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Abstract

In this paper, we propose an infeasible-interior-point algorithm for solving a primal-dual linear program-
ming problem. The algorithm uses inexact computations for solving a linear system of equations at each
iteration. Under a very mild assumption on the inexactness we show that the algorithm finds an approxi-
mate solution of the linear program or detects infeasibility of the program. The assumption on the inexact
computation is satisfied if the approximation to the solution of the linear system is just a little bit “better”
than the trivial approximation 0. We also give a sufficient condition to achieve polynomial-time convergence
of the algorithm.
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1 Introduction

Since the announcement of the projective scaling algorithm by Karmarkar [2], interior-point algorithms
have developed tremendously. Most work per iteration of an interior-point algorithm is devoted to the
computation of a search direction, which is a solution of a linear system of equations. When the linear
system is very large, the evaluation of the solution by a direct method typically requires a lot of computer
time. In such a case, one may wish to compute only an approximate solution by using an iterative method.
Even if one uses a direct method, the solution may not satisfy the linear equations exactly, because of
computational errors. In spite of the inexactness of the solution in practical computations, most analyses
of interior-point algorithms have been done under the assumption that we do compute the exact solution of
the linear system.

In this paper, we only assume that we compute an approximate solution of the linear system. Our
assumption on the approximate solution is so general that it is satisfied if the approximation is just a little
bit “better” than the trivial approximation 0. Under this assumption, we propose a primal-dual interior-
point algorithm which can start from an infeasible interior point, and we prove its global linear convergence.
This type of algorithm is called an infeasible-interior-point algorithm. It was proposed by Lustig et al. [4]
and Tanabe [7], and its convergence was proved by Kojima et al. [3] when exact computations are used.

We also give a sufficient condition for the inexact computation, under which the number of iterations of
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our algorithm is bounded by a polynomial function. The complexity is compatible with the bound of the
infeasible-interior-point algorithms proposed by Zhang [8] and Mizuno [5].

This work was stimulated by a related paper [1] in which also inexact search directions are investigated.
The analyses in both papers, ‘however, are completely different. The algorithm in [1] is based on a numerical
implementation. The algorithm of this paper is of more theoretical nature and therefore allows to prove a
somewhat stronger con\}ergence result under a slightly weaker assumption on the inexact computations.

In Section 2, we introduce the linear system to be solved at each iteration of an interior-point algorithm,
and we make our assumption on the inexact computations. In Section 3, we present our algorithm using
inexact computations and state our main result. In Section 4, we discuss the main result and introduce some
new notation. In Section 5, we prove global convergence of our algorithm. In Section 6, we give a sufficient

condition to achieve polynomial time convergence.

2 Inexact Computations

We consider a linear programming problem
minimize ¢Tz )
subject to Axr=5b, x>0,
where A is an m x n matrix, b € R™, ¢ € R", and z € R". We assume that the rank of A is m. This

problem is called primal. The dual of the primal problem is defined by

maximize b7y
subject to ATy+s=¢, s3>0,

where y € R™ and s € R" are variables. We define the primal-dual linear programming problem, which is

to find a solution of the system

_Az b
ATy4s | =] ¢ ], z>0,s>0,
Xs 0

where X = diag(z) is the diagonal matrix whose diagonal elements are equal to the elements of z. It is

well-known that (z,y, s) 1s a solution of the primal-dual linear programming problem if and only if # and
{y, s) are optimal solutions of the primal and dual linear programming problem respectively. We call (i, y, s)
a feasible solution if Az =b, ATy +s=c, and (z,s) > 0.
We will measure the “size” of the right hand sides b and c relative to A by
(=2 {] ) y
= min .
cJlla wus s c

Thus, ||(b,¢)|| 4 is the Euclidean norm of the “smallest” vector pair (z,s) that satisfies the primal-dual
equality constraints while ignoring the nonnegativity constraints. Likewise, we will also measure the norm
of certain perturbations & and ¢. The above definition implies that || . || , is a semi-norm (satisfies all norm-

properties except that |[z]| ;, = 0 does not imply z = 0), and “(i),E)HA = ”(i), ATy + &)”A for any three

vectors b, ¢ and y.

Az
ATy +s

”(ba C)”.A = ‘

A primal-dual interior-point algorithm generates a sequence of poiﬁts (mk,yk,sk) € R™™H" for k =

0,1,---. At the k-th iteration of the algorithm, we solve a system of linear equations
A 0 0 Ax
o AT I Ay | =1 ¢ |, (1

Sk 0 X As T
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where X; = diag(z*) and Sk = diag(s*) for the current iterate (z¥,y*,s¥), and (p,q,r) is a vector in
Rn+m+n.

