \in \mathcal{X}$. \square

We further introduce the following hypothesis:

(H.2) The level sets
$$\{\eta \in \mathcal{Y}; G(\eta) - \langle \eta, w \rangle \leq \alpha\}$$
 $(\alpha \in \mathbf{R})$

are weakly compact in \mathcal{Y} for all $w \in \mathcal{Y}^*$.

Theorem 5.1 Assume that (E.2) holds, that V(D) is finite, that $X_1 \neq \emptyset$, and that (H.2) is satisfied. Then $V(P_0) = V(D)$ and problem (D) has an optimal solution.

Proof. This follows from Theorem 3.1. As in the proof of Theorem 4.1, we shall show that the convex set

$$\mathcal{E} = \{(z,s) \in \mathcal{Y} imes \mathbf{R}; z = \eta - d\xi, s \geq arphi(\xi) - \psi(\eta), \xi \in C, \eta \in Q\}$$

is sequencially weakly closed in $\mathcal{Y} \times \mathbf{R}$. Let $\{(z_n, s_n)\}$ be a sequence in \mathcal{E} such that $z_n \to \bar{z}$ pointwise, and $s_n \to \bar{s}$. There exist $\xi_n \in C$ and $\eta_n \in Q$ such that

$$z_n = \eta_n - d\xi_n, \ s_n \ge -((\xi_n, f_2)) + G(\eta_n).$$

By Proposition 2.1, there exists $w \in \mathcal{Y}^*$ such that $\partial w = f_2$ on X_2 . From $\xi_n \in C$ we obtain then

$$((\xi_n, f_2)) = ((\xi_n, \partial w)) - ((f_1, \partial w))$$

$$= \langle d\xi_n, w \rangle - ((f_1, \partial w))$$

$$= \langle \eta_n - z_n, w \rangle - ((f_1, \partial w)).$$

Thus

$$s_n \ge \langle z_n, w \rangle + ((f_1, \partial w)) - \langle \eta_n, w \rangle + G(\eta_n).$$

Since $\{\langle z_n, w \rangle\}$ converges to $\langle \bar{z}, w \rangle$, we see that the sequence $\{-\langle \eta_n, w \rangle + G(\eta_n)\}$ is bounded from above. Using hypothesis (H.2), by the same reasoning as in the proof of Theorem 4.1, we may assume that $\{\eta_n\}$ converges pointwise to some $\bar{\eta} \in \mathcal{Y}$. Then $\{d\xi_n\}$ converges also pointwise to $\bar{\eta} - \bar{z}$. Since $X_1 \neq \emptyset$ and $\xi_n \in C$, we see that $\xi_n(a) = f_1(a)$ for some $a \in X_1$. From Proposition 5.1 it follows that $\{\xi_n\}$ converges pointwise to some $\bar{\xi} \in C$. Then $\{d\xi_n\}$ converges pointwise to $d\bar{\xi}$, so that $d\bar{\xi} = \bar{\eta} - \bar{z}$. Altogether we obtain that

$$\bar{z} = \bar{\eta} - d\bar{\xi}, \ \bar{s} \ge -((\bar{\xi}, f_2)) + G(\bar{\eta}),$$

since G is weakly lower semicontinuous. Thus $(\bar{z}, \bar{s}) \in \mathcal{E}$, and \mathcal{E} is closed. \square

6 Applications

As applications of our duality results, we obtain generalizations of some fundamental inverse relations from [3] and [6] which play important roles in the discrete potential theory (cf. [7]).

We let F and G be as before. In addition we assume that F and G are nonnegative and symmetric, and that G is homogeneous of degree q > 1 and G is homogeneous of degree p > 1, with 1/p + 1/q = 1.

In connection with problems (P_0) and (D) we choose $f_2 = 0$ (so that (E.2) holds), and we assume that $f_1 \neq 0$ (so that $X_1 \neq \emptyset$). For all $\eta \in \mathcal{Y}^*$ we let $I(\eta) := ((f_1, \partial \eta))$. We define

$$eta := \inf\{pG(du); u \in \mathcal{X}, \ u = f_1 \ ext{on} \ X_1\}$$
 $lpha_0 := \inf\{qE(\eta); \eta \in \mathcal{Y}^*, \ \partial \eta = 0 \ ext{on} \ X_2, \ I(\eta) = 1\}.$

