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M-Convex Function on Generalized Polymatroid

Kazuo MUROTA* and Akiyoshi SHIOURA!

Abstract

M-convex function is a generalization of valuated matroid of Dress—-Wenzel, and a discrete
analogue of convex function defined on a base polyhedron of a submodular system. We extend
~ this concept to functions on generalized polymatroids, discuss the layer structure of M-convex

functions on g-polymatroids, and give simultaneous exchange axioms.

Keywords: matroid, submodular system, convex function, generalized polymatroid.

1 Introduction

Generalizing the concept of valuated matroid due to Dress and Wenzel [4, 5], Murota [17, 18, 19]
introduced the concept of M-convex function. A function f : ZV — R U {+occ} is said to be

M-convex if it satisfies

(MB-EXC) Vz,y € dom f, Vu € supp™(z — y), Jv € supp~(z — y) such that
f@)+ fy) 2 @ — xu+ Xxo) + F(Y + Xu — X0,

where dom f = {z € ZV | f(z) < 400}, suppT(z —y) = {w € V | z(w) > y(w)}, supp (2 — y) =
{w eV |z(w) < y(w)}, and x, € Z" is the characteristic vector of w € V. An M-convex function
f with dom f C {0,1}" can be identified with a valuated matroid; to be specific, — f is a valuated
matroid in the sense of [4, 5]. The property (MB-EXC) implies that dom f is (the set of integral
points of) a base polyhedron.

M-convex functions enjoy several nice properties: they can be extended to ordinary convex
functions, and a Fenchel-type duality and a (discrete) separation theorem hold for them [14,

17, 18, 19]. These properties may be sufficient for us to regard M-convexity as convexity in

*Z#H —#, Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-01, Japan,
murotaQkurims.kyoto-u.ac.jp.

Y1574 WR#%, Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, 2-12-1 Oh-
okayama, Meguro-ku, Tokyo 152, Japan, shioura@is.titech.ac.jp. This work was done while the second author

was at Research Institute for Mathematical Sciences, Kyoto University, as a short-term research fellow.



73

discrete optimization. Applications of M-convex functions for polynomial matrices are described
in [4, 5, 13].

The main aim of this paper is to extend the concept of M-convex functions to functions
on generalized polymatroids. The concept of generalized polymatroid, or g-polymatroid for
short, was introduced in 1981 by Frank [7] (see also Tardos [22] and Frank and Tardos [8]).
G-polymatroid includes polymatroid, submodular polyhedron, supermodular polyhedron, and
base polyhedron as its special cases. Although g-polymatroid is a generalization of those poly-
hedra mentioned above, it is also known to be equivalent to base polyhedron in the sense that
any g-polymatroid can be obtained as a projection of a base polyhedron. Given a set Q(C ZY),
define Q(C ZVV1"}) as Q = {(z,—z(V)) € ZVY{"} | z € Q}, where v is a.new element not in
V,and z(V) = Y {z(w) |w € V}.

Theorem 1.1 (Fujishige [9, 10]) Q is (the set of integral points in) a g-polymatroid if and
only if k

(G-PRJ) Q is (the set of integral points in) a base polyhedron.

In view of this theorem, it would be natural to define M-convexity for a function on a g-
polymatroid as follows: a function f : Z¥ — R U {+oo} is defined to be M-convex on a g-
polymatroid if

(MG-PRJ) function f : ZVU{*} — R U {+0c0} satisfies (MB-EXC), where

(1)

T,To) =
f@.z0) +o0o  (otherwise).

= { f(z) (zo=—z(V)),

It is clear that dom f of an M-convex function f on a g-polymatroid is indeed a g-polymatroid.

Though M-convexity on a g-polymatroid is not entirely a new concept, we believe that it is
worth investigating in its own right. One motivation for this paper is that we can talk of the
layer structure of an M-convex function when it is defined on a g-polymatroid, where a layer of
an M-convex function f on a g-polymatroid is defined as its restriction to {z € ZV | (V) = k}
for each k¥ € Z. Then optimization on each layer naturally comes into a problem. Recently,
many researchers analyze set systems and functions with respect to layer structures; for example,
greedoid by Korte, Lovédsz, and Schrader [11], valuated bimatroid [13], valuation on independent
sets [15], well-layered map and rewarding map by Dress and Terhalle [1, 2, 3], and so on. In
particular, valuations on independent sets enjoy M-concavity on g-polymatroids, i.e., the negative
of M-convex functions. We show that optimization of an M-convex function in a specified layer
can be done efficiently in several different ways.

