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One-sided phase constraint z(¢) > 0 forms an envelope

FESRAF z(t) > 0 1B E AR T B!
Hidefumi Kawasaki(Graduate School of Mathematics, Kyushu Univ.)
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Introduction

In this paper, we are concerned with the following max-type function:
S(z) = I%leaj)'(G(l'(t),t) z € X, (1)

where T is a compact metric space, X is a subspace of the set of all n-dimensional vector-
valued continuous functions C(T)* equipped with the uniform norm. We denote by G
and Gy, the gradient (row) vector and the Hesse matrix of f w.r.t. z, respectively, and
assume them to be continuous on R™ x T'. This max-type function is induced from a phase
constraint

G(z(t),t) <0 “teT,

which appears in variational problems and optimal control problems. For instance, a vari-
ational problem to find the shortest path in R? joining two given points P and @ that does
not transverse the unit ball is formulated as follows:

Minimize A 1 V22 + £3dt
subject to (z1(0),22(0)) = P, (z1(1),22(1)) = Q,
1—23(t) —22(t)2 <0 “te[0,1].
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There are two aims in this paper. First one is to give formulae for first- and second-
order directional derivatives of S(z). Second one is to show that one-sided phase constraint
z(t) > a(t), where a(t) is a given continuous function, always forms an envelope except
two trivial cases:

o(t) = aft),
z(t) > a(t) for every t.
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By the way, there are a lot of papers that delt with another max-type function:
So(z) = I{leaqg(G(a:,t) z € R", (2)

Clarke[l], Correa and Seeger[2], Danskin [3], Dem’yanov and Malozemov([4] Demyanov
and Zabrodin[5], Hettich and Jongen[6], Ioffe[7], Kawasaki[8)[9] [10]{11][13], Shiraishi[17],
Seeger[16], Wetterling[18]. We encounter this max-type function, for example, in Tcheby-
cheff approximation. The latter max-type function Sy(z) is a special case of S(z). Indeed,

if we take as X {z € C(T)" | z(t) = constant vector € R"}, then S(z) reduces to Sy(z).
So S(z) inherits a lot of properties from Sy(z).

- R DEE
WD max-FEID 1 k& 2 ROFFRBEST DN TERT S,
S(z) = max G(z(1),1) z € X, (3)

1L T k=] MEREZER, X 13 n iRt~ 7 MUEEGBIR S C(T) ORsyZE
E9 %, O max-BBIIIELRIECEREH MR OB

G(z(t),t) <0 YteT

EERTDHLENE D, RRMILTH., ZOHEE» SEBBRNERSNDE N E D hEFTH
D712, max-TBEK S(z) D 2IRDF MBS 2 ET AR E X D,
EZAT, PERIKHEINTEE max-RBEEIIROEHTH B,

So(z) := max G(z,1) z € R", (4)

COBBIITF = v = 7ELRE L BEICBGR TS, 51T, EAT D o WREFELTE
WETHUTL So(z) DE/MEBIREIZNT A MY » 7 Bod{bRIREIZ /2 5, S(z) 28 So(z) &4
BHRWZRERZ AL, B8 2z &t PNLCENT B0zt L, B z 28 ¢ IRIFET 52
ETHD, LPLRDBD, Si(z) 1X S(x) DAYy N —RERBTZ LB TES, OF
V. X & LTn R MUEEEREESE{z(t) =a | ac R} ZENIT LW, 6T,
S(z) 1X So(z) DEL DHEEZITHS Z LI1T72D, TORKER., B HEKBBREERT
Do LVIEREIZE XX, FABEEF 2(t) > a(t) IZ2WT, ZHODHEBARY—X ¢

Z(t) > a(t) for every t.
ZERNT, Rz IV TEHBREERT 2 HM y BREFNSHKS,
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In the following, we denote by T'(z) the set of all extreme points G(z(-), -), that is,
T(z):={teT; Gz(t),t) = S(x)}, zel(T)".
THEOREM 1 The function S(z) is continuous.