Suppose that we have an approximate solution (Az", Ay”, As") of System (1). Then we can get another
approximate solution (Az’, Ay’, As’), which exactly satisfies the third equality SxAz’ + XrAs' = r as
follows:

Az Azl 4 (ri — sF Azl — 2P A ) sk if sk >k
T, =
! A otherwise,
Ayl — Ay”, (2)
As = As! if s¥ >k,
= As! 4 (r; —s¥Ax? — £¥As?) /¥ otherwise
14 S T T i T & M

If we set (Az"”, Ay"”, As") = (0,0,0) in this procedure, we see that

AAz’' —p Alz' —p
ATAYy + As' — ¢ As' — ¢

where Ui = diag(u*) and u* is defined by
uf = max{«F, s¥} for each i.

<
A

IO,
A

)

A

We will show in Lemma 9 below that [|U; || is bounded throughout our algorithm if the primal-dual linear
programming problem is feasible. Usually one can compute a much better approximate solution than (0,0,0),

but we only use the following weak assumption in this paper.

Assumption 1 We can compute an approzimate solution (Az', Ay', As') of System (1) such that

[(Aaz’ —p, As' = )| , < a1 ll(p, @)l 4 + o2lI7]l,
and
S;;A:l‘l + ‘YkASI =,
where 01 € [0,1) and g, > 0 are constants independent of (rk, y*,s*).

If o1 = 0 and 02 = 0, this assumption implies that we can compute the exact solution of the system (1).
We do not assume that oy or o2 are small except for Section 6.

Assumption 1 on the inaccuracy of the search direction is substantially more general than the inaccuracy
which is introduced for example by the rank-l-update proposed in Karmarkar’s original paper [2]. In
particular, Assumption 1 does not preserve the feasibility of the iterates even if the initial point happens to
be strictly primal and dual feasible.

3 A Conceptual Algorithm

In this section we define an interior-point algorithm. We call this algorithm a conceptual algorithm since we
do not specify exactly how to compute some of the quantities that are needed in the algorithm. This issue
is addressed in part in the next section.

Let (2°,4°,5°) be an initial point such that
poe <z° and poe < s°,

where po > 0 is a constant. We call (2%,3°,s°) an (infeasible) interior point for the primal-dual problem

since it strictly satisfies the inequality constraints z > 0 and s > 0. We define

ﬂo - (Z'O)TSO n,
b= A®—4,
¢ = ATy0 -+ s —c.



For each 8 > 0, we consider a system of equations and inequalities

Az b+ 0b
ATy + s = c+8c |, z>0,8>0. (3)
Xs ople

If the primal-dual linear programming problem is feasible, then the system (3) has a unique solution for
each 8 € (0,1], otherwise 9, € (0,1) exists such that the system has a unique solution for each 6 € (8¢, 1]
and does not have a solution for each § < 8., see Mizuno et al. [6] for example. We call the solution of the

system (3) a center, and define the set of centers in the space combining (z,y, s) and 9:

P = {(z,9,50):>0,8>0,0>0,
Az =b+0b, ATy+s=c+0c Xs=0u"¢).

It is well-known that the set P forms a path, which is called a path of (infeasible) centers, and that (z, y, s)
converges to a solution of the primal-dual linear programming problem if (z,y,s,4) € P and 6§ — 0.

Let 40, 71, 72, ¥3, and v4 be positive constants such that
Yo <1<m, 13<1, 74<1, o173 +o0272 <73,

vople < Xos® < 11p°¢ and | Xos® — w’e| < v2p0.
If || Xos® — u%€| is small enough, then we can choose these constants because o1 < 1. We define a neighbor-

hood of the path of centers:

N = {(z,9,%,8) : £>0, s>0, 6 >0,
Az =b+0(b+b), ATy+s=c+0(c+2), | e)[]A < y3p0,
|1 Xs —0u’ell < v20p0, v00p’e < Xs < 110p°e}.

We define 8° = 1. Tt is easy to see that (x°,4°,5°,0%°) € N and P C V.