Another motivation is the richness of examples of M-convex functions on g-polymatroids, e.g.,

network flows, location problems, and polynomial matrices. It is well known that kinds of greedy
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algorithms work for those problems, but such phenomena cannot be explained by using the theory
of g-polymatroid. The framework of M-convex functions on g-polymatroids explains why greedy
algorithms work well for those problems. For example, the successive shortest path augmentation
algorithm, which can be seen as a kind of greedy algorithm, works for the minimum-cost flow
problem. Our result affords a new understanding to this fact through the M-convexity of the flow

cost function.

In view of the exchange axiom (MB-EXC) for an M-convex function on a base polyhedron,
it would be natural to ask how the M-convexity on a g-polymatroid can be characterized by an
exchange property. We show in Theorem 3.2 that an M-convex function on a g-polymatroid is

characterized by either of the following simultaneous exchange properties:

(MG-EXC) Vz,y € dom f, Vu € suppt(z — y),

f(z)+f(y) > min [f(w = Xu) + f(y+Xxu), min {{(w = Xu+ Xo) + fy + xu— xu)}] :
vEsupp~(z—y

(MG-EXCw) Vz,y € dom f with z(V) > y(V) and = # v,

f@)+f) > min [f(:v = Xu) + fly+xu), min {f(z—xu+xo) + fy+Xu - Xv)}:l :
u€suppt(z—y) vEsupp~ (z~y)

2 Examples of M-Convex Functions on G-Polymatroids

Example 2.1 (Min-cost flow) Let G = (V, 4;V*,V ™) be a directed graph with two specified
vertex sets V', V'~ C V such that V¥ NV~ = §. We denote an upper capacity function by
t:A— ZU {400}, a lower capacity function by ¢ : A — Z U {—oc}. A flow is a function
¢ : A — Z, and its boundary d¢ : V — Z is defined as

dp(v) = Z{go(a) | a leaves v} — Z{go(a) | a enters v} (vevV).

A flow ¢ is called feasible if it satisfies c(a) < ¢(a) < T(a) (Va € A) and dp(v) =0 (Vv €
V — (VtUV7™)). Then, we see that Q = {(3p)~ | ¢ : feasible flow}(C Z" ") is a g-polymatroid,
where (0¢)~ is the restriction of dp to V.~

Suppose we are given a family of convex functions f, : Z — R indexed by a € A. Here we call
fa convex if its piecewise linear extension fo: R — R is an ordinary convex function. We define
a function fier: ZY — R U {%o0} as follows:

foo(2) = inf{T'(p) | ¢ : feasible flow, ()~ =z} (z € Q),
el +00 (z € Q),

where I'(p) = 3 {fa(¢(a)) | a € A}. Then, the function fu satisfies (MG-EXC) if fic does not

take the value —oo, which can be proved in the similar way as in [17, 19].
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Example 2.2 (k-tree-core) Suppose we are given a tree network 7' = (V, F) with an edge
length function [ : £ — R and a vertex weight function w : V.— R4. For any w,v € V, denote
by P(u,v) the unique path connecting u and v. We define the distance d(u, v) between u,v € V as
the sum of lengths of edges in P(u,v). The distance-sum dis(S) of a subtree S is given by dis(S) =
S {w(u) - min{d(u,v) | v € S} | u € V}. A k-tree-core is a subtree with k leaves minimizing the
distance-sum. It is clear that there exists a k;tree—core whose leaves are those of T. Hence, we
may restrict ourselves to subtrees whose leaves are contained in L = {v € V | v is a leaf of T'}.
We represent such a subtree by the set of its leaves. Put 7 = {X C L | |X| > 2} and denote by
S(X) the subtree corresponding to X € F. Define a function fyis : ZX' — R U {+o0} by

dis(S(X)) (z = xx for some X € F),
fais(z) = o
| +oo (otherwise),

where xx is the characteristic vector of X C L. We will prove the following theorem. See Peng

et al.[20] and Shioura and Uno [21] for more about k-tree-core.
Theorem 2.1 The function fq;s satisfies (MG-EXC).