THEOREM 2 The function S(z) is directionally differentiable in any directiony € X, and
its directional derivative is given by

S'(z;y) = max{Gx(2(t),t)y(1); t € T(x)}. (5)

Taking constant functions as z(t) and y(¢) in Theorem 2 , we get Danskin’s formula.

COROLLARY 1 (Danskin[3]) The function So(z) s directionally differentiable in any di-
rection y € R™ and its directional derivative is given by

So(z;y) = max{Gz(z,)y; t € T(z)}. (6)
Next, we consider a second-order directional derivative of S(z).

DEFINITION 1 The upper second-order directional derivative of S(z) at x in the direction
y 1s defined by
S(z+ey) — S(z) —eS'(z;v)

S"(z;y) = limsup > (7)
e—+40 £
DEFINITION 2 (/9]) For any functions u, v € C(T) satisfying
ut) >0 Yt eT, ®)
u(t) >0 if u(t) =0,
we define a function E : T — [—o0,+00] by
sup {limsup%‘%; {tn} satisfies (10)}, ift € T,
E(t) =40 if u(t) = v(t) = 0 and t & To, (9)
o —00 otherwise,
3 v(tn)
To:=<{teT; "ty >t s.t. u(t,) >0, ~ i) — 400 ;. (10)
THEOREM 3 Let z andy be arbitrary functions in C(T)". Then it holds that
— DTG (z(t), t)y(t
5 (z;y) = max{y( )G (;( ), Yy(®) +E(t); te T(x;y)}, (11)

where T(z;y) := {t € T(z) ; S'(z;y) = Gz(z(t),t)y(t)} and E(t) is defined via Definition
2 by taking

u(t) = S(z) — G(z(t),1), v(t) = S'(z;y) — G=(z(t), )y (2)- (12)
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Taking constant functions as z(t) and y(t) in Theorem 3 , we get the following formula
due to [9). '

COROLLARY 2 Letz andy be arbitrary points in R". Then it holds that

5" (z;y) = max {—-—————yTsz(x’ WoBw; te T y)}, (13)

where E(t) is defined via Definition 2 by taking

u(t) = 8(z) = G(2,1), v(t) = S'(z;y) — Galz, t)y. (14)

We proved in [9] [10] that an enveldpe is formed from G(z,t) when E(t) > 0 at some
point t € T'(z;y).

EXAMPLE 1 Let us consider a family of straight lines f(z,t) = 2tz —t%, t € [0,1], z € R.
It is evident that it forms an envelope Sy(z) = 2%, (0 <z < 1).

Se(@)

3N

Hence S(0;y) = y? for anyy > 0 and f,-(0,t) = 0. Thus there is a gap between the second-
order directional derivatives of the maz-type function Sy(z) and its constituent functions
f(z,t). On the other hand, it is directly computed from the definition that E (0) = y2 for
every y > 0, which fills the gap.

Sa0i9) = mex {57 a0, 0y + B() 5 1€ TO5) )
= E(0) =y’

It is reasonable to guess that an envelope is formed from the phase constraint z(t) > a(t)
when the function E(t) is positive at some ¢ € T(z;y) as well as the max-type function
So(x). However this is not a proof but a guess. So we next give a proof that the one-sided

phase constraint z(t) > a(t) certainly forms an envelope for a certain direction y(t) except
two trivial cases.
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THEOREM 4 Let T be a connected compact metric space. Assume that Z(t) does not
satisfy neither

z(t) = a(t), (15)
nor
z(t) > a(t) for everyt. (16)

Then there exists a function y € C(T) such that the one-sided phase constraint z(t) > a(t)
forms an envelope in the direction y.

Proof. Let y(t) := —2,/z(t) — a(t) and put for £ € R
s(€) = S(&+£&y) = max{a(t) — 2(t) - Ey(H)}

= max{a(t) - 2(t) + 26/2(2) — a(®)}

Then s(£) becomes a standard max-function.
- .2
s(€) = max{2¢7 — 7}

Furthermore, from the assumption, the image of T by the continuous function /z(t) — a(t)

is a compact interval 7" := [0,¢;] with ¢; > 0. Hence s(£) is same with Example 1, so that
an envelope is formed. :
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