We briefly explain the various quantities in the above definition. The quantity <, is a tolerance for the
violation of the third equation in (3). By choosing 2° = s° = \/;Fg as starting point we could choose 42 > 0
arbitrarily small resulting in a rather narrow neighborhood A. If o1, o2 are small, v, may be chosen large,
and then two additional numbers 40 and 7; are needed to control the co-norm of the violation of the third
equation in (3). Note that for v2po < u® we can remove the condition y08p’e < Xs < v10ule from the
definition of A'. The number 3 controls the violation of the linear constraints, and v, controls the ratio
of “affine scaling direction” and “centering direction” in our algorithm below; the smaller 74, the larger the
component of the affine scaling direction (6’ = 0) may be.

Our algorithm generates a sequence {(z*, yk,sk,()k)} in the neighborhood N starting from the initial
point (xo,yo,so,ﬁo)‘ Suppose that we have the k-th iterate (ack,yk,sk,b?k) € N. We shall show how to
compute the next iterate (¢*+1,yF+1 oF+1 g¥+1y.c A/, At the point (z*,y*,s*), we would like to obtain a
center which is a solution of (3) for a 8 € [0,0%]. So we try to compute the Newton direction (Ax, Ay, As)
for the system (3), that is, the solution of

A 0 O Az Az® —b—6b
0o AT T Ay |=—| ATyF +sF—c—0c |. (4)
Sk 0 Xk As Xps* — Huoe

In order to compute a good approximation to (z,y, s, 8) € P, we require to choose a value of the parameter
6 such that the size of the right hand side of (4) is not too big. So we set
Az* —b—6b
¢’ = min {9 € [1.65,65] : & ( K os ) + 03 || X s* — 01| < 739,;0} . (5)
s" —c—90c

A
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From Assumption 1, we can compute an approximate solution (Az', Ay’, As’) of (4) for § =8’ such that

A(z* + Az’') - b—-0'b Az* —~b—0'b ' a0
: < X" —0'p
‘( " +As'—c—0'¢ A_0'1 sF—c- 8¢ A+02” ke well
and
S* Az + X*As' = —(Xys* — 0'u%). (6)
Using the definition of ', the above inequality implies ‘
Alz* + A"y —b—0'b , .
< 728 po. 7
I( sF+ A8 —c—0'c A_% bo (7)

We choose a step size
o* =max{e’ €[0,1] : (z*,y", s 60%) + a(Az', Ay’, As',6' — 6%) € N for each o € [0,0']}.

Then set .
(zk+1‘yk+1‘sk+179k+1) _ (;tk’yk,sk,ok) + ak(‘A‘El‘Ayl’ As' 8 — Gk.)'

Our algorithm is summarized as follows.

Algorithm Let (z°,y°,s°) be the initial point. Set k = 0, u°® = (2°)Ts°/n, and 6° = 1.

Step 1: Compute 8’ by (5). Compute an approximate solution (Az’, Ay’, As’) which satisfies (6) and (7).

Step 2: Compute a step size o* and the next iterate (£**+!, g+ sk+1,9k+1) as shown above.

Yy
Step 3: Increase k by 1 and go to Step 1.

We point out that we need to specify the quantities ¥o,...vs and 01,02 before the first iteration of the
algorithm. In particular, we need an advance bound on o>.

The next theorem summarizes our main result, namely global linear convergence of our algorithm.

Theorem 1 Let {(z*,y*,s*,0%)} be a sequence generated by our algorithm. The sequence is bounded if
and only if the primal-dual linear programming problem is feasible. If the sequence is bounded, then 8% — 0

linearly as k — oo and any accumulation point of {(zk,yk, sk)} s a solution of the problem. -

In this theorem, we do not assume how small the constants o; and o, introduced in Assumption 1 are.
So we can solve the primal-dual linear programming problem under very rough inexact computation of the
approximate solution (Az’, Ay’, As’), which satisfies Assumption 1 for 41 = .99 and o2 = 100 for example.
We will also show that the norms ||/;"!|| defined in Section 2 are uniformly bounded, so that the substitution

(2) is “compatible” with Assumption 1.

4 Discussion of the Main Result

The conceptual algorithm of the previous section and the main result do not address two important issues.

1. The main result depends on Assumption 1 which seems to be a very mild assumption at the first glance:
In a certain norm associated with the linear system to be solved, this assumption requires a reduction
of the residual by merely 1 % for example (when o1 = 0.99). Nevertheless we would like to know how

difficult is it to satisfy this assumption.

2. The algorithm makes use of certain values ’ in (5) and o*. How can we compute these values?



We will give a partial answer to both questions. A complete answer certainly depends on the type of
computations (complete factorization versus iterative linear systems solver) that is used in the overall interior-
point method.