Before proving this theorem, we give a property of the distance-sum.‘ For w,v € V with
(u,v) € E, set W(u,v) = Y{w() | t € V, v € P(u,t)}. For any u,v € V, put A(u,v) =
S{l(uio1,ui) Wilui—1,%) | 1 = 1,---,7}, where {ug(= u),u1,---,ur(= v)} is the sequence of
vertices on the path P(u,v). It should be noted that A(u,v) is not equal to A(v, u).

Lemma 2.2 Let u,v € V and S be a subtree such that P(u,v) NS = {u}. Then,
dis(S U Pu, v)) — dis(S) = —A(u, v).

the that the value dis(S U P(u,v)) — dis(S) does not depend on a subtree S. ’

Proof of Theorem 2.1 Let X,Y € F and v € X —Y. It suffices to show thaf (i) or (ii) holds,
where ‘

(i) |X| > 3 and dis(S(X)) + dis(S(Y)) > dis(S(X —u)) + dis(S(Y + u)),

(i) dis(S(X)) +dis(S(Y)) > dis(S(X —u+v)) +dis(SY +u—v)) (€Y - X).

For each subtree S, we call w € S a branching vertex of S if there are atv least three edges of S
incident to w.

CASE 1: S(X) and S(Y') contain a common vertex. Let ¢ be the nearest vertex to « in the
intersection of S(X) and S(Y). If | X| > 3, let bx be the nearest branching vertex of S(X) to u,
and if | X| = 2 then let bx be the unique element in X — w.

CASE 1.1: bx € P(c,u). Itis easy to see that |X| > 3. Since S(X —u) = S(X) — P(bx,u)
and S(Y +u) = S(Y)U P(c,u), (i) is fulfilled by Lemma 2.2.

CASE 1.2: by & P(c,u). There necessarily exists a leaf v of S(Y') with ¢ € P(bx,v). We
also have P(c,v) N S(X) = {c}. If there exists a branching vertex of S(Y') on P(v,c), let by be
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the nearest one to v, and otherwise set by = ¢. Since S(X —u +v) = (S(X) — P(c,u)) U P(c,v),
and S(Y +u —v) = (S(Y) — P(by,v)) U P(c,u), we have the condition (ii) by Lemma 2.2.
CASE 2: S(X) and S(Y) contain no common vertex. Let cx be the nearest vertex in S(X)

to S(Y), and cy the nearest vertex in S(Y') to S(X). Note that P(cx,cy) N S(X) = {cx} and
Plcx,cy) NS(Y) = {cy}. If there exists a branching vertex of S(X) on P(u,cx), let bx be the
‘nearest one to u, and otherwise set by = ¢ x. Let v be any element of Y. If there exists a branching
vertex on the path P(v,cy) then let by be the nearest one to v, and otherwise set by = ¢y . The
condition (ii) is obtained by Lemma 2.2 and the following equalities:

S(X —u+wv) = (5(X) - P(bx,u)) U (P(cx,cy) U P(ey,v)),

SY +u—v)=(SY) - P(by,v)) U (P(cy,cx)U Plex,u)). |

Example 2.3 (Polynomial matrices [2, 4, 5, 13]) Let A(t) be an m x n polynomial matrix,
where each entry of A(¢) is a polynomial in ¢. Denote by R and C the row and column sets of
A(t), respectively. Define J to be the family of linearly independent column sets, and fmat :
Z¢ — R U {+0oc} by

—max{deg;det A[[, J] | ICR, |I|=|J|} (x=x4, J € J),
fmat(z) =

(otherwise),

where A[I, J] is the submatrix of A(t) induced by the row set I and the column set J. Then, we
can show that the function fmat satisfies (MG-EXC) by using the Grassmann—Plﬁcker identity.

3 Exchange Axioms for M-Convex Functions on G-Polymatroids

To derive exchange axioms for M-convex functions on g-polymatroids, we first recall a seemingly

weaker exchange property than (MB-EXC) for M-convex functions on base polyhedra:

(MB-EXCw) Vz,y € dom f with z # y, Ju € supp™ (z —y), v € supp~(z — y) such
that f(z) + f(y) 2 f(z — xu + Xo) + F(y + Xu — Xo)-

Theorem 3.1 ([16, 18]) (MB-EXC) <> (MB-EXCyw).