It is obvious that $\beta \geq 0$, $\alpha_0 \geq 0$, and

$$V(D)=\frac{-1}{p}\beta.$$

Moreover we have

$$egin{array}{lll} V(P_0) &=& \inf\{F(w)-I(w); w\in \mathcal{Y}^*, \ \partial w=0 \ ext{on} \ X_2\} \ &=& \inf\{\inf\{|t|^q F(\eta)-t; \eta\in \mathcal{Y}^*, \partial \eta=0 \ ext{on} \ X_2, \ I(\eta)=1\}; t\in \mathbf{R}\} \ &=& \inf\{rac{|t|^q lpha_0}{q}-t; t\in \mathbf{R}\} \ &=& -rac{1}{p}lpha_0^{-p/q}. \end{array}$$

So, if V(D) is finite and $\neq 0$, the duality relation $V(P_0) = V(D)$ takes the form

$$\beta^{1/p}\alpha_0^{1/q}=1.$$

From Theorem 5.1 we obtain therefore

Corollary 6.1 Assume that β is finite and $\neq 0$, and that (H.2) is satisfied. Then $\beta^{1/p}\alpha_0^{1/q}=1$.

On the other hand, if we define

$$egin{array}{ll} eta_0 &:=& \inf\{pG(du); u \in \mathcal{X}^*, \ u = f_1 \ ext{on} \ X_1\} \ lpha &:=& \inf\{qE(\eta); \eta \in \mathcal{Y}, \ \partial \eta = 0 \ ext{on} \ X_2, \ I(\eta) = 1\}. \end{array}$$

then $V(D_0) = -\beta_0/p$ and $V(P) = -\alpha^{-p/q}/p$. We obtain from Theorem 4.1

Corollary 6. 2 Assume that (E.1) and (H.1) are satisfied, and that α is finite and $\neq 0$. Then $\beta_0^{1/p}\alpha^{1/q}=1$.

From Corollary 6.1 we can obtain Theorem 5.1 in [3]. To be more specific, assume that A is an arbitrary subset of X, and B is a nonempty subset of X which is disjoint with A. Let us take

$$X_1 := A \cup B$$
, $X_2 := X \setminus (A \cup B)$, $f_1 := \varepsilon_B$, $f_2 = 0$.

Then

$$I(\eta) = \sum_{x \in B} \partial \eta(x).$$

In case $\partial \eta = 0$ on X_2 , $I(\eta)$ is called the strength of η on B. Let, as in [3],

$$egin{array}{lll} d_p(A,B) &:=& \inf\{pG(du); u\in\mathcal{X},\; u=0\; ext{on}\; A,\; u=1\; ext{on}\; B\}=eta \ d_{q,0}^*(A,B) &:=& \inf\{qF(\eta); \eta\in\mathcal{Y}^*, \partial\eta=0\; ext{on}\; X\setminus(A\cup B),\; I(\eta)=1\}=lpha_0. \end{array}$$

Notice that Corollary 6.1 gives a sufficient condition for the validity of the inverse relation

$$(d_{\mathbf{p}}(A,B))^{1/\mathbf{p}}\cdot (d_{\mathbf{q},0}^*(A,B))^{1/\mathbf{q}}=1.$$

Observe that from $\eta \in \mathcal{Y}^*$ and $\partial \eta = 0$ on $X \setminus (A \cup B)$ it follows that

$$\sum_{x \in B} \partial \eta(x) = - \sum_{x \in A} \partial \eta(x).$$

Remark 6.1 Let $r \in \mathcal{Y}$ be strictly positive and take F as

$$F(w) := rac{1}{q} \sum
olimits_{y \in Y} r(y) |w(y)|^q.$$

Then we have

$$G(w) = rac{1}{p} \sum_{y \in Y} r(y)^{1-p} |w(y)|^p.$$

Notice that $pG(du) = D_p(u)$ (Dirichlet sum of u of order p) and $qF(w) = H_q(w)$ (the energy of w of order q) (cf. [3]). We see that F satisfies (H.1) and that G satisfies (H.2).

References

- [1] E. Blum and W. Oettli, Mathematische Optimierung, Springer-Verlag, 1975.
- [2] N. Dunford and J. T. Schwartz, Linear Operators Part I: General Theory, John Wiley and Sons, 1957.
- [3] T. Nakamura and M. Yamasaki, Generalized extremal length of an infinite network, Hiroshima Math. J. 6(1976), 95-111.
- [4] R. T. Rockafellar, Conjugate Duality and Optimization (Regional Conference Series in Applied Mathematics, Vol. 16), SIAM, Philadelphia, 1974.
- [5] M. Yamasaki, Some generalizations of duality theorems in mathematical programming problems, Math. J. Okayama 14(1969), 69-81.
- [6] M. Yamasaki, Extremum problems on an infinite network, Hiroshima Math. J. 5(1975),223-250
- [7] M. Yamasaki, Parabolic and hyperbolic infinite networks, Hiroshima Math. J. 7(1976), 135-146.