For our discussion and our further analysis we factor the matrix A in (1). Let AT = Q; R, where Q; is
an n X m submatrix of an orthonormal n X n matrix @ = (Q1,Q2) and R is a nonsingular m x m matrix.
It follows from this definition that

Q:1Q7 +Q2Q7 = 1,

( RiQ: Qi@ ) _ 7
Qg Q7@ ) 7

QAT =0,

RQTAT =1,

il < 1, i@l <1,

We will use these relations throughout this paper without citation. System (1) is equivalent to

QT o RTp
T Az T
0 2 ( A ) = Q¢ (8)
$
Sk Xk T

with Ay = R71QT (¢ — As).
With these definitions, one readily verifies that

”(Z,&)”A = ”(R_Ti), Qgé)” for any (b, ?)
and thus, the inequality in Assumption 1 is equivalent to
@Az’ — R™"p, QT As' = QT @)l < a1ll(R™"p, Q2 )|l + o2]lr ]l

This formulation of Assumption 1 will be used in the analysis in Section 5.

To further relate Assumption 1 to standard error measures based on the norm of the residual, we sub-
stitute (2) into the above relation. To this end let the vectors z and s be partitioned as = = (z“),r(z)) and
8 = (s(”,s(z)) such that £!) > s*) componentwise and ) < s componentwise. Likewise we partition

the rows of the matrices @, and @Q». Define the n x n diagonal matrices

_(X(l))—ls(l) 0 I 0
D1=( 0 7 and D, = 0 _(5(2))_1)((2) .

Assumption 1 is then equivalent to
QD2 ((Az") VY _ (R — (@) (s?)7® R™"p
QFD: ) \ (As")® QFq— ()T (xW)=r®) Qfq
We show in Lemma 9 below that (X(l))"1 and (S(r"))_1 are uniformly bounded for all k. Since Q@ =(Q1, Q2)

is orthonormal, it follows for o > sup{”(X(l))"1 ” + “(,5‘(2))'1 H}al, that the above condition is slightly

weaker than requiring

QTDl (AI”)(I)
1Bz —d]l < o |l where B=(Q:TD2 it == (300 ). ©)

Lo

‘ +oz|rll.

(Straightforward). This condition is stated in a standard form used for the error analysis for systems of
linear equations. In particular, it is well-known that Gaussian elimination with partial pivoting is backward
stable. Hence, if, for example, the linear system Bz = d was solved by Gaussian elimination with partial
pivoting, one could guarantee (9), and thus also Assumption 1 with o1 in the order of the machine precision,
and a rather large value for 5. On the other hand, if the linear systems defining the search direction are
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solved by some iterative method, the condition number of B has a strong effect on the rate of convergence.
Unfortunately, the condition number of the matrix B may be unbounded if the linear program is degenerate.
Thus, in the final stage of our interior-point method when applied to solve a degenerate linear program,
iterative linear systems solvers may use a high number of iterations in order to satisfy Assumption 1.

Nevertheless, our analysis allows an interesting observation regarding the stability of interior-point methods:

1. The feature that one can solve a given linear program to a very high accuracy even when solving the
linear systems at each step only to a very low accuracy (in the above residual norm (9)), this feature
is not shared by the simplex method.

2. There are many discussions about ill-conditioning in interior-point methods. The above considerations
show that this version of an interior-point method is quite insensitive to ill-conditioning: When the
linear systems are ill-conditioned (in the final stage of the algorithm) the error, i.e. the difference of
the approximate solution and the true solution of the linear system may be large, even if the residual
happened to be small. Here, we make no assumption about the error, we do not even require that
the residual is small (a reduction by just 1% is sufficient for our analysis), but nevertheless we can

guarantee overall convergence.

In this paper, we do not specify how to compute the approximate solution (Az’, Ay’, As’} which satisfies
Assumption 1. We point out, however, that the matrix A is usually sparse, but the matrix @ may not be.
Thus, while the matrix @ is a very suitable tool for our analysis below, we should not use it when we solve
the system (1).

The above addresses the first issue about how difficult it may typically be to satisfy Assumption 1.

The second issue concerns how to determine 8’ and o*. If we are able to evaluate [i[tp, 9)|] 4 for a given
pair of vectors, p and ¢, then both quantities can be approximated, for example, by some Armijo-type search.
Also, the verification, that a given approximate solution Az’, As’ satisfies Assumption 1 can be reduced to
the evaluation of ||(p, ¢)|| , for certain p and q.