This equivalence is a quantitative generalization of the result of Tomizawa [23] for base polyhedra.
A straightforward translation of (MB-EXC) and (MB-EXCy) through the equation (1) leads

to the following exchange axioms for M-convex functions on g-polymatroids:

(MG-EXCp) Vz,y € dom f,
(M) (V) <y(V) = f(=) + f(y) 2 omin {f(@+x0) + fly —x)h

(i) (V) < y(V) = Vu € supp*(z—y), f(2) + f(y) 2 oo {f(z—xutxe) +fy+
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Xu = Xo)}>
(iii) (V) > y(V) = Vu € supp™t(z — y),

f(z)+f(y) > min {f(ﬂ: = Xu) + f(y + Xu), min {f)(x — Xu+Xo) F Y+ xu — Xv)}} ,

vesupp~(z—y
(MG-EXCpw) Vz,y € dom f,
@) z(V) > y(V) =

f@)+fly) 2  min [f(z ~Xu) FfyFxa), min {F(@ =Xt x0) + Y+ X - Xv)}] :
u€suppt(z—y) vEsupp~(z—y

(1) z(V)=y(V), z # y== f(z)+f(y) > . mi+r(t ){f(w—xu+xv)+f('y+xu—xv)}-
u€supp™ (z—y
vEsupp~(z—y)

For example, (MG-EXCp) (i) is obtained from (MB-EXC) for f with u = vp.
The objective of this section is to show that these axioms are equivalent to (MG-EXC) and
(MG-EXCyw), which look simpler and nicer.

Theorem 3.2 (MG-PRJ) <= (MG-EXC) <= (MG-EXCy) <= (MG-EXCp) < (MG-
EXCpw).

We can easily see from definitions and Theorem 3.1 that (MG-EXCpw) == (MG-EXCp) =
(MG-EXC) = (MG-EXCyw). Furthermore, it is obvious that (MG-EXCw) = (MG-EXCpw)
(i). Thus, it suffices to show that (MG-EXCyw) == (MG-EXCpy) (ii). For this purpose, we need

some lemmas.

Lemma 3.3 (MG-EXCy) => Vz,y € dom f with (V) < y(V),

f@)+fly)2  min {f(z+x0)+fly—x)}
vEsupp~(z—y)

Proof. The proof is similar to and simpler than the one for Lemma 3.6 below and omitted. ll
For any z € ZV, we define ||z|| = Z{|z(w)| | w € V}.

Lemma 3.4 (MG-EXCy) = Vz,y € dom f with (V) =y(V) and ||z — y|| = 4,

fle)+ fly)> min {f(z—Xxu+Xo) + FW+ Xu — Xo)}-
u€supp™*(z—y)
vEsupp~(z—y)

Proof. Wecan put £ = 2+ Xw, + Xwy» Y = 2 + Xws + Xws With w; € V (2 = 1,2,3,4) and
z € ZV defined by z(v) = min{z(v),y(v)} for v € V. In the following, we denote a1 = f(z + Xuw, ),
@23 = f(Z+ Xws + Xws)» @134 = f(Z 4+ Xw; + Xws + Xw,), a0d so on. To the contrary suppose

a2 +azg < min{a13 + o9g, 14 + Ot23}. (2)
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Then, we have aj2 + o34 = min{a; + ag34, @2 + a334}. In fact, LHS > RHS is by (MG-EXCy)
and (2), and the reverse inequality is by Lemma 3.3 and (2). Assume w.l.0.g. that ajs + agq4 =
a1 + as34. From (MG-EXCy), it holds that

2(a12 + a34) = o234 + @12 + @34 + o1 > min{ai93 + @24, @124 + @23} + min{ o3 + @14, 4 + 13}

Again assume w.l.o.g. that min{aja3 + @4, @194 + @23} = @123 + @24. In case that min{ag +

a4, 04 + 013} = a3 + @14, we have a contradiction since
o123 + 24 + a3 + 014 > 013 + o4 + @23 + 014 > 2(02 + @34),

where the first and second inequalities are by (MG-EXCy) and (2), respectively. If min{as +

Q14,04 + @13} = a4 + 13, then Lemma 3.3 and (2) yield another contradiction:
@193 + 024 + g + c13 > min{e2 + @34, 013 + @24, 014 + @23} + @13 + @24 > 2(a12 + a34).
[ |

Lemma 3.5 (MG-EXCy) = Vz,y € dom f with z(V) = y(V) and x # y, Ju; € suppt(z —y),
3v; € supp™ (z — y) such that y + Xu, — Xv, € dom f.

