Analysis of interior-point-paths for sufficient linear complementarity problems

J. Stoer

Institut für Angewandte Mathematik und Statistik Universität Würzburg, Würzburg, Germany

Abstract: In this lecture we describe the behavior of infeasible-interior-point-paths for solving horizontal linear complementarity problems

(LCP)
$$Px + Qy = q, \quad (x,y) \ge 0, \quad x^T y = 0,$$

that are sufficient in the sense of Cottle, Pang and Venkateswaran (1989). These paths are defined as the solution $(x, y)(r, \eta)$, r > 0, of

$$Px + Qy = q + r\overline{q}, \quad (x, y) \ge 0,$$

 $x_i y_i = r\eta_i, \quad i = 1, \dots, n,$

and they converge to a central point of the set of solutions of (LCP) as $r \downarrow 0$. It is shown that these paths are analytic functions of r even at r = 0, if (LCP) has a strictly complementary solution, and are analytic in $\rho := \sqrt{r}$ at $\rho = 0$, if (LCP) is solvable but has no strictly complementary solutions.