If the interior-pint method is based on direct solvers for the linear equations, the evaluation of ez, Ol 4
is fairly straightforward. The matrix R for example can also be obtained from a Cholesky decomposition of
AAT and is available in some implementations of interior-point methods. Given R, one backsolve returns
R~ Tp, and two further backsolves for RT Ry = Aq yield the minimizing vector y in the definition of || .
so that ||(p, ¢)|| 4 is available with at most three backsolves.

a0

If the interior-point method is based on iterative linear systems solvers, upper bounds for HQ;‘F(AS' — q)”
can be obtained from conjugate gradient methods for solving AATy = Agq, while cg-methods for the (singular
semidefinite) system AT Az = ATp yield lower bounds for ” R7T(AAz - p)” We point out that both linear
systems above have a constant condition number independent of the iteration index k. By preprocessing the
matrix A prior to solving the linear program one may further control the singular values of A. (An extreme
form of preprocessing would consist of premultiplying the linear equation Az = b by R™7T, resulting in the
equivalent relation Q7 « = R™7b with all singular values of QT equal to 1. As mentioned before this form of
preprocessing is not practical when A is sparse.) We do not discuss these details any further but continue

with proving convergence of the algorithm.

5 Global Convergence

In this section, as our main result, we prove global linear convergence of our algorithm. In the final part of
this section we also show that the norms ||U; || defined in Section 2 are uniformly bounded.
We prove Theorem 1 by the following five steps:

(i) If the problem is feasible, the sequence {(z*,y*,s",8%)} is bounded.



(ii) If there exist constants 7 € (0,1) and & € (0, 1) independent of k such that ¢’ < 9% and o* > & for
each k, then 8% — 0 linearly as k — oo, and any accumulation point of the sequence {(zk, y*, ")} is a

solution of the problem.
(iii) There exists a constant T € (0,1) such that 8’ < 7.
(iv) If the sequence {[|[AX'As’||/#*} is bounded, there exists a constant & € (0,1) such that o* > 4.
(v) If {(z¥,y*,s*)} is bounded, then {|]JAX'As'||/8*} is also bounded.

Since the primal-dual linear programming has a solution if it is feasible, (i) follows from the next two

lemmas.

Lemma 1 For any b € R™ and & € R™ such that ”(I;, Z')”A < ¥3po, there exists (%, 9, §) which satisfies

(1—vs)poe < & < (1+73)2°,
(1 —v3)poe <3< (1+7)s°.

Proof: This lemma easily follows form the definition of ||-|| ,. In fact, all the conditions hold true for
(#,9.8) = (s° + QR™Th,y° + RT'Q1&,s” + Q2Q70).
Q.E.D.

Lemma 2 If the primal-dual linear programming problenv has a solution (z*,y"*,s*) then

1
~ (1 =7)po

for cach 6 €(0,1] and (z,y,5,8) EN.

l(z, )|l < (A +23)((°) 2" +(2°)7s") + 61 + 1)’ nu’ + 1ann’)
Proof: We define

(Az —b)/0 —b
= (ATy+s~c')/9—E‘.

S
Il

o

Since (z,¥, s,8) € N, we have that “(i), E'.)”A < vapo. So there exists (%, §, §) which satisfies the conditions
in Lemma 1. Then
A((1—8)z" +0i—x)=0

and
AT((1 = 0)y* + 05— y) + (1 — 0)s* + 05— s) = 0.

Hence we have that
(1=0)z" +05—z)T(1—6)s*+05~35)=0

or equivalently
(1= 8)z* +07)Ts + (1 —8)s* +05) Tz = ((1—0)z" +03)"((1 - 0)s* +83) + 2" s. (10)

Using (¢*)Ts* =0, (1 —va)poe < & < (14 73)2% (1~ va)poe <3< (1 4+ v3)s°, and Xs < 718u°¢, we have
that

6(1 - ‘73)p0(eTs -+ eTz') < ((1-8)z" +6:)Ts+ ((1-8)s" + 0§)T:c
= ((1-8)z" +68)7((1-0)s" +03)+2"s
< (1= 8)(1+1)((s°) 2" + (2°)Ts*) + 0°(1 4+ %)*(=°)Ts” + 7ibnp”.
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The inequality in the lemma follows from this inequality and 6 € (0, 1]. QEQ .
Suppose that there exist constants 7 € (0,1) and & € (0,1) independent of k such that ' < r9* and
a® > & for each k. Then we have that

0k+1 - ek + a'k(f)’ _ ok)
< 6 +a(r-1)8" _
< (1—a(1=r))e (11)

Since 1 — &(1 — 7) < 1, we have that #* — 0 linearly as k — oco. Then || Xxs*|| — 0, ||Ac* —b]] — 0,
|ATy* 4 s* — ¢|| — 0 as k — co because (z*,y*, s*,6%) € V. Hence we have shown (ii).