Proof. By applying (MG-EXCy) for z and y, either (a) or (b) holds, where

(a) Ju; € supp*(x —y) such that y + x., € dom f,
(b) Ju; € supp™(z — y), Jv; € supp~ (z — y) such that y + xu, — Xv, € dom f.

If (a) holds, then we can apply Lemma 3.3 for  and y+xu, , which yields that y+Xu, —X», € dom f

for some v1 € supp™ (¢ — (¥ + Xu,)) C supp™ (z — y). u

In the following, we assume (MG-EXCyw) and show a stronger statement than (MG-EXCpw)
(ii). The proof is almost the same as the one for [18, Theorem 3.1].

Lemma 3.6 (MG-EXCy) = Vz,y € dom f with (V) =y(V), Yu € supp™(z — y),

f@+fy) 2z  min {f(@—xutXe) + U+ X~ X0)}-

vEsupp~(z—y)
Proof. Set

D ={(z,y) | z,y € dom f, (V) = y(V), Ju. € supp*(z —y),
Yo € supp(z —y) : f(2) + f(y) < f(Z = Xu + X0) + FU + Xuu — Xo)}-

We assume D # () and derive a contradiction.
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Let (z,y) be the element in D which minimizes the value ||z — y||, and u« € supp™(z — y)
satisfy the condition for (z,y) to be in D. Using (> 0), we set p € RV as follows:

f(z) = f(z — Xu, + X0) (v € supp™(Z — ¥), T — Xu. + Xo € dom f),
FW+ Xu. —Xo) — fly) —€ (v E€supp™(z —¥), T — Xu, + Xov € dom f,

p(v) =
y + Xu* - Xq_v E dOHl f),

0 (otherwise).
Define fp(z) = f(z) + L {p(w)z(w) |w € V} (Vz € ZV).

Claim 1

fp(z = Xu, + Xo) = fp(w) (v €supp™ (Z —¥), T — Xu. + Xo € dom f), (3)
foy+xu. —x0) > foly) (v €supp™(z —y)). | (4)

Suppose that u; € supp™(z — y), v1 € supp~ (z — y) satisfy

foly+Xuy = X)) = min  fo(y + Xu — Xo)- (5)
u€suppt(z—y)
 vEsupp~(z—y)

Lemma 3.5 yields that fo(y + Xu; — Xo;) < +00. Put ¢ =y + Xu; — Xor-

Claim 2 (z,y') € D.

Proof. We have only to show that

fo(z) +vfp(y,) < fp(® = Xu, + Xv) + fp(y’ + Xu. — Xo) ; (6)

for each v € supp™(z — 9'). We can assume that © — xy, + X» € dom f, which implies f,(z) =
fo(z = Xu. + Xo) by (3) and the fact v € supp™(z — y) C supp™(z — y). Furthermore, it holds
that

Fo¥ + X = Xo) Fo@+ Xur + Xuw = Xor = Xo) + o (¥) — foly)

2 nlin{fp(y + Xu; — Xm) + fp(y + Xuw ™ Xv)a
foly + Xy = Xo) + Fp(U + Xu. = Xu)} = fp(y)  (by Lemma 3.4)
> fp(¢) +min{fp(y + Xur — Xo) = o(¥)s Fol¥+ Xu. — Xun) = ()} (by (5))
> folyf) : (by (4)),
which implies the inequality (6). [ |
Hence, we have (z,y') € D, and llz — ¥'|| = |z — y|| — 2, which contradicts the selection of (z,y).
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4 Greedily Solvable Layer Structure

Suppose we are given a function f : Z¥ — R U {+oo}. This section assumes that f satisfies
(MG-EXC) unless otherwise stated explicitly. We discuss the layer structure of f, which is the
restriction of f to {z € Z" | (V) = k}, and the following optimization problem in each layer
(keZ):

minimize f(x) subject to z(V) = k.