The statement (iii) follows from the next lemma.

Lemma 3 Define
A= 6. O+ orvne

and
(0173 + 0272)p0 + A
T = .
Yapo + A

Then ry < 1, and 8’ < max{vs, 7 }0" at each iteration of the algorithm.

Proof: Since 01va 4+ 0292 < 43, we have that = < 1. For each 4 € [7'10k, 0’“], we have from the definition of
N that

a1 “(Aar:’c —b—0b, s¥—c— BE)HA + 02| X" — 0ule|| — 12800
< o1 |[(Az* —b—6%5, 5F —c—0%2)|| , + oal| Xus® — 6% pe]|
+(0" —0)(01 || (B, 2)f| , + o2lln’ell) — 72600
< 0% o1v3p0 + 0521200 + (8 — O)X — 1260
< 0.

Hence 8' < max{ys, 11}8* by the definition. Q.E.D.
The statement (iv) follows from the next two lemmas and 6’ > vs0%.

Lemma 4 For each a € [0, 1], we define

s A(;l‘k-I-O’AII)—b -
S

AT(y’c + aAy') + (s* +aAs)y—c _

i) = —&.

(1— a)8* + ab’

Then :
[G(e), &), < 72po-

Proof: Using (z*,y*,s*,6%) € N and (7), we see that

(1 = a)8* + o) || (b(a), &a))]
= ||(A(z* + aAz’) — b — (1 — 0)8* + ab)b, s* + als’ — c — (1 - a)8* + at')e)| ,
< (1-a) “(Aa;‘IC —b—0%p, s* —c— Ok&)nA
+o ||(A(s* + Az') —b—0'D, s* + A’ —c—0'e)|| ,
(1 — a)738%po + av38'po
((1 — a)8* + a8’ )y p0.

A

Q.E.D.
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Lemma 5 At the k-th iteration of the algorithm, we define

&F — min 4 Oyzp0 001 = vo)u®  8'(n — 1’
[AXAs [AXDslw’ TAXDs' o |

Then of > &*.
Proof: Suppose that a € [0, &"]. Using (6), we see that
(X + aAX)(s* +als’) — (65 + a(9' — 6%))u’e||
1 Xks® + a(8'n’e — Xxs™) + 2 AX'As' — (8° + a(9' — 8%))u’e||
< (1—a)||Xps® — 05 p ]l + *|AX'AS'||
< (1-a)n28%p0 +ab'v2p0
= 70" +a(d' —6%))p,
(Xx + aAX')(s* + airs’) — (8 + (8 — 6%))von’e
= Xps® + a0 ple — Xps*) + P AX A — (6% 4+ a(8' — 8%))vou’e
= (1=a)(Xes* -0 y0n’e) +ab'(1—yo)ule + o’AX'As'
> 0,
(X% + aAX")(s* +als) - (6% + a8 — Bk))yluoe
(1= a)(Xps® — 0 y1p°€) — ab'(m1 — ple + o’ AX'As'
0.

IA

The second relation also implies that (mk + aAz’, s*¥ + aAs’) > 0 from the continuity with respect to a.
Combining these results and Lemma 4, we have that (z*, y*, s*,8%) + a(Az’, Ay’, As', 0" — 6%) € N for each
o € [0, &F]. Hence a® > &" by the definition. Q.E.D.

The statement (v) follows from the next three lemmas.

Lemma 6 The solution of (1) is expressed as

D'Az = PD'Q:R Tp—(I-P)DQ:QF g+ (I —P)(XiSk)™"’r,
Ay = R'QTq+(AD*ATY'AD(D*QiR™Tp+ DQ2QF ¢ — (XiSk)™°r),
DAs = —PD'QiR Tp+(I -~ P)DQ:2Q7 g+ P(XxSk)™°r,

where D = X;2S;7° and P = DAT(AD?*AT)™'AD.
Proof: Suppose that (Az, Ay, As) is expressed as above. Since ADP = AD, AD(I — P) =0, and A =
RTQT, we see that

AAz = AD(D'Az)
= ADD7'Q,R™Tp
= p’ v
T _ -1 T A,
A"Ay+As = D (DA Ay+DA5)

= DNDQQT¢+P(DT'QR™Tp+ DQ2Q3 g — (XiSk)™’r) + DAs)
= DTNDQQTq+ DQ:Qzq)
= g
SkAz + XpAs = (XiSk)® (D7 Az + DAs)
= (X&Sk)*(XSk)™°r
= T.