Set A = min{z(V) | f(z) < +o0} and p = max{z(V) | f(z) < +oo}. For any integer k, define a
function fi : ZV — RU{+00} as fr(z) = f(z) if 2(V) = k, and = 400 otherwise. The following,

a corollary of Theorem 3.2, shows that each layer has a nice structure.
Theorem 4.1 f;. satisfies (MB-EXC) (A < Vk < p).

We can find a minimizer in each layer greedily by the following algorithm.

Exchanging Algorithm /* for minimization of an M-convex function on a base polyhedron */
STEP 0: Let z be any element in dom f. Set V™ = V.

STEP 1: If V~ = () then stop.

STEP 2: Choose any v € V~, and find v € V such that f(z — x4 + Xo) = min{f(z — xu + Xw) |
w €V}

STEP 3: Set £ =2 — xu + Xv, and if v € V7, 8et V™ =V~ — {v}. Go to STEP 1.

Note that with a slight modification, this algorithm also applies to global optimization for M-

convex functions on g-polymatroids. The next lemma validates the exchanging algorithm.

Lemma 4.2 Suppose f : ZV — RU {+oo} satisfies (MB-EXC). Given z € dom f and u € V, let
v € V be such that f(z — xu + Xv) = min{f(z — xu + xw) | w € V}.

(i) If v # w, there exists x* € argmin f with z*(v) > z(v).

(ii) If v = u, there exists £* € argmin f with z*(v) > z(v).

Proof.  'We prove the first claim only. The second claim can be proved in a similar way. To
the contrary suppose there is no z* € argmin f with z*(v) > z(v), and let 2* € argmin f with
the maximum value of *(v). Then we have v € supp* ((z — xu + X») — *). By (MB-EXC), there
exists w € supp™ ((z — Xu + Xv) — 2*) such that

f(x_Xu'*'Xv)"‘f(l'*)Zf(x“Xu+Xu’)+f(w*+Xv"‘Xw)'

The assumption for v and the fact z* € argmin f imply f(z* + x» — xw) = f(z*). However, it is

a contradiction since (z* + x» — Xw)(v) = 2*(v) + 1. |

We propose different approaches for optimization in a layer, which use the following properties
of the relationship between consecutive layers. For any integer £ (A < k < p), define of =
min{f(z) |2(V) =k} and My ={z € ZV | 2(V) =k, f(z) =a}}.
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Theorem 4.3 (i) Let 25 € My, (A\ < k < p—1), and v € V be such that f(z} + xu) =
min{ f (2} + xw) | w € V'}. Then 2} + xv € Mi41.
(i) Let zj, € M (A+1 <k < p) andu € V be such that f(z} —xu) = min{f(z} —xw) | w € V}.
Then z}, — xu € Mp_1.
Proof.  For (i) it suffices to show that ||y* — 2} || = 1 holds for some y* € M. Let y € My
with ||y —z%|| > 1. Note that supp™ (y —z}) # 0. For u € supp™ (y — z}), the property (MG-EXC)
yields either (a) or (b), where

(a) f(y) + f(2}) > fly — xa) + f(@F + Xu),

(®) F) + f(@) 2 fy — xu+x0) + f@E +Xxu —Xx0)  (Fv € supp™(y — 2)).
Since 2} € My, y € Myy1, we have y' = 2} +xu € Mgy if (a) holds, and ¢ = y— xu+Xo € Mit1
if (b) holds. In either case, we obtain ¢ € M1 with ||y — z}|| < ||y — z;||- By repeating this

procedure, we can find a desired y*. The proof of (ii) is similar. [ |

This property naturally yields the next algorithm:

Augmenting Algorithm

STEP 0: Find any =) € M. Set k = A.

STEP 1: If k = p then stop.

STEP 2: Find v € V such that f(z} + xv,) = min{f(z} + xw) | w € V}.

STEP 3: Set z},; = T} + Xv,, K=k +1. Go to STEP 1.