Q.E.D.
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Lemma 7 At the k-th iteration of the algorithm, let

B = (Az* —b)/0F - B,
& o= ATy +F - )8 -,
b = (A(z*+Az')—1b)/6' -5,
¢ = (AT +ay)+ (5 +Aas) - )/ -

Then "(?)k, Ek)”A < y3po and “(b, E)HA < v3po0, and (Ax',Ay’, As') is the solution of System (1) for

p = (6 =650 +0'b—6%bF,
g = (0 —0)e+6'c -0~
1= —(Xps® —6'ul%).

Proof: It is straightforward using Lemma 4. Q.E.D.
Lemma 8 If {(z*,y*, s*)} is bounded, then {||AX'As'||/6*} is also bounded.
Proof: Suppose that {(z*,y*, s*)} is bounded. Then a constant 71 > 0 exists such that
zf < m and sf < m for each ¢ and k. (12)
Since Xjs* > 700%%, we have that
£16* < 2¥ and &6* < s¥ for each i and k,

where & = vou®/m. Let di = y/7¥/s* be the i-th diagonal component of D at the k-th iteration of the
algorithm. Then

where 72 = /1 /¢1. Hence

VO 2 < di < ma [V,

DI < n2/V8* and ||D7*|| < ma / V5.
We define (p, ¢, r) as in Lemma 7. Then a constant 5; > 0 exists such that
IR P, @)l = ll(p, @)ll4 < mab”, [Ir] < mob”.
Since (Az', Ay’, As') is the solution of (1) for the (p,¢,7), from Lemma 6 we see that

1D~ A

A

IDTHIR™ Pl + IDINQE ll + 11Xk S™) i1l

M2 k 2 1
—=na0" + —= ——==nf
N/ VB* T

7]4\/9—"

for ne = (2m2ms + N3/+/701°), where we have used the relations ||P|| < 1, [T = P|| < 1, ||Q:]| < 1, and
|Q2]] < 1. Similarly we have the same bound of || DAs’||. Hence

128" + k

IN

I

IAX'As']| < D7 ad[| DAS'| < n36".

Q.E.D.
To close this section, we prove that ||U;!|| defined in Section 2 is bounded. It follows from the next

lemma.

Lemma 9 If the primal-dual linear programming problem is feasible, ¢ > 0 exists such that
max{z;,s;} > ¢

for any 6 € (0,1, (z,y,s,8) € N and 1.



Proof: It is well-known that if the primal-dual linear programming problem is feasible then a strictly
complementarity solution (z*,y*, s*) of the problem exists, i.e., {1 > 0 exists such that max{z],s]} > (1 for
each i. Define {2 = min{(¢1, po(1 — v3)} and let (%, 9, §) be defined as in the proof of Lemma 2. From (10)

and Lemma 1, we see that

CGamin{zi,s;} < ((1-0)z" +05) s+ ((1-0)s"+65)7¢
= ((1-0)z"+8z)7((1—8)s” +65)+27s
< 81 -0) (3" + 575" + 0% 5 + mbup’
< oy

for a constant 7 > 0 independent of the point (z,v,s,6). Since Xs > v09u’e, we obtain that
max{zi, s} > ~olap® /.

Q.E.D.

6 Polynomial-Time Convergence

In this section, we prove the following convergence theorem. We use the notations g; = O(f(n)), g2 =

Q(f(n)), and g5 = O(f(n)) for a function f of n, which imply that positive constants wo and w; exist such

that ’
g1 Swif(n), g2 > wof(n), wof(n) < g3 Swif(n).

Theorem 2 Let f(n) be a function of n, and let € > 0 be a small constant. Let some linear program with

n unknowns be given. Suppose that we use an initial point (z°,y°,s°) and v2 > 0 such that
72 = Xpo) and |(z°, )| = ©(po), ‘ (13)

and that the constants vo, 71, v3, and ¥4 are independent of the data. If § € (0,v;) is independent of the
data and 61 € [0,1) and 02 > 0 are small enough such that

o13+ o2 +6< s and A=o “(Z’E)HA + o2/’ < fin)po,
and if there erists a solution (z*,y", s*) of the primal-dual linear programming problem such that
(", 5" loo = O(s0), Cay
then 0% < ¢ for k=0 (n2(1 + f(n))In(1/¢)).