The exchanging algorithm can be used in STEP 0 of this algorithm. A reducing algorithm, which
iteratively reduces k, can be constructed similarly. These algorithms work well if we can find an
element 23 € M) or z}, € M, efficiently, in particular if |[dom fy| = 1 or |dom f,| = 1.

The next theorem shows the convexity of the sequence o,

Theorem 4.4 of_;+ o >20) (A+1<VE<pu—-1).
Proof. By Theorem 4.3, there exist zj_; € My_1, 7,1 € Myyy such that zp_; < z7,4.

Apply (MG-EXC) to z},, z;_; and any u € supp™ (2}, — z5_1) to obtain f(z}, )+ f(z5_1) >
f@}ir = xu) + F(@F_1 + xu) > 205. Note that supp™ (25, — z5_;) = 0. |

Therefore, we can use the augmenting algorithm for finding a global minimum, where we can
stop the algorithm when k satisfies the condition o}, > of. As an immediate corollary of this
theorem, we have {x € ZV | 2(V) =k, f(z) < +oo} #0 (A < Vk < p).

Finally, we mention that the local minimality characterizes a global minimum of an M-convex
function on a g-polymatroid. This follows easily from the corresponding result [17, 18] for an

M-convex function on a base polyhedron.

Theorem 4.5 Suppose f : Z¥ — R U {+oo} satisfies (MG-EXC) and let x € dom f. Then
f(z) £ f(y) for any y € ZV if and only if '

SN I o N
(@) < min [ muin, (@ = xo+ Xo),mip S (@ = xa). 19 £ 2+ o)
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5 Concluding Remarks

Remark 5.1 Most properties of M-convex functions on base polyhedra [14, 17, 18, 19] extend

to M-convex functions on g-polymatroids, according to its definition. For example,

e an M-convex function on a g-polymatroid is characterized by minimizers,

¢ M-convexity on g-polymatroids is preserved by addition of a linear function, trans-
lation, and negation of the argument,

e an M-convex function on a g-polymatroid can be extended to a convex function,

e convolution and network induction work,

e an intersection theorem, a Fenchel-type duality, and a discrete separation theorem
hold.

Remark 5.2 As a corollary of Theorem 3.2, g-polymatroids are characterized by a simultaneous
exchange property:

(G-EXC) Vz,y € Q, Yu € supp™ (z — y), either (i) or (ii) holds, where

(i) T~ Xu EQ andy+xu EQ»

(i) = xu + X0 € @ and y + Xu — Xv € Q@ (Jv € supp™(z — y)).
In fact, the axiom (MG-EXC) comes from this characterization. Alternatively, g-polymatroids
are characterized by another exchange property:

(G-EXCy) Vz,y € Q, Yu € supp™ (z — y), both (i) and (ii) hold, where
(i) either £ — xy, € Q, 0r T — Xy + Xo € Q (3v € supp ™ (z — ¥)),
(ii) either y + xu € @, or Y + Xu — Xw € Q (3w € supp™(z — y)),

which is a straightforward extension of the one for g-matroids due to Tardos [22]. This axiom,

however, is not suitable for a quantitative generalization.

Remark 5.3 Suppose that we are given a function f : Z¥ — R U {400} with (MB-EXC) and
a specified subset W C V. Set A = min{z(W) | f(z) < +o0}, p = max{z(W) | f(z) < +00},
ap =min{f(z) | 2(W) =k}, and My ={z € ZV | 2(W) =k, f(z) = a}}. Then, of_; +of; >
20 (A+1<Vk<p—1)asin Theorem 4.4, and Theorem 4.3 can be generalized as follows:

Theorem 5.1 Letz} € My (A <k < p—1),andu € V-W, v € W besuch that f(z}—Xu+Xv) =
min{f(z; —xs+Xxt) | s€V —W, t € W}. Then 2} — Xu + Xo € Mi41.

Theorems 4.3 and 4.4 are the translation by projection of these results when |W| = 1. Note that

the similar properties of valuated bimatroid in [13] are also the special cases of the above results.

Remark 5.4 Several researchers considered discrete analogy of convex function, e.g., Lovész
[12], and Favati and Tardella [6]; the latter investigated a class of discrete functions such that

- local minimality leads to global minimality.
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