From this theorem, if we can compute the exact solution of the linear system of equations, i.e., o1 = 0
and oz = 0, then the number of iterations of our algorithm is O(n” In(1/¢)) to get an e-approximate solution.
This bound of our algorithm is equal to the one of the infeasible-interior-point algorithms proposed by Zhang
[8] and Mizuno [5]. This theorem extends the results in [8, 5] since it gives a sufficient condition to achieve the
bound of O(n?In(1/¢)) iterations under inexact computations. If we can compute an approximate solution,
which satisfies the conditions in this theorem for f(n) = constant, at each iteration, then the number of
iterations is bounded by O(n?In(1/¢)).

Proof: From (13) and (14), we have that

1® = ©(pj) and (s°) 2" + (2°)7s" = O(np5).
From this relation and Lemma 2, we have that

E k 1
(=" sH)l < T=ir0

= O(npo).

(1 +72)((s°) 2" + (%) %) +05(1 4 10)°ni® + 11ms®)
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So we see (12) for 71 = O(npo). By using the same discussion in the proof of Lemma 8, we have that
DIl < w2/ V6* and |D7Y|| < 2/ V%,

where n2 = O(n1/4/#°) = O(n). We define (p,q,7) as in Lemma 7. Then

IPDT'QiR™Tp|| = |IPDT'QiR™T((6' - 6%)5 +6'b — 6"8%)]|
< (8" -60)|DAT(AD?AT) T AQ R (Ax° - b))
+8'| DM IRTTB + 05| DT RTTE|
< O¥|IDAT(AD?AT) T (Az° — Az®)|| + (8'/V8F )23 p0 + VOEmavapo
< O¥IPDT (2 — &™) + 2V8Fn2ya 0 '
< O NARSK) TSk (2" = 27)|| + 2V8F 230 po
< (8 V100 0 (12 [l + 1" loo)lIs* ll + 2VFFn292 0

O(np° \/H_k)
Similarly we can show that
I - PYDQ:QZ4ll = O(np"VE¥).
We also have that
I(XkSk)™5rll = O(vmpoVE¥)

So we see that

|D7!Az'|| = O(npoVEF).
Similarly we can obtain the same bound of || DAs’||. Hence

IAX'A| = O(n226°),
which implies 1/& = O(n?) from Lemma 5. From Lemma 3, we see that

(v3 — o173 — 0272)
v2 + M po

1—T1 =

which implies 1/(1 — 1) = O(1 + f(n)). Since

o < (1-a(1-7)F

34

for 7 = max{ys, 1} from Lemma 3 and (11), we have that 8% < efor k = (a1 - 7)) In(1/€) = O(R*(1 +

f(n))In(1/¢)). Q.E.D.

Acknowledgements

The second author would like to thank Roland Freund for many stimulating discussions.

References

[1] R.W. Freund, F. Jarre; and S. Mizuno, “Convergence of inexact interior-point algorithms for linear

programs”, in preparation, April 1996.

[2] N. Karmarkar, “A new polynomial-time algorithm for linear programming,” Combinatorica 4 (1984)

373-395.



(3]

M. Kojima, N. Megiddo and S. Mizuno, “A primal-dual infeasible-interior-point algorithm for linear

programming,” Mathematical Programming 61 (1993) 261-280.

L. J. Lustig, R. E. Marsten and D. F. Shanno, “Computational experience with a primal-dual interior

point method for linear programming,” Linear Algebra and Its Applications 152 (1991) 191-222.

S. Mizuno, “Polynomiality of infeasible-interior-point algorithms for linear programming,” Mathematical
Programming 67 (1994) 109-119.
S. Mizuno, M. J. Todd, and Y. Ye, “A surface of analytic centers and infeasible-interior-point algorithms

for linear programming,” Mathematics of Operations Research 20 (1995) 52-61.

K. Tanabe, “Centered Newton method for linear programming: Exterior point method (in Japanese),”
Proceedings of the Institute of Statistical Mathematics 37 (1989) 146-148.

Y. Zhang, “On the convergence of a class of infeasible interior-point methods for the horizontal linear
complementarity problem,” SIAM Journal on Optimization 4 (1994) 208-227